Bee Pollen: Current Status and Therapeutic Potential
Language English Country Switzerland Media electronic
Document type Journal Article, Review
Grant support
VR 2016-05885
Swedish Research links Grant VR 2016-05885
PubMed
34072636
PubMed Central
PMC8230257
DOI
10.3390/nu13061876
PII: nu13061876
Knihovny.cz E-resources
- Keywords
- bee pollen, functional food, human health, metabolic syndromes, nutritional value,
- MeSH
- Antioxidants analysis MeSH
- Functional Food * MeSH
- Blood Glucose MeSH
- Rats MeSH
- Humans MeSH
- Metabolic Syndrome MeSH
- Mice MeSH
- Nutritive Value MeSH
- Propolis * MeSH
- Pollen * MeSH
- Carbohydrates analysis MeSH
- Bees * MeSH
- Animals MeSH
- Check Tag
- Rats MeSH
- Humans MeSH
- Mice MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Review MeSH
- Names of Substances
- Antioxidants MeSH
- Blood Glucose MeSH
- Propolis * MeSH
- Carbohydrates MeSH
Bee pollen is a combination of plant pollen and honeybee secretions and nectar. The Bible and ancient Egyptian texts are documented proof of its use in public health. It is considered a gold mine of nutrition due to its active components that have significant health and medicinal properties. Bee pollen contains bioactive compounds including proteins, amino acids, lipids, carbohydrates, minerals, vitamins, and polyphenols. The vital components of bee pollen enhance different bodily functions and offer protection against many diseases. It is generally marketed as a functional food with affordable and inexpensive prices with promising future industrial potentials. This review highlights the dietary properties of bee pollen and its influence on human health, and its applications in the food industry.
College of Food Science and Technology Northwest University Xi'an 710069 China
College of Pharmacy University of Sharjah Sharjah P O Box 27272 United Arab Emirates
Department of Chemistry Faculty of Science Menoufia University Shebin El Kom 32512 Egypt
School of Food and Biological Engineering Jiangsu University Zhenjiang 212013 China
See more in PubMed
Abdelnour S.A., Abd El-Hack M.E., Alagawany M., Farag M.R., Elnesr S.S. Beneficial impacts of bee pollen in animal production, reproduction and health. J. Anim. Physiol. Anim. Nutr. 2019;103:477–484. doi: 10.1111/jpn.13049. PubMed DOI
Mauriello G., De Prisco A., Di Prisco G., La Storia A., Caprio E. Microbial characterization of bee pollen from the Vesuvius area collected by using three different traps. PLoS ONE. 2017;12:e0183208. doi: 10.1371/journal.pone.0183208. PubMed DOI PMC
Li Q.Q., Wang K., Marcucci M.C., Sawaya A.C.H.F., Hu L., Xue X.F., Wu L.M., Hu F.L. Nutrient-rich bee pollen: A treasure trove of active natural metabolites. J. Funct. Foods. 2018;49:472–484. doi: 10.1016/j.jff.2018.09.008. DOI
Mayda N., Özkök A., Ecem Bayram N., Gerçek Y.C., Sorkun K. Bee bread and bee pollen of different plant sources: Determination of phenolic content, antioxidant activity, fatty acid and element profiles. J. Food Meas. Charact. 2020;14:1795–1809. doi: 10.1007/s11694-020-00427-y. DOI
Liolios V., Tananaki C., Papaioannou A., Kanelis D., Rodopoulou M.A., Argena N. Mineral content in monofloral bee pollen: Investigation of the effect of the botanical and geographical origin. J. Food Meas. Charact. 2019;13:1674–1682. doi: 10.1007/s11694-019-00084-w. DOI
Thakur M., Nanda V. Composition and functionality of bee pollen: A review. Trends Food Sci. Technol. 2020;98:82–106. doi: 10.1016/j.tifs.2020.02.001. DOI
Hou Y., Yin Y., Wu G. Dietary essentiality of “nutritionally non-essential amino acids” for animals and humans. Exp. Biol. Med. 2015;240:997–1007. doi: 10.1177/1535370215587913. PubMed DOI PMC
Almeida-Muradian L.B., Pamplona L.C., Coimbra S., Barth O.M. Chemical composition and botanical evaluation of dried bee pollen pellets. J. Food Compos. Anal. 2005;18:105–111. doi: 10.1016/j.jfca.2003.10.008. DOI
Szczesna T. Long-chain fatty acids composition of honeybee-collected pollen. J. Apic. Sci. 2006;50:65–79.
