• This record comes from PubMed

Bee Pollen: Current Status and Therapeutic Potential

. 2021 May 31 ; 13 (6) : . [epub] 20210531

Language English Country Switzerland Media electronic

Document type Journal Article, Review

Grant support
VR 2016-05885 Swedish Research links Grant VR 2016-05885

Bee pollen is a combination of plant pollen and honeybee secretions and nectar. The Bible and ancient Egyptian texts are documented proof of its use in public health. It is considered a gold mine of nutrition due to its active components that have significant health and medicinal properties. Bee pollen contains bioactive compounds including proteins, amino acids, lipids, carbohydrates, minerals, vitamins, and polyphenols. The vital components of bee pollen enhance different bodily functions and offer protection against many diseases. It is generally marketed as a functional food with affordable and inexpensive prices with promising future industrial potentials. This review highlights the dietary properties of bee pollen and its influence on human health, and its applications in the food industry.

Centre for Natural Products Discovery School of Pharmacy and Biomolecular Sciences Liverpool John Moores University James Parsons Building Byrom Street Liverpool L3 3AF UK

Chemistry of Medicinal Plants Department National Research Centre 33 El Bohouth St Dokki Giza 12622 Egypt

College of Food Science and Technology Northwest University Xi'an 710069 China

College of Pharmacy University of Sharjah Sharjah P O Box 27272 United Arab Emirates

Department of Bee Research Plant Protection Research Institute Agricultural Research Centre Giza 12627 Egypt

Department of Chemistry Faculty of Science Menoufia University Shebin El Kom 32512 Egypt

Department of Molecular Biosciences The Wenner Gren Institute Stockholm University SE 106 91 Stockholm Sweden

H E J Research Institute of Chemistry International Center for Chemical and Biological Sciences University of Karachi Karachi 75270 Pakistan

International Research Center for Food Nutrition and Safety Jiangsu University Zhenjiang 212013 China

Laboratory of Growth Regulators Institute of Experimental Botany ASCR and Palacký University Šlechtitelů 27 78371 Olomouc Czech Republic

Nutrition and Bromatology Group Department of Analytical Chemistry and Food Science Faculty of Food Science and Technology University of Vigo Ourense Campus E 32004 Ourense Spain

Pharmacognosy Group Department of Pharmaceutical Biosciences Biomedical Centre Uppsala University Box 591 SE 751 24 Uppsala Sweden

School of Food and Biological Engineering Jiangsu University Zhenjiang 212013 China

School of Food Science and Technology National Engineering Research Center of Seafood Dalian Polytechnic University Dalian 116024 China

See more in PubMed

Abdelnour S.A., Abd El-Hack M.E., Alagawany M., Farag M.R., Elnesr S.S. Beneficial impacts of bee pollen in animal production, reproduction and health. J. Anim. Physiol. Anim. Nutr. 2019;103:477–484. doi: 10.1111/jpn.13049. PubMed DOI

Mauriello G., De Prisco A., Di Prisco G., La Storia A., Caprio E. Microbial characterization of bee pollen from the Vesuvius area collected by using three different traps. PLoS ONE. 2017;12:e0183208. doi: 10.1371/journal.pone.0183208. PubMed DOI PMC

Li Q.Q., Wang K., Marcucci M.C., Sawaya A.C.H.F., Hu L., Xue X.F., Wu L.M., Hu F.L. Nutrient-rich bee pollen: A treasure trove of active natural metabolites. J. Funct. Foods. 2018;49:472–484. doi: 10.1016/j.jff.2018.09.008. DOI

Mayda N., Özkök A., Ecem Bayram N., Gerçek Y.C., Sorkun K. Bee bread and bee pollen of different plant sources: Determination of phenolic content, antioxidant activity, fatty acid and element profiles. J. Food Meas. Charact. 2020;14:1795–1809. doi: 10.1007/s11694-020-00427-y. DOI

Liolios V., Tananaki C., Papaioannou A., Kanelis D., Rodopoulou M.A., Argena N. Mineral content in monofloral bee pollen: Investigation of the effect of the botanical and geographical origin. J. Food Meas. Charact. 2019;13:1674–1682. doi: 10.1007/s11694-019-00084-w. DOI

