Antibacterial Properties of a Honeycomb-like Pattern with Cellulose Acetate and Silver Nanoparticles
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
PubMed
34300969
PubMed Central
PMC8306805
DOI
10.3390/ma14144051
PII: ma14144051
Knihovny.cz E-zdroje
- Klíčová slova
- active materials, antibacterial properties, antimicrobial activity, biopolymers, honeycomb-like pattern, silver nanoparticles, silver sputtering, surface morphology, surface nanostructures,
- Publikační typ
- časopisecké články MeSH
This study involved the preparation and characterization of structures with a honeycomb-like pattern (HCP) formed using the phase separation method using a solution mixture of chloroform and methanol together with cellulose acetate. Fluorinated ethylene propylene modified by plasma treatment was used as a suitable substrate for the formation of the HCP structures. Further, we modified the HCP structures using silver sputtering (discontinuous Ag nanoparticles) or by adding Ag nanoparticles in PEG into the cellulose acetate solution. The material morphology was then determined using atomic force microscopy (AFM) and scanning electron microscopy (SEM), while the material surface chemistry was studied using energy dispersive spectroscopy (EDS) and wettability was analyzed with goniometry. The AFM and SEM results revealed that the surface morphology of pristine HCP with hexagonal pores changed after additional sample modification with Ag, both via the addition of nanoparticles and sputtering, accompanied with an increase in the roughness of the PEG-doped samples, which was caused by the high molecular weight of PEG and its gel-like structure. The highest amount (approx. 25 at %) of fluorine was detected using the EDS method on the sample with an HCP-like structure, while the lowest amount (0.08%) was measured on the PEG + Ag sample, which revealed the covering of the substrate with biopolymer (the greater fluorine extent means more of the fluorinated substrate is exposed). As expected, the thickness of the Ag layer on the HCP surface depended on the length of sputtering (either 150 s or 500 s). The sputtering times for Ag (150 s and 500 s) corresponded to layers with heights of about 8 nm (3.9 at % of Ag) and 22 nm (10.8 at % of Ag), respectively. In addition, we evaluated the antibacterial potential of the prepared substrate using two bacterial strains, one Gram-positive of S. epidermidis and one Gram-negative of E. coli. The most effective method for the construction of antibacterial surfaces was determined to be sputtering (150 s) of a silver nanolayer onto a HCP-like cellulose structure, which proved to have excellent antibacterial properties against both G+ and G- bacterial strains.
Zobrazit více v PubMed
Zhang Q., Yang X., Li P., Huang G., Feng S., Shen C.H., Han B., Zhang X., Jin F., Xu F., et al. Bioinspired engineering of honeycomb structure—Using nature to inspire human innovation. Prog. Mater. Sci. 2015;74:332–400. doi: 10.1016/j.pmatsci.2015.05.001. DOI
Dong C., Hao J. Comprehensive Supramolecular Chemistry II. Volume 9. Elsevier; Oxford, UK: 2017. Honeycomb films with ordered patterns and structures; pp. 207–229.
Yin H., Zhan F., Yu Y., Li Z., Feng Y., Billon L. Direct formation of hydrophilic honeycomb film by self-assembly in breath figure templating of hydrophobic polylacticacid/ionic surfactant complexes. Soft Mater. 2019;15:5052–5059. doi: 10.1039/C9SM00845D. PubMed DOI
Bencsik M., Ramsey M. We Discovered More about the Honeybee ‘Wake-Up Call’—And It Could Help Save Them, the Conversation. [(accessed on 15 March 2020)];2018 Available online: https://theconversation.com/we-discovered-more-about-the-honeybee-wake-up-call-and-it-could-help-save-them-105751.
