1,3-Diketone-Modified Nucleotides and DNA for Cross-Linking with Arginine-Containing Peptides and Proteins
Language English Country Germany Media print-electronic
Document type Journal Article, Research Support, Non-U.S. Gov't
PubMed
34107150
PubMed Central
PMC8362068
DOI
10.1002/anie.202105126
Knihovny.cz E-resources
- Keywords
- DNA polymerases, bioconjugations, cross-linking reactions, nucleotides, proteins,
- MeSH
- Arginine chemistry MeSH
- DNA chemical synthesis chemistry MeSH
- Histones chemistry MeSH
- Ketones chemical synthesis chemistry MeSH
- Tumor Suppressor Protein p53 chemistry MeSH
- Peptides chemistry MeSH
- Proteins chemistry MeSH
- Cross-Linking Reagents chemical synthesis chemistry MeSH
- Serum Albumin, Bovine chemistry MeSH
- Cattle MeSH
- Thymine Nucleotides chemical synthesis chemistry MeSH
- Animals MeSH
- Check Tag
- Cattle MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Arginine MeSH
- DNA MeSH
- Histones MeSH
- Ketones MeSH
- Tumor Suppressor Protein p53 MeSH
- Peptides MeSH
- Proteins MeSH
- Cross-Linking Reagents MeSH
- Serum Albumin, Bovine MeSH
- Thymine Nucleotides MeSH
Linear or branched 1,3-diketone-linked thymidine 5'-O-mono- and triphosphate were synthesized through CuAAC click reaction of diketone-alkynes with 5-azidomethyl-dUMP or -dUTP. The triphosphates were good substrates for KOD XL DNA polymerase in primer extension synthesis of modified DNA. The nucleotide bearing linear 3,5-dioxohexyl group (HDO) efficiently reacted with arginine-containing peptides to form stable pyrimidine-linked conjugates, whereas the branched 2-acetyl-3-oxo-butyl (PDO) group was not reactive. Reaction with Lys or a terminal amino group formed enamine adducts that were prone to hydrolysis. This reactive HDO modification in DNA was used for bioconjugations and cross-linking with Arg-containing peptides or proteins (e.g. histones).
See more in PubMed
Rohs R., Jin X., West S. M., Joshi R., Honig B., Mann R. S., Annu. Rev. Biochem. 2010, 79, 233–269. PubMed PMC
Lambert S. A., Jolma A., Campitelli L. F., Das P. K., Yin Y., Albu M., Chen X., Taipale J., Hughes T. R., Weirauch M. T., Cell 2018, 172, 650–665. PubMed
Furey T. S., Nat. Rev. Genet. 2012, 13, 840–852. PubMed PMC
Trads J. B., Tørring T., Gothelf K. V., Acc. Chem. Res. 2017, 50, 1367–1374; PubMed
Tretyakova N. Y., Groehler A., Ji S., Acc. Chem. Res. 2015, 48, 1631–1644; PubMed PMC
Niemeyer C. M., Angew. Chem. Int. Ed. 2010, 49, 1200–1216; PubMed
Angew. Chem. 2010, 122, 1220–1238;
Vinkenborg J. L., Mayer G., Famulok M., Angew. Chem. Int. Ed. 2012, 51, 9176–9180; PubMed
Angew. Chem. 2012, 124, 9311–9315;
Rosen C. B., Kodal A. L. B., Nielsen J. S., Schaffert D. H., Scavenius C., Okholm A. H., Voigt N. V., Enghild J. J., Kjems J., Tørring T., Gothelf K. V., Nat. Chem. 2014, 6, 804–809. PubMed
Dovgan I., Koniev O., Kolodych S., Wagner A., Bioconjugate Chem. 2019, 30, 2483–2501; PubMed
Nielsen T. B., Thomsen R. P., Mortensen M. R., Kjems J., Nielsen P. F., Nielsen T. E., Kodal A. L. B., Cló E., Gothelf K. V., Angew. Chem. Int. Ed. 2019, 58, 9068–9072; PubMed
Angew. Chem. 2019, 131, 9166–9170.
Ivancová I., Leone D.-L., Hocek M., Curr. Opin. Chem. Biol. 2019, 52, 136–144; PubMed
Klöcker N., Weissenboeck F. P., Rentmeister A., Chem. Soc. Rev. 2020, 49, 8749–8773; PubMed PMC
Krell K., Harijan D., Ganz D., Doll L., Wagenknecht H.-A., Bioconjugate Chem. 2020, 31, 990–1011; PubMed
Ganz D., Harijan D., Wagenknecht H.-A., RSC Chem. Biol. 2020, 1, 86–97; PubMed PMC
Jbara M., Rodriguez J., Dhanjee H. H., Loas A., Buchwald S. L., Pentelute B. L., Angew. Chem. Int. Ed. 2021, 60, 12109–12115; PubMed PMC
Angew. Chem. 2021, 133, 12216–12222.
Norris C. L., Meisenheimer P. L., Koch T. H., J. Am. Chem. Soc. 1996, 118, 5796–5803.
Winnacker M., Breeger S., Strasser R., Carell T., ChemBioChem 2009, 10, 109–118; PubMed
Lercher L., McGouran J. F., Kessler B. M., Schofield C. J., Davis B. G., Angew. Chem. Int. Ed. 2013, 52, 10553–10558; PubMed PMC
Angew. Chem. 2013, 125, 10747–10752.