Thakur M., Nanda V. Composition and functionality of bee pollen: A review. Trends Food Sci. Technol. 2020;98:82–106. doi: 10.1016/j.tifs.2020.02.001. DOI

Hou Y., Yin Y., Wu G. Dietary essentiality of “nutritionally non-essential amino acids” for animals and humans. Exp. Biol. Med. 2015;240:997–1007. doi: 10.1177/1535370215587913. PubMed DOI PMC

Almeida-Muradian L.B., Pamplona L.C., Coimbra S., Barth O.M. Chemical composition and botanical evaluation of dried bee pollen pellets. J. Food Compos. Anal. 2005;18:105–111. doi: 10.1016/j.jfca.2003.10.008. DOI

Szczesna T. Long-chain fatty acids composition of honeybee-collected pollen. J. Apic. Sci. 2006;50:65–79.

Komosinska-Vassev K., Olczyk P., Kaźmierczak J., Mencner L., Olczyk K. Bee pollen: Chemical composition and therapeutic application. Evid. Based Complement. Altern. Med. 2015;2015 doi: 10.1155/2015/297425. PubMed DOI PMC

Campos M.G.R., Bogdanov S., de Almeida-Muradian L.B., Szczesna T., Mancebo Y., Frigerio C., Ferreira F. Pollen composition and standardisation of analytical methods. J. Apic. Res. 2008;47:154–161. doi: 10.1080/00218839.2008.11101443. DOI

Campos M.G.R., Frigerio C., Lopes J., Bogdanov S. What is the future of bee-pollen? J. ApiProduct ApiMedical Sci. 2010;2:131–144. doi: 10.3896/IBRA.4.02.4.01. DOI

Dong J., Gao K., Wang K., Xu X., Zhang H. Cell wall disruption of rape bee pollen treated with combination of protamex hydrolysis and ultrasonication. Food Res. Int. 2015;75:123–130. doi: 10.1016/j.foodres.2015.05.039. PubMed DOI

Uddin M.J., Liyanage S., Abidi N., Gill H.S. Physical and biochemical characterization of chemically treated pollen shells for potential use in oral delivery of therapeutics. J. Pharm. Sci. 2018;107:3047–3059. doi: 10.1016/j.xphs.2018.07.028. PubMed DOI

Wu W., Qiao J., Xiao X., Kong L., Dong J., Zhang H. In vitro and In vivo digestion comparison of bee pollen with or without wall-disruption. J. Sci. Food Agric. 2021;101:2744–2755. doi: 10.1002/jsfa.10902. PubMed DOI

Xu X., Sun L., Dong J., Zhang H. Breaking the cells of rape bee pollen and consecutive extraction of functional oil with supercritical carbon dioxide. Innov. Food Sci. Emerg. Technol. 2009;10:42–46. doi: 10.1016/j.ifset.2008.08.004. DOI

Wu W., Wang K., Qiao J., Dong J., Li Z., Zhang H. Improving nutrient release of wall-disrupted bee pollen with a combination of ultrasonication and high shear technique. J. Sci. Food Agric. 2019;99:564–575. doi: 10.1002/jsfa.9216. PubMed DOI

Filannino P., Di Cagno R., Vincentini O., Pinto D., Polo A., Maialetti F., Porrelli A., Gobbetti M. Nutrients bioaccessibility and anti-inflammatory features of fermented bee pollen: A comprehensive investigation. Front. Microbiol. 2021;12:622091–622101. doi: 10.3389/fmicb.2021.622091. PubMed DOI PMC

Filannino P., Di Cagno R., Gambacorta G., Tlais A.Z.A., Cantatore V., Gobbetti M. Volatilome and bioaccessible phenolics profiles in lab-scale fermented bee pollen. Foods. 2021;10:286. doi: 10.3390/foods10020286. PubMed DOI PMC

Uțoiu E., Matei F., Toma A., Diguță C.F., Ștefan L.M., Mănoiu S., Vrăjmașu V.V., Moraru I., Oancea A., Israel-Roming F., et al. Bee collected pollen with enhanced health benefits, produced by fermentation with a Kombucha Consortium. Nutrients. 2018;10:1365. doi: 10.3390/nu10101365. PubMed DOI PMC