Komosinska-Vassev K., Olczyk P., Kaźmierczak J., Mencner L., Olczyk K. Bee pollen: Chemical composition and therapeutic application. Evid. Based Complement. Altern. Med. 2015;2015 doi: 10.1155/2015/297425. PubMed DOI PMC
Campos M.G.R., Bogdanov S., de Almeida-Muradian L.B., Szczesna T., Mancebo Y., Frigerio C., Ferreira F. Pollen composition and standardisation of analytical methods. J. Apic. Res. 2008;47:154–161. doi: 10.1080/00218839.2008.11101443. DOI
Campos M.G.R., Frigerio C., Lopes J., Bogdanov S. What is the future of bee-pollen? J. ApiProduct ApiMedical Sci. 2010;2:131–144. doi: 10.3896/IBRA.4.02.4.01. DOI
Dong J., Gao K., Wang K., Xu X., Zhang H. Cell wall disruption of rape bee pollen treated with combination of protamex hydrolysis and ultrasonication. Food Res. Int. 2015;75:123–130. doi: 10.1016/j.foodres.2015.05.039. PubMed DOI
Uddin M.J., Liyanage S., Abidi N., Gill H.S. Physical and biochemical characterization of chemically treated pollen shells for potential use in oral delivery of therapeutics. J. Pharm. Sci. 2018;107:3047–3059. doi: 10.1016/j.xphs.2018.07.028. PubMed DOI
Wu W., Qiao J., Xiao X., Kong L., Dong J., Zhang H. In vitro and In vivo digestion comparison of bee pollen with or without wall-disruption. J. Sci. Food Agric. 2021;101:2744–2755. doi: 10.1002/jsfa.10902. PubMed DOI
Xu X., Sun L., Dong J., Zhang H. Breaking the cells of rape bee pollen and consecutive extraction of functional oil with supercritical carbon dioxide. Innov. Food Sci. Emerg. Technol. 2009;10:42–46. doi: 10.1016/j.ifset.2008.08.004. DOI
Wu W., Wang K., Qiao J., Dong J., Li Z., Zhang H. Improving nutrient release of wall-disrupted bee pollen with a combination of ultrasonication and high shear technique. J. Sci. Food Agric. 2019;99:564–575. doi: 10.1002/jsfa.9216. PubMed DOI
Filannino P., Di Cagno R., Vincentini O., Pinto D., Polo A., Maialetti F., Porrelli A., Gobbetti M. Nutrients bioaccessibility and anti-inflammatory features of fermented bee pollen: A comprehensive investigation. Front. Microbiol. 2021;12:622091–622101. doi: 10.3389/fmicb.2021.622091. PubMed DOI PMC
Filannino P., Di Cagno R., Gambacorta G., Tlais A.Z.A., Cantatore V., Gobbetti M. Volatilome and bioaccessible phenolics profiles in lab-scale fermented bee pollen. Foods. 2021;10:286. doi: 10.3390/foods10020286. PubMed DOI PMC
Uțoiu E., Matei F., Toma A., Diguță C.F., Ștefan L.M., Mănoiu S., Vrăjmașu V.V., Moraru I., Oancea A., Israel-Roming F., et al. Bee collected pollen with enhanced health benefits, produced by fermentation with a Kombucha Consortium. Nutrients. 2018;10:1365. doi: 10.3390/nu10101365. PubMed DOI PMC
Zuluaga-Domínguez C., Castro-Mercado L., Cecilia Quicazán M. Effect of enzymatic hydrolysis on structural characteristics and bioactive composition of bee-pollen. J. Food Process. Preserv. 2019;43:e13983. doi: 10.1111/jfpp.13983. DOI
Llnskens H.F., Jorde W. Pollen as food and medicine—A review. Econ. Bot. 1997;51:78–87. doi: 10.1007/BF02910407. DOI
Grundy S.M. Metabolic syndrome pandemic. Arterioscler. Thromb. Vasc. Biol. 2008;28:629–636. doi: 10.1161/ATVBAHA.107.151092. PubMed DOI