Slepička P., Neznalová K., Fajstavr D., Kasálková N.S., Švorčík V. Honeycomb-like pattern formation on perfluoroethylenepropylene enhanced by plasma treatment. Plasma Process Polym. 2019;16:1900063. doi: 10.1002/ppap.201900063. DOI
Haider A., Haider S., Kummara M.R., Kamal T., Alghyamah A.-A.A., Iftikhar F.J., Bano B., Khan N., Afridi M.A., Han S.S., et al. Advances in the scaffolds fabrication techniques using biocompatible polymers and their biomedical application: A technical and statistical review. J. Saudi Chem. Soc. 2020;24:186–215. doi: 10.1016/j.jscs.2020.01.002. DOI
Asadi N., Del Bakhshayesh A.R., Davaran S., Akbarzadeh A. Common Biocompatible Polymeric Materials for Tissue Engineering and Regenerative Medicine. Mater. Chem. Phys. 2019:122528. doi: 10.1016/j.matchemphys.2019.122528. DOI
Tan H.-L., Kai D., Pasbakhsh P., Teow S.-Y., Lim Y.-Y., Pushpamalar J. Electrospun cellulose acetate butyrate/polyethylene glycol (CAB/PEG) composite nanofibers: A potential scaffold for tissue engineering. Colloids Surfaces B Biointerfaces. 2020;188:110713. doi: 10.1016/j.colsurfb.2019.110713. PubMed DOI
Calejo M.T., Ilmarinen T., Skottman H., Kellomäki M. Breath figures in tissue engineering and drug delivery: State-of-the-art and future perspectives. Acta Biomater. 2018;66:44–66. doi: 10.1016/j.actbio.2017.11.043. PubMed DOI
Liang T., Mahalingam S., Edirisinghe M. Creating “hotels” for cells by electrospinning honeycomb-like polymeric structures. Mater. Sci. Eng. C. 2013;33:4384–4391. doi: 10.1016/j.msec.2013.06.036. PubMed DOI
Male U., Shin B.K., Huh D.S. Coupling of breath figure method with interfacial polymerization: Bottom-surface functionalized honeycomb-patterned porous films. Polymer. 2017;119:206–211. doi: 10.1016/j.polymer.2017.05.038. DOI
Muñoz-Bonilla A., Fernández-García M., Rodríguez-Hernández J. Towards hierarchically ordered functional porous polymeric surfaces prepared by the breath figures approach. Prog. Polym. Sci. 2014;39:510–554. doi: 10.1016/j.progpolymsci.2013.08.006. DOI
Bui V.-T., Ko S.H., Choi H.-S. Large-Scale Fabrication of Commercially Available, Nonpolar Linear Polymer Film with a Highly Ordered Honeycomb Pattern. ACS Appl. Mater. Interfaces. 2015;7:10541–10547. doi: 10.1021/acsami.5b02097. PubMed DOI
Dong R., Sun R., Wang X., Chen Z., Jin C. Fabrication of hierarchically structured surfaces with “rose petal” effect by a modified breath figure method. Thin Solid Films. 2019;689:137503. doi: 10.1016/j.tsf.2019.137503. DOI
Huang H., Dean D. 3D printed porous cellulose acetate tissue scaffolds for additive manufacturing. Addit. Manuf. 2020;31:100927. doi: 10.1016/j.addma.2019.100927. DOI
Lukanina K.I., Grigoriev T.E., Krasheninnikov S.V., Mamagulashvilli V.G., Kamyshinsky R.A., Chvalun S.N. Multi-hierarchical tissue-engineering ECM-like scaffolds based on cellulose acetate with collagen and chitosan fillers. Carbohydr. Polym. 2018;191:119–126. doi: 10.1016/j.carbpol.2018.02.061. PubMed DOI
Ghasemi S.M., Alavifar S.S. The role of physicochemical properties in the nanoprecipitation of cellulose acetate. Carbohydr. Polym. 2020;230:115628. doi: 10.1016/j.carbpol.2019.115628. PubMed DOI
Atila D., Keskin D., Tezcaner A. Crosslinked pullulan/cellulose acetate fibrous scaffolds for bone tissue engineering. Mater. Sci. Eng. C. 2016;69:1103–1115. doi: 10.1016/j.msec.2016.08.015. PubMed DOI
Wsoo M.A., Shahir S., Mohd Bohari S.P., Nayan N.H.M., Razak S.I.A. A review on the properties of electrospun cellulose acetate and its application in drug delivery systems: A new perspective. Carbohydr. Res. 2020;491:107978. doi: 10.1016/j.carres.2020.107978. PubMed DOI
Kerstin J., Thomas H. Cellulose modification and shaping—A review. J. Polym. Eng. 2017;37:845–860. doi: 10.1515/polyeng-2016-0272. DOI
Atila D., Keskin D., Tezcaner A. Cellulose acetate based 3-dimensional electrospun scaffolds for skin tissue engineering applications. Carbohydr. Polym. 2015;133:251–261. doi: 10.1016/j.carbpol.2015.06.109. PubMed DOI
Zhu J. Bioactive modification of poly(ethylene glycol) hydrogels for tissue engineering. Biomaterials. 2010;31:4639–4656. doi: 10.1016/j.biomaterials.2010.02.044. PubMed DOI PMC