Zuluaga-Domínguez C., Castro-Mercado L., Cecilia Quicazán M. Effect of enzymatic hydrolysis on structural characteristics and bioactive composition of bee-pollen. J. Food Process. Preserv. 2019;43:e13983. doi: 10.1111/jfpp.13983. DOI

Llnskens H.F., Jorde W. Pollen as food and medicine—A review. Econ. Bot. 1997;51:78–87. doi: 10.1007/BF02910407. DOI

Grundy S.M. Metabolic syndrome pandemic. Arterioscler. Thromb. Vasc. Biol. 2008;28:629–636. doi: 10.1161/ATVBAHA.107.151092. PubMed DOI

Feldeisen S.E., Tucker K.L. Nutritional strategies in the prevention and treatment of metabolic syndrome. Appl. Physiol. Nutr. Metab. 2007;32:46–60. doi: 10.1139/h06-101. PubMed DOI

Kostić A., Milinčić D.D., Barać M.B., Shariati M.A., Tešić Ž.L., Pešić M.B. The application of pollen as a functional food and feed ingredient—the present and perspectives. Biomolecules. 2020;10:84. doi: 10.3390/biom10010084. PubMed DOI PMC

Shen Z., Geng Q., Huang H., Yao H., Du T., Chen L., Wu Z., Miao X., Shi P. Antioxidative and cardioprotective effects of Schisandra chinensis bee pollen extract on isoprenaline-induced myocardial infarction in rats. Molecules. 2019;24:1090. doi: 10.3390/molecules24061090. PubMed DOI PMC

Eraslan G., Kanbur M., Silici S., Liman B.C., Altınordulu Ş., Sarıca Z.S. Evaluation of protective effect of bee pollen against propoxur toxicity in rat. Ecotoxicol. Environ. Saf. 2009;72:931–937. doi: 10.1016/j.ecoenv.2008.06.008. PubMed DOI

Daudu O.M. Bee pollen extracts as potential antioxidants and inhibitors of α-amylase and α-glucosidase enzymes-in vitro assessment. J. Apic. Sci. 2019;63:315–325. doi: 10.2478/jas-2019-0020. DOI

Mohamed N.A., Ahmed O.M., Hozayen W.G., Ahmed M.A. Ameliorative effects of bee pollen and date palm pollen on the glycemic state and male sexual dysfunctions in streptozotocin-Induced diabetic wistar rats. Biomed. Pharmacother. 2018;97:9–18. doi: 10.1016/j.biopha.2017.10.117. PubMed DOI

Rzepecka-Stojko A., Kabała-Dzik A., Kubina R., Jasik K., Kajor M., Wrześniok D., Stojko J. Protective effect of polyphenol-rich extract from bee pollen in a high-fat diet. Molecules. 2018;23:805. doi: 10.3390/molecules23040805. PubMed DOI PMC

Shobana S., Sreerama Y.N., Malleshi N.G. Composition and enzyme inhibitory properties of finger millet (Eleusine coracana L.) seed coat phenolics: Mode of inhibition of α-glucosidase and pancreatic amylase. Food Chem. 2009;115:1268–1273. doi: 10.1016/j.foodchem.2009.01.042. DOI

Matsui T., Ueda T., Oki T., Sugita K., Terahara N., Matsumoto K. α-Glucosidase inhibitory action of natural acylated anthocyanins. 1. Survey of natural pigments with potent inhibitory activity. J. Agric. Food Chem. 2001;49:1948–1951. doi: 10.1021/jf001251u. PubMed DOI

La Vignera S., Condorelli R., Vicari E., D’Agata R., Calogero A.E. Diabetes mellitus and sperm parameters. J. Androl. 2012;33:145–153. doi: 10.2164/jandrol.111.013193. PubMed DOI

Shrilatha B. Early oxidative stress in testis and epididymal sperm in streptozotocin-induced diabetic mice: Its progression and genotoxic consequences. Reprod. Toxicol. 2007;23:578–587. doi: 10.1016/j.reprotox.2007.02.001. PubMed DOI