Huang H., Chopra R., Verdine G. L., Harrison S. C., Science 1998, 282, 1669–1675; PubMed
Mishina Y., He C., J. Am. Chem. Soc. 2003, 125, 8730–8731. PubMed
Dadová J., Orság P., Pohl R., Brázdová M., Fojta M., Hocek M., Angew. Chem. Int. Ed. 2013, 52, 10515–10518; PubMed
Angew. Chem. 2013, 125, 10709–10712.
Olszewska A., Pohl R., Brázdová M., Fojta M., Hocek M., Bioconjugate Chem. 2016, 27, 2089–2094. PubMed
Raiber E.-A., Portella G., Martínez Cuesta S., Hardisty R., Murat P., Li Z., Iurlaro M., Dean W., Spindel J., Beraldi D., Liu Z., Dawson M. A., Reik W., Balasubramanian S., Nat. Chem. 2018, 10, 1258–1266; PubMed
Li F., Zhang Y., Bai J., Greenberg M. M., Xi Z., Zhou C., J. Am. Chem. Soc. 2017, 139, 10617–10620; PubMed PMC
Ji S., Shao H., Han Q., Seiler C. L., Tretyakova N. Y., Angew. Chem. Int. Ed. 2017, 56, 14130–14134; PubMed PMC
Angew. Chem. 2017, 129, 14318–14322.
Ji S., Thomforde J., Rogers C., Fu I., Broyde S., Tretyakova N. Y., ACS Chem. Biol. 2019, 14, 2564–2575; PubMed PMC
Ji S., Fu I., Naldiga S., Shao H., Basu A. K., Broyde S., Tretyakova N. Y., Nucleic Acids Res. 2018, 46, 6455–6469; PubMed PMC
Pande P., Ji S., Mukherjee S., Schärer O. D., Tretyakova N. Y., Basu A. K., Chem. Res. Toxicol. 2017, 30, 669–677; PubMed PMC
Wickramaratne S., Mukherjee S., Villalta P. W., Schärer O. D., Tretyakova N. Y., Bioconjugate Chem. 2013, 24, 1496–1506. PubMed PMC
Krömer M., Bártová K., Raindlová V., Hocek M., Chem. Eur. J. 2018, 24, 11890–11894; PubMed
Krömer M., Brunderová M., Ivancová I., Poštová Slavětínská L., Hocek M., ChemPlusChem 2020, 85, 1164–1170. PubMed
Ivancová I., Pohl R., Hubálek M., Hocek M., Angew. Chem. Int. Ed. 2019, 58, 13345–13348; PubMed PMC
Angew. Chem. 2019, 131, 13479–13482.
Hocek M., Acc. Chem. Res. 2019, 52, 1730–1737. PubMed
Riordan J. F., Mol. Cell. Biochem. 1979, 26, 71–92. PubMed
Monakhova M. V., Kubareva E. A., Romanova E. A., Semkina A. S., Naberezhnov D. S., Rao D. N., Zatsepin T. S., Oretskaya T. S., Russ. J. Bioorg. Chem. 2019, 45, 144–154.
Thompson D. A., Ng R., Dawson P. E., J. Pept. Sci. 2016, 22, 311–319; PubMed
Dovgan I., Erb S., Hessmann S., Ursuegui S., Michel C., Muller C., Chaubet G., Cianférani S., Wagner A., Org. Biomol. Chem. 2018, 16, 1305–1311; PubMed
Sibbersen C., Palmfeldt J., Hansen J., Gregersen N., Jørgensen K. A., Johannsen M., Chem. Commun. 2013, 49, 4012–4014. PubMed
Wanigasekara M. S. K., Huang X., Chakrabarty J. K., Bugarin A., Chowdhury S. M., ACS Omega 2018, 3, 14229–14235. PubMed PMC
Fantoni N. Z., El-Sagheer A. H., Brown T., Chem. Rev. 2021, 121, 7122–7154. PubMed
Hong I. S., Ding H., Greenberg M. M., J. Am. Chem. Soc. 2006, 128, 485–491; PubMed PMC
Ren X., El-Sagheer A. H., Brown T., Analyst 2015, 140, 2671–2678; PubMed
Ren X., El-Sagheer A. H., Brown T., Nucleic Acids Res. 2016, 44, e79; PubMed PMC
Kuba M., Kraus T., Pohl R., Hocek M., Chem. Eur. J. 2020, 26, 11950–11954. PubMed PMC
Choi S., Srinivasulu V., Ha S., Park C.-M., Chem. Commun. 2017, 53, 3481–3484; PubMed
Misztalewska I., Wilczewska A. Z., Wojtasik O., Markiewicz K. H., Kuchlewski P., Majcher A. M., RSC Adv. 2015, 5, 100281–100289.
Brazdova M., Palecek J., Cherny D. I., Billova S., Fojta M., Pecinka P., Vojtesek B., Jovin T. M., Palecek E., Nucleic Acids Res. 2002, 30, 4966–4974; PubMed PMC
Fojta M., Pivonkova H., Brazdova M., Nemcova K., Palecek J., Vojtesek B., Eur. J. Biochem. 2004, 271, 3865–3876. PubMed
Farkas M., Hashimoto H., Bi Y., Davuluri R. V., Resnick-Silverman L., Manfredi J. J., Debler E. W., McMahon S. B., Nat. Commun. 2021, 12, 484. PubMed PMC
Ferrige A. G., Seddon M. J., Green B. N., Jarvis S. A., J. Rapid Commun. Mass Spectrom. 1992, 6, 707–711.