Escudero-Castellanos A., Ocampo-García B.E., Domínguez-García M.V., Flores-Estrada J., Flores-Merino M.V. Hydrogels based on poly(ethylene glycol) as scaffolds for tissue engineering application: Biocompatibility assessment and effect of the sterilization process. J. Mater. Sci. Mater. Med. 2016;27:176. doi: 10.1007/s10856-016-5793-3. PubMed DOI
Alcantar N.A., Aydil E.S., Israelachvili J.N. Polyethylene glycol-coated biocompatible surfaces. J. Biomed. Mater. Res. 2000;51:343–351. doi: 10.1002/1097-4636(20000905)51:3<343::AID-JBM7>3.0.CO;2-D. PubMed DOI
Yabu H., Jia R., Matsuo Y., Ijiro K., Yamamoto S.A., Nishino F., Takaki T., Kuwahara M., Shimomura M. Preparation of highly oriented nano-pit arrays by thermal shrinking of honeycomb-patterned polymer films. Adv. Mater. 2008;20:4200–4204. doi: 10.1002/adma.200801170. DOI
Tanaka M., Takebayashi M., Shimomura M. Fabrication of ordered arrays of biodegradable polymer pincushions using self-organized honeycomb-patterned films. Macromol. Symp. 2009;279:175–182. doi: 10.1002/masy.200950527. DOI
Cardoso V.F., Correia D.M., Ribeiro C., Fernandes M.M., Lanceros-Méndez S. Fluorinated polymers as smart materials for advanced biomedical applications. Polymers. 2018;10:161. doi: 10.3390/polym10020161. PubMed DOI PMC
Hasan A., Waibhaw G., Saxena V., Pandey L.M. Nano-biocomposite scaffolds of chitosan, carboxymethyl cellulose and silver nanoparticle modified cellulose nanowhiskers for bone tissue engineering applications. Int. J. Biol. Macromol. 2018;111:923–934. doi: 10.1016/j.ijbiomac.2018.01.089. PubMed DOI
Sahan Y., Gurbuz O., Goncagul G., Kara A., Ozakin C. Antimicrobial effect of PEG-PLA on food-spoilage microorganisms. Food Sci. Biotechnol. 2017;26:1123–1128. doi: 10.1007/s10068-017-0138-7. PubMed DOI PMC
Singh S., Alrobaian M.M., Molugulu N., Agrawal N., Numan A., Kesharwani P. Pyramid-Shaped PEG-PCL-PEG Polymeric-Based Model Systems for Site-Specific Drug Delivery of Vancomycin with Enhance Antibacterial Efficacy. ACS Omega. 2020;5:11935–11945. doi: 10.1021/acsomega.9b04064. PubMed DOI PMC
Sautrot-Ba P., Razza N., Breloy L., Andaloussi S.A., Chiappone A., Sangermano M., Hélary C., Belbekhouche S., Coradin T., Versace D. Photoinduced chitosan-PEG hydrogels with long-term antibacterial properties. J. Mater. Chem. 2018;7:6526–6538. doi: 10.1039/C9TB01170F. PubMed DOI
Qing Y.A., Cheng L., Li R., Liu G., Zhang Y., Tang X., Wang J., Liu H., Qin Y. Potential antibacterial mechanism of silver nanoparticles and the optimization of orthopedic implants by advanced modification technologies. Int. J. Nanomed. 2018;13:3311–3327. doi: 10.2147/IJN.S165125. PubMed DOI PMC
Yin I.X., Zhang J., Zhao I.S., Mei M.L., Li Q., Chu C.H. The Antibacterial Mechanism of Silver Nanoparticles and Its Application in Dentistry. Int. J. Nanomed. 2020;15:2555–2562. doi: 10.2147/IJN.S246764. PubMed DOI PMC
Tormena R.P.L., Motta E.V., Breloy B.D.F.O., Chaker J.A., Fagg C.H.W., Freire D.O., Martins P.M., da Silva I.C.R., Sousa M.H. Evaluation of the antimicrobial activity of silver nanoparticles obtained by microwave-assisted green synthesis using Handroanthus impetiginosus (Mart. ex DC.) Mattos underbark extract. RSC Adv. 2020;10:20676–20681. doi: 10.1039/D0RA03240A. PubMed DOI PMC
Liao S., Zhang Y., Pan X., Zhu F., Jiang C., Liu Q., Cheng Z., Dai G., Wu G., Wang L., et al. Antibacterial activity and mechanism of silver nanoparticles against multidrug-resistant Pseudomonas aeruginosa. Int. J. Nanomed. 2019;14:1469–1487. doi: 10.2147/IJN.S191340. PubMed DOI PMC
Jayakumar R., Prabaharan M., Shalumon K.T., Chennazhi K.P., Nair S.V. Biomedical Applications of Polymer/Silver Composite Nanofibers. In: Jayakumar R., Nair S., editors. Biomedical Applications of Polymeric Nanofibers. Springer; Berlin/Heidelberg, Germany: 2012. pp. 263–282. DOI
Vosmanská V., Kolářová K., Pišlová M., Švorčík V. Chemické a fyzikální modifikace biomateriálů na bázi celulosy. [(accessed on 18 June 2021)];Chem. Listy. 2017 111:614–621. Available online: http://www.chemicke-listy.cz/docs/full/2017_10_614-621.pdf.