Chauhan N.S., Sharma V., Dixit V.K., Thakur M. A review on plants used for improvement of sexual performance and virility. Biomed Res. Int. 2014;2014 doi: 10.1155/2014/868062. PubMed DOI PMC

Luo Y., Lin H. Inflammation initiates a vicious cycle between obesity and nonalcoholic fatty liver disease. Immunity Inflamm. Dis. 2021;9:59–73. doi: 10.1002/iid3.391. PubMed DOI PMC

Chen G., Xie M., Dai Z., Wan P., Ye H., Zeng X., Sun Y. Kudingcha and fuzhuan brick tea prevent obesity and modulate gut microbiota in high-fat diet fed mice. Mol. Nutr. Food Res. 2018;62:1700485–1700495. doi: 10.1002/mnfr.201700485. PubMed DOI

Cheng N., Chen S., Liu X., Zhao H., Cao W. Impact of schisandrachinensis bee pollen on nonalcoholic fatty liver disease and gut microbiota in highfat diet induced obese mice. Nutrients. 2019;11:346. doi: 10.3390/nu11020346. PubMed DOI PMC

Li X., Gong H., Yang S., Yang L., Fan Y., Zhou Y. Pectic bee pollen polysaccharide from Rosa rugosa alleviates diet-induced hepatic steatosis and insulin resistance via induction of AMPK/mTOR-mediated autophagy. Molecules. 2017;22:699. doi: 10.3390/molecules22050699. PubMed DOI PMC

Yildiz O., Can Z., Saral Ö., Yuluǧ E., Öztürk F., Aliyazicioǧlu R., Canpolat S., Kolayli S. Hepatoprotective potential of chestnut bee pollen on carbon tetrachloride-induced hepatic damages in rats. Evid. Based Complement. Altern. Med. 2013;2013 doi: 10.1155/2013/461478. PubMed DOI PMC

Huang H., Shen Z., Geng Q., Wu Z., Shi P., Miao X. Protective effect of Schisandra chinensis bee pollen extract on liver and kidney injury induced by cisplatin in rats. Biomed. Pharmacother. 2017;95:1765–1776. doi: 10.1016/j.biopha.2017.09.083. PubMed DOI

Bagatini M.D., Martins C.C., Battisti V., Gasparetto D., Da Rosa C.S., Spanevello R.M., Ahmed M., Schmatz R., Schetinger M.R.C., Morsch V.M. Oxidative stress versus antioxidant defenses in patients with acute myocardial infarction. Heart Vessel. 2011;26:55–63. doi: 10.1007/s00380-010-0029-9. PubMed DOI

Rzepecka-Stojko A., Stojko J., Jasik K., Buszman E. Anti-atherogenic activity of polyphenol-rich extract from bee pollen. Nutrients. 2017;9:1369. doi: 10.3390/nu9121369. PubMed DOI PMC

Pignatelli P., Di Santo S., Buchetti B., Sanguigni V., Brunelli A., Violi F. Polyphenols enhance platelet nitric oxide by inhibiting protein kinase C-dependent NADPH oxidase activation: Effect on platelet recruitment. FASEB J. 2006;20:1082–1089. doi: 10.1096/fj.05-5269com. PubMed DOI

Norata G.D., Marchesi P., Passamonti S., Pirillo A., Violi F., Catapano A.L. Anti-inflammatory and anti-atherogenic effects of cathechin, caffeic acid and trans-resveratrol in apolipoprotein E deficient mice. Atherosclerosis. 2007;191:265–271. doi: 10.1016/j.atherosclerosis.2006.05.047. PubMed DOI

Wang R., Su G., Wang L., Xia Q., Liu R., Lu Q., Zhang J. Identification and mechanism of effective components from rape (Brassica napus L.) bee pollen on serum uric acid level and xanthine oxidase activity. J. Funct. Foods. 2018;47:241–251. doi: 10.1016/j.jff.2018.05.064. DOI

Juárez-Gómez J., Ramírez-Silva M.T., Guzmán-Hernández D., Romero-Romo M., Palomar-Pardavé M. Construction and optimization of a novel acetylcholine ion-selective electrode and its application for trace level determination of propoxur pesticide. J. Electrochem. Soc. 2020;167:087501–087507. doi: 10.1149/1945-7111/ab8874. DOI