Feldeisen S.E., Tucker K.L. Nutritional strategies in the prevention and treatment of metabolic syndrome. Appl. Physiol. Nutr. Metab. 2007;32:46–60. doi: 10.1139/h06-101. PubMed DOI
Kostić A., Milinčić D.D., Barać M.B., Shariati M.A., Tešić Ž.L., Pešić M.B. The application of pollen as a functional food and feed ingredient—the present and perspectives. Biomolecules. 2020;10:84. doi: 10.3390/biom10010084. PubMed DOI PMC
Shen Z., Geng Q., Huang H., Yao H., Du T., Chen L., Wu Z., Miao X., Shi P. Antioxidative and cardioprotective effects of Schisandra chinensis bee pollen extract on isoprenaline-induced myocardial infarction in rats. Molecules. 2019;24:1090. doi: 10.3390/molecules24061090. PubMed DOI PMC
Eraslan G., Kanbur M., Silici S., Liman B.C., Altınordulu Ş., Sarıca Z.S. Evaluation of protective effect of bee pollen against propoxur toxicity in rat. Ecotoxicol. Environ. Saf. 2009;72:931–937. doi: 10.1016/j.ecoenv.2008.06.008. PubMed DOI
Daudu O.M. Bee pollen extracts as potential antioxidants and inhibitors of α-amylase and α-glucosidase enzymes-in vitro assessment. J. Apic. Sci. 2019;63:315–325. doi: 10.2478/jas-2019-0020. DOI
Mohamed N.A., Ahmed O.M., Hozayen W.G., Ahmed M.A. Ameliorative effects of bee pollen and date palm pollen on the glycemic state and male sexual dysfunctions in streptozotocin-Induced diabetic wistar rats. Biomed. Pharmacother. 2018;97:9–18. doi: 10.1016/j.biopha.2017.10.117. PubMed DOI
Rzepecka-Stojko A., Kabała-Dzik A., Kubina R., Jasik K., Kajor M., Wrześniok D., Stojko J. Protective effect of polyphenol-rich extract from bee pollen in a high-fat diet. Molecules. 2018;23:805. doi: 10.3390/molecules23040805. PubMed DOI PMC
Shobana S., Sreerama Y.N., Malleshi N.G. Composition and enzyme inhibitory properties of finger millet (Eleusine coracana L.) seed coat phenolics: Mode of inhibition of α-glucosidase and pancreatic amylase. Food Chem. 2009;115:1268–1273. doi: 10.1016/j.foodchem.2009.01.042. DOI
Matsui T., Ueda T., Oki T., Sugita K., Terahara N., Matsumoto K. α-Glucosidase inhibitory action of natural acylated anthocyanins. 1. Survey of natural pigments with potent inhibitory activity. J. Agric. Food Chem. 2001;49:1948–1951. doi: 10.1021/jf001251u. PubMed DOI
La Vignera S., Condorelli R., Vicari E., D’Agata R., Calogero A.E. Diabetes mellitus and sperm parameters. J. Androl. 2012;33:145–153. doi: 10.2164/jandrol.111.013193. PubMed DOI
Shrilatha B. Early oxidative stress in testis and epididymal sperm in streptozotocin-induced diabetic mice: Its progression and genotoxic consequences. Reprod. Toxicol. 2007;23:578–587. doi: 10.1016/j.reprotox.2007.02.001. PubMed DOI
Chauhan N.S., Sharma V., Dixit V.K., Thakur M. A review on plants used for improvement of sexual performance and virility. Biomed Res. Int. 2014;2014 doi: 10.1155/2014/868062. PubMed DOI PMC
Luo Y., Lin H. Inflammation initiates a vicious cycle between obesity and nonalcoholic fatty liver disease. Immunity Inflamm. Dis. 2021;9:59–73. doi: 10.1002/iid3.391. PubMed DOI PMC