Slepička P., Trostová S., Kasálková N.S., Kolská Z., Sajdl P., Švorčík V. Surface modification of biopolymers by argon plasma and thermal treatment. Plasma Process. Polym. 2011;9:197–206. doi: 10.1002/ppap.201100126. DOI
Neznalová K., Sajdl P., Slepička P., Švorčík V. Cellulose acetate honeycomb-like pattern created by improved phase separation. Express Polym. Lett. 2020;14:1078–1088. doi: 10.3144/expresspolymlett.2020.87. DOI
Baillot R., Deshayes Y. Reliability Investigation of LED Devices for Public Light Applications. Elsevier; Amsterdam, The Netherlands: 2017. Tools and analysis methods of encapsulated LEDs; pp. 43–206.
Thijssen W.H.A., Strange M., de Brugh J.M.J., van Ruitenbeek J.M. Formation and properties of metal-oxygen atomic chains. New J. Phys. 2008;10:033005. doi: 10.1088/1367-2630/10/3/033005. DOI
Rodríguez K., Sundberg J., Gatenholm P., Renneckar S. Electrospun nanofibrous cellulose scaffolds with controlled microarchitecture. Carbohydr. Polym. 2014;100:143–149. doi: 10.1016/j.carbpol.2012.12.037. PubMed DOI
Gorassinia A., Adami G., Calvini P., Giacomello A. ATR-FTIR characterization of old pressure sensitive adhesive tapes in historic papers. J. Cult. Herit. 2016;21:775–785. doi: 10.1016/j.culher.2016.03.005. DOI
Li W. A study of plasma-cleaned Ag-plated Cu leadframe surfaces. J. Electron. Mater. 2010;39:295–302. doi: 10.1007/s11664-009-1016-8. DOI
Sim W., Barnard R.T., Blaskovich M.A.T., Ziora Z.M. Antimicrobial silver in medicinal and consumer applications: A patent review of the past decade (2007–2017) Antibiotics. 2018;7:93. doi: 10.3390/antibiotics7040093. PubMed DOI PMC
Yang M., Ding Y., Ge X., Leng Y. Control of bacterial adhesion and growth on honeycomb-like patterned surfaces. Colloids Surfaces B Biointerfaces. 2015;135:549–555. doi: 10.1016/j.colsurfb.2015.08.010. PubMed DOI
Slepička P., Malá Z., Rimpelová S., Švorčík V. Antibacterial properties of modified biodegradable PHB non-woven fabric. Mater. Sci. Eng. C. 2016;65:364–368. doi: 10.1016/j.msec.2016.04.052. PubMed DOI
Chaloupka K., Malam Y., Seifalian A.M. Nanosilver as a new generation of nanoproduct in biomedical applications. Trends Biotechnol. 2010;28:580–588. doi: 10.1016/j.tibtech.2010.07.006. PubMed DOI
Slepička P., Elashnikov R., Ulbrich P., Staszek M., Kolská Z., Švorčík V. Stabilization of sputtered gold and silver nanoparticles in PEG colloid solutions. J. Nanoparticles Res. 2015;17:11–26. doi: 10.1007/s11051-014-2850-z. DOI
Antibacterial properties of bimetallic nanopattern induced by excimer laser on PTFE nanotextile
Polymer-Metal Bilayer with Alkoxy Groups for Antibacterial Improvement
Nanostructures on Fluoropolymer Nanotextile Prepared Using a High-Energy Excimer Laser
Biopolymer Honeycomb Microstructures: A Review
The Functionalization of a Honeycomb Polystyrene Pattern by Excimer Treatment in Liquid
Antibacterial Properties of Silver Nanoclusters with Carbon Support on Flexible Polymer
Cytocompatibility of Polymethyl Methacrylate Honeycomb-like Pattern on Perfluorinated Polymer