Shields J.N., Hales E.C., Ranspach L.E., Luo X., Orr S., Runft D., Dombkowski A., Neely M.N., Matherly L.H., Taub J.W., et al. Exposure of larval zebrafish to the insecticide propoxur induced developmental delays that correlate with behavioral abnormalities and altered expression of hspb9 and hspb11. Toxics. 2019;7:50. doi: 10.3390/toxics7040050. PubMed DOI PMC

El-Demerdash F.M. Lipid peroxidation, oxidative stress and acetylcholinesterase in rat brain exposed to organophosphate and pyrethroid insecticides. Food Chem. Toxicol. 2011;49:1346–1352. doi: 10.1016/j.fct.2011.03.018. PubMed DOI

Tsitsimpikou C., Tzatzarakis M., Fragkiadaki P., Kovatsi L., Stivaktakis P., Kalogeraki A., Kouretas D., Tsatsakis A.M. Histopathological lesions, oxidative stress and genotoxic effects in liver and kidneys following long term exposure of rabbits to diazinon and propoxur. Toxicology. 2013;307:109–114. doi: 10.1016/j.tox.2012.11.002. PubMed DOI

Campos M.G., Webby R.F., Markham K.R., Mitchell K.A., Da Cunha A.P. Age-induced diminution of free radical scavenging capacity in bee pollens and the contribution of constituent flavonoids. J. Agric. Food Chem. 2003;51:742–745. doi: 10.1021/jf0206466. PubMed DOI

Ozsvath D.L. Fluoride and environmental health: A review. Rev. Environ. Sci. Bio/Technol. 2009;8:59–79. doi: 10.1007/s11157-008-9136-9. DOI

Khalil F.A., El-Sheikh N.M. The effects of dietary Egyptian propolis and bee pollen supplementation against toxicity if sodium fluoride in rats. J. Am. Sci. 2010;11:310–316.

Yamaguchi M., Hamamoto R., Uchiyama S., Ishiyama K., Hashimoto K. Anabolic effects of bee pollen Cistus ladaniferus extract on bone components in the femoral-diaphyseal and-metaphyseal tissues of rats in vitro and in vivo. J. Health Sci. 2006;52:43–49. doi: 10.1248/jhs.52.43. DOI

Yamaguchi M., Hamamoto R., Uchiyama S., Ishiyama K., Hashimoto K. Preventive effects of bee pollen Cistus ladaniferus extract on bone loss in streptozotocin-diabetic rats in vivo. J. Health Sci. 2007;53:190–195. doi: 10.1248/jhs.53.190. DOI

Christakos S., Dhawan P., Porta A., Mady L.J., Seth T. Vitamin D and intestinal calcium absorption. Mol. Cell. Endocrinol. 2011;347:25–29. doi: 10.1016/j.mce.2011.05.038. PubMed DOI PMC

Kolesarova A., Bakova Z., Capcarova M., Galik B., Juracek M., Simko M., Toman R., Sirotkin A.V. Consumption of bee pollen affects rat ovarian functions. J. Anim. Physiol. Anim. Nutr. 2013;97:1059–1065. doi: 10.1111/jpn.12013. PubMed DOI

Adriana K., Capcarova M., Bakova Z., Branislav G., Miroslav J., Milan S., Sirotkin A.V. The effect of bee pollen on secretion activity, markers of proliferation and apoptosis of porcine ovarian granulosa cells in vitro. J. Environ. Sci. Health Part B Pestic. Food Contam. Agric. Wastes. 2011;46:207–212. doi: 10.1080/03601234.2011.540202. PubMed DOI

Toman R., Hajkova Z., Hluchy S. Changes in intestinal morphology of rats fed with different levels of bee pollen. Pharmacogn. Commun. 2015;5:261–264. doi: 10.5530/pc.2015.4.8. DOI

Wang J., Li S., Wang Q., Xin B., Wang H. Trophic effect of bee pollen on small intestine in broiler chickens. J. Med. Food. 2007;10:276–280. doi: 10.1089/jmf.2006.215. PubMed DOI

Prakatur I., Miskulin M., Pavic M., Marjanovic K., Blazicevic V., Miskulin I., Domacinovic M. Intestinal morphology in broiler chickens. Animals. 2019;9:301. doi: 10.3390/ani9060301. PubMed DOI PMC