Chen G., Xie M., Dai Z., Wan P., Ye H., Zeng X., Sun Y. Kudingcha and fuzhuan brick tea prevent obesity and modulate gut microbiota in high-fat diet fed mice. Mol. Nutr. Food Res. 2018;62:1700485–1700495. doi: 10.1002/mnfr.201700485. PubMed DOI
Cheng N., Chen S., Liu X., Zhao H., Cao W. Impact of schisandrachinensis bee pollen on nonalcoholic fatty liver disease and gut microbiota in highfat diet induced obese mice. Nutrients. 2019;11:346. doi: 10.3390/nu11020346. PubMed DOI PMC
Li X., Gong H., Yang S., Yang L., Fan Y., Zhou Y. Pectic bee pollen polysaccharide from Rosa rugosa alleviates diet-induced hepatic steatosis and insulin resistance via induction of AMPK/mTOR-mediated autophagy. Molecules. 2017;22:699. doi: 10.3390/molecules22050699. PubMed DOI PMC
Yildiz O., Can Z., Saral Ö., Yuluǧ E., Öztürk F., Aliyazicioǧlu R., Canpolat S., Kolayli S. Hepatoprotective potential of chestnut bee pollen on carbon tetrachloride-induced hepatic damages in rats. Evid. Based Complement. Altern. Med. 2013;2013 doi: 10.1155/2013/461478. PubMed DOI PMC
Huang H., Shen Z., Geng Q., Wu Z., Shi P., Miao X. Protective effect of Schisandra chinensis bee pollen extract on liver and kidney injury induced by cisplatin in rats. Biomed. Pharmacother. 2017;95:1765–1776. doi: 10.1016/j.biopha.2017.09.083. PubMed DOI
Bagatini M.D., Martins C.C., Battisti V., Gasparetto D., Da Rosa C.S., Spanevello R.M., Ahmed M., Schmatz R., Schetinger M.R.C., Morsch V.M. Oxidative stress versus antioxidant defenses in patients with acute myocardial infarction. Heart Vessel. 2011;26:55–63. doi: 10.1007/s00380-010-0029-9. PubMed DOI
Rzepecka-Stojko A., Stojko J., Jasik K., Buszman E. Anti-atherogenic activity of polyphenol-rich extract from bee pollen. Nutrients. 2017;9:1369. doi: 10.3390/nu9121369. PubMed DOI PMC
Pignatelli P., Di Santo S., Buchetti B., Sanguigni V., Brunelli A., Violi F. Polyphenols enhance platelet nitric oxide by inhibiting protein kinase C-dependent NADPH oxidase activation: Effect on platelet recruitment. FASEB J. 2006;20:1082–1089. doi: 10.1096/fj.05-5269com. PubMed DOI
Norata G.D., Marchesi P., Passamonti S., Pirillo A., Violi F., Catapano A.L. Anti-inflammatory and anti-atherogenic effects of cathechin, caffeic acid and trans-resveratrol in apolipoprotein E deficient mice. Atherosclerosis. 2007;191:265–271. doi: 10.1016/j.atherosclerosis.2006.05.047. PubMed DOI
Wang R., Su G., Wang L., Xia Q., Liu R., Lu Q., Zhang J. Identification and mechanism of effective components from rape (Brassica napus L.) bee pollen on serum uric acid level and xanthine oxidase activity. J. Funct. Foods. 2018;47:241–251. doi: 10.1016/j.jff.2018.05.064. DOI
Juárez-Gómez J., Ramírez-Silva M.T., Guzmán-Hernández D., Romero-Romo M., Palomar-Pardavé M. Construction and optimization of a novel acetylcholine ion-selective electrode and its application for trace level determination of propoxur pesticide. J. Electrochem. Soc. 2020;167:087501–087507. doi: 10.1149/1945-7111/ab8874. DOI
Shields J.N., Hales E.C., Ranspach L.E., Luo X., Orr S., Runft D., Dombkowski A., Neely M.N., Matherly L.H., Taub J.W., et al. Exposure of larval zebrafish to the insecticide propoxur induced developmental delays that correlate with behavioral abnormalities and altered expression of hspb9 and hspb11. Toxics. 2019;7:50. doi: 10.3390/toxics7040050. PubMed DOI PMC