De Oliveira M.C., Da Silva D.M., Loch F.C., Martins P.C., Dias D.M.B., Simon G.A. Effect of bee pollen on the immunity and tibia characteristics in broilers. Braz. J. Poult. Sci. 2013;15:323–327. doi: 10.1590/S1516-635X2013000400006. DOI

Calder P.C. Branched-chain amino acids and immunity. J. Nutr. 2006;136:288S–293S. doi: 10.1093/jn/136.1.288S. PubMed DOI

Stingele F., Corthésy B., Kusy N., Porcelli S.A., Kasper D.L., Tzianabos A.O. Zwitterionic polysaccharides stimulate T cells with no preferential Vβ usage and promote anergy, resulting in protection against experimental abscess formation. J. Immunol. 2004;172:1483–1490. doi: 10.4049/jimmunol.172.3.1483. PubMed DOI

El-Bialy B.E., Abdeen E.E., El-Borai N.B., El-Diasty E.M. Experimental studies on some immunotoxicological aspects of aflatoxins containing diet and protective effect of bee pollen dietary supplement. Pak. J. Biol. Sci. 2016;19:26–35. doi: 10.3923/pjbs.2016.26.35. PubMed DOI

Ishikawa Y., Tokura T., Nakano N., Hara M., Niyonsaba F., Ushio H., Yamamoto Y., Tadokoro T., Okumura K., Ogawa H. Inhibitory effect of honeybee-collected pollen on mast cell degranulation in vivo and in vitro. J. Med. Food. 2008;11:14–20. doi: 10.1089/jmf.2006.163. PubMed DOI

Medeiros K.C.P., Figueiredo C.A.V., Figueredo T.B., Freire K.R.L., Santos F.A.R., Alcântara-Neves N.M., Silva T.M.S., Piuvezam M.R. Anti-allergic effect of bee pollen phenolic extract and myricetin in ovalbumin-sensitized mice. J. Ethnopharmacol. 2008;119:41–46. doi: 10.1016/j.jep.2008.05.036. PubMed DOI

Jagdis A., Sussman G. Anaphylaxis from bee pollen supplement. Cmaj. 2012;184:1167–1169. doi: 10.1503/cmaj.112181. PubMed DOI PMC

Choi J.H., Jang Y.S., Oh J.W., Kim C.H., Hyun I.G. Bee pollen-induced anaphylaxis: A case report and literature review. Allergy Asthma Immunol. Res. 2015;7:513–517. doi: 10.4168/aair.2015.7.5.513. PubMed DOI PMC

Greenberger P.A., Flais M.J. Bee pollen-induced anaphylactic reaction in an unknowingly sensitized subject. Ann. Allergy, Asthma Immunol. 2001;86:239–242. doi: 10.1016/S1081-1206(10)62698-1. PubMed DOI

Liao Y., Bae H.J., Zhang J., Kwon Y., Koo B., Jung I.H., Kim H.M., Park J.H., Lew J.H., Ryu J.H. The ameliorating effects of bee pollen on scopolamine-induced cognitive impairment in mice. Biol. Pharm. Bull. 2019;42:379–388. doi: 10.1248/bpb.b18-00552. PubMed DOI

Martirosyan D.M., Singh J. A new definition of functional food by FFC: What makes a new definition unique? Funct. Foods Health Dis. 2015;5:209–223. doi: 10.31989/ffhd.v5i6.183. DOI

Mark-Herbert C. Innovation of a new product category—functional foods. Technovation. 2004;24:713–719. doi: 10.1016/S0166-4972(02)00131-1. DOI

Karabagias I., Karabagias V., Gatzias I., Riganakos K. Bio-functional properties of bee pollen: The case of “bee pollen yoghur. Coatings. 2018;8:423. doi: 10.3390/coatings8120423. DOI

Conte P., Del Caro A., Balestra F., Piga A., Fadda C. Bee pollen as a functional ingredient in gluten-free bread: A physical-chemical, technological and sensory approach. LWT. 2018;90:1–7. doi: 10.1016/j.lwt.2017.12.002. DOI

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...