El-Demerdash F.M. Lipid peroxidation, oxidative stress and acetylcholinesterase in rat brain exposed to organophosphate and pyrethroid insecticides. Food Chem. Toxicol. 2011;49:1346–1352. doi: 10.1016/j.fct.2011.03.018. PubMed DOI
Tsitsimpikou C., Tzatzarakis M., Fragkiadaki P., Kovatsi L., Stivaktakis P., Kalogeraki A., Kouretas D., Tsatsakis A.M. Histopathological lesions, oxidative stress and genotoxic effects in liver and kidneys following long term exposure of rabbits to diazinon and propoxur. Toxicology. 2013;307:109–114. doi: 10.1016/j.tox.2012.11.002. PubMed DOI
Campos M.G., Webby R.F., Markham K.R., Mitchell K.A., Da Cunha A.P. Age-induced diminution of free radical scavenging capacity in bee pollens and the contribution of constituent flavonoids. J. Agric. Food Chem. 2003;51:742–745. doi: 10.1021/jf0206466. PubMed DOI
Ozsvath D.L. Fluoride and environmental health: A review. Rev. Environ. Sci. Bio/Technol. 2009;8:59–79. doi: 10.1007/s11157-008-9136-9. DOI
Khalil F.A., El-Sheikh N.M. The effects of dietary Egyptian propolis and bee pollen supplementation against toxicity if sodium fluoride in rats. J. Am. Sci. 2010;11:310–316.
Yamaguchi M., Hamamoto R., Uchiyama S., Ishiyama K., Hashimoto K. Anabolic effects of bee pollen Cistus ladaniferus extract on bone components in the femoral-diaphyseal and-metaphyseal tissues of rats in vitro and in vivo. J. Health Sci. 2006;52:43–49. doi: 10.1248/jhs.52.43. DOI
Yamaguchi M., Hamamoto R., Uchiyama S., Ishiyama K., Hashimoto K. Preventive effects of bee pollen Cistus ladaniferus extract on bone loss in streptozotocin-diabetic rats in vivo. J. Health Sci. 2007;53:190–195. doi: 10.1248/jhs.53.190. DOI
Christakos S., Dhawan P., Porta A., Mady L.J., Seth T. Vitamin D and intestinal calcium absorption. Mol. Cell. Endocrinol. 2011;347:25–29. doi: 10.1016/j.mce.2011.05.038. PubMed DOI PMC
Kolesarova A., Bakova Z., Capcarova M., Galik B., Juracek M., Simko M., Toman R., Sirotkin A.V. Consumption of bee pollen affects rat ovarian functions. J. Anim. Physiol. Anim. Nutr. 2013;97:1059–1065. doi: 10.1111/jpn.12013. PubMed DOI
Adriana K., Capcarova M., Bakova Z., Branislav G., Miroslav J., Milan S., Sirotkin A.V. The effect of bee pollen on secretion activity, markers of proliferation and apoptosis of porcine ovarian granulosa cells in vitro. J. Environ. Sci. Health Part B Pestic. Food Contam. Agric. Wastes. 2011;46:207–212. doi: 10.1080/03601234.2011.540202. PubMed DOI
Toman R., Hajkova Z., Hluchy S. Changes in intestinal morphology of rats fed with different levels of bee pollen. Pharmacogn. Commun. 2015;5:261–264. doi: 10.5530/pc.2015.4.8. DOI
Wang J., Li S., Wang Q., Xin B., Wang H. Trophic effect of bee pollen on small intestine in broiler chickens. J. Med. Food. 2007;10:276–280. doi: 10.1089/jmf.2006.215. PubMed DOI
Prakatur I., Miskulin M., Pavic M., Marjanovic K., Blazicevic V., Miskulin I., Domacinovic M. Intestinal morphology in broiler chickens. Animals. 2019;9:301. doi: 10.3390/ani9060301. PubMed DOI PMC
De Oliveira M.C., Da Silva D.M., Loch F.C., Martins P.C., Dias D.M.B., Simon G.A. Effect of bee pollen on the immunity and tibia characteristics in broilers. Braz. J. Poult. Sci. 2013;15:323–327. doi: 10.1590/S1516-635X2013000400006. DOI
Calder P.C. Branched-chain amino acids and immunity. J. Nutr. 2006;136:288S–293S. doi: 10.1093/jn/136.1.288S. PubMed DOI
Stingele F., Corthésy B., Kusy N., Porcelli S.A., Kasper D.L., Tzianabos A.O. Zwitterionic polysaccharides stimulate T cells with no preferential Vβ usage and promote anergy, resulting in protection against experimental abscess formation. J. Immunol. 2004;172:1483–1490. doi: 10.4049/jimmunol.172.3.1483. PubMed DOI
El-Bialy B.E., Abdeen E.E., El-Borai N.B., El-Diasty E.M. Experimental studies on some immunotoxicological aspects of aflatoxins containing diet and protective effect of bee pollen dietary supplement. Pak. J. Biol. Sci. 2016;19:26–35. doi: 10.3923/pjbs.2016.26.35. PubMed DOI
Ishikawa Y., Tokura T., Nakano N., Hara M., Niyonsaba F., Ushio H., Yamamoto Y., Tadokoro T., Okumura K., Ogawa H. Inhibitory effect of honeybee-collected pollen on mast cell degranulation in vivo and in vitro. J. Med. Food. 2008;11:14–20. doi: 10.1089/jmf.2006.163. PubMed DOI
Medeiros K.C.P., Figueiredo C.A.V., Figueredo T.B., Freire K.R.L., Santos F.A.R., Alcântara-Neves N.M., Silva T.M.S., Piuvezam M.R. Anti-allergic effect of bee pollen phenolic extract and myricetin in ovalbumin-sensitized mice. J. Ethnopharmacol. 2008;119:41–46. doi: 10.1016/j.jep.2008.05.036. PubMed DOI
Jagdis A., Sussman G. Anaphylaxis from bee pollen supplement. Cmaj. 2012;184:1167–1169. doi: 10.1503/cmaj.112181. PubMed DOI PMC
Choi J.H., Jang Y.S., Oh J.W., Kim C.H., Hyun I.G. Bee pollen-induced anaphylaxis: A case report and literature review. Allergy Asthma Immunol. Res. 2015;7:513–517. doi: 10.4168/aair.2015.7.5.513. PubMed DOI PMC
Greenberger P.A., Flais M.J. Bee pollen-induced anaphylactic reaction in an unknowingly sensitized subject. Ann. Allergy, Asthma Immunol. 2001;86:239–242. doi: 10.1016/S1081-1206(10)62698-1. PubMed DOI
Liao Y., Bae H.J., Zhang J., Kwon Y., Koo B., Jung I.H., Kim H.M., Park J.H., Lew J.H., Ryu J.H. The ameliorating effects of bee pollen on scopolamine-induced cognitive impairment in mice. Biol. Pharm. Bull. 2019;42:379–388. doi: 10.1248/bpb.b18-00552. PubMed DOI
Martirosyan D.M., Singh J. A new definition of functional food by FFC: What makes a new definition unique? Funct. Foods Health Dis. 2015;5:209–223. doi: 10.31989/ffhd.v5i6.183. DOI
Mark-Herbert C. Innovation of a new product category—functional foods. Technovation. 2004;24:713–719. doi: 10.1016/S0166-4972(02)00131-1. DOI
Karabagias I., Karabagias V., Gatzias I., Riganakos K. Bio-functional properties of bee pollen: The case of “bee pollen yoghur. Coatings. 2018;8:423. doi: 10.3390/coatings8120423. DOI
Conte P., Del Caro A., Balestra F., Piga A., Fadda C. Bee pollen as a functional ingredient in gluten-free bread: A physical-chemical, technological and sensory approach. LWT. 2018;90:1–7. doi: 10.1016/j.lwt.2017.12.002. DOI