NPAHs and OPAHs in the atmosphere of two central European cities: Seasonality, urban-to-background gradients, cancer risks and gas-to-particle partitioning
Jazyk angličtina Země Nizozemsko Médium print-electronic
Typ dokumentu časopisecké články
PubMed
34328964
PubMed Central
PMC8434474
DOI
10.1016/j.scitotenv.2021.148528
PII: S0048-9697(21)03600-7
Knihovny.cz E-zdroje
- Klíčová slova
- Atmosphere, Cancer risk, Fine particles, Polycyclic aromatic hydrocarbons, Spatial variations,
- MeSH
- látky znečišťující vzduch * analýza MeSH
- lidé MeSH
- monitorování životního prostředí MeSH
- nádory * epidemiologie MeSH
- pevné částice analýza MeSH
- polycyklické aromatické uhlovodíky * analýza MeSH
- roční období MeSH
- velkoměsta MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Geografické názvy
- velkoměsta MeSH
- Názvy látek
- látky znečišťující vzduch * MeSH
- pevné částice MeSH
- polycyklické aromatické uhlovodíky * MeSH
Derivatives of polycyclic aromatic hydrocarbons (PAHs) such as nitrated- and oxygenated-PAHs (NPAHs and OPAHs) could be even more toxic and harmful for the environment and humans than PAHs. We assessed the spatial and seasonal variations of NPAHs and OPAHs atmospheric levels, their cancer risks and their gas-to-particle partitioning. To this end, about 250 samples of fine particulate matter (PM2.5) and 50 gaseous samples were collected in 2017 in central Europe in the cities of Brno and Ljubljana (two traffic and two urban background sites) as well as one rural site. The average particulate concentrations were ranging from below limit of quantification to 593 pg m-3 for Σ9NPAHs and from 1.64 to 4330 pg m-3 for Σ11OPAHs, with significantly higher concentrations in winter compared to summer. In winter, the particulate levels of NPAHs and OPAHs were higher at the traffic site compared to the urban background site in Brno while the opposite was found in Ljubljana. NPAHs and OPAHs particulate levels were influenced by the meteorological parameters and co-varied with several air pollutants. The significance of secondary formation on the occurrence of some NPAHs and OPAHs is indicated. In winter, 27-47% of samples collected at all sites were above the acceptable lifetime carcinogenic risk. The gas-particle partitioning of NPAHs and OPAHs was influenced by their physico-chemical properties, the season and the site-specific aerosol composition. Three NPAHs and five OPAHs had higher particulate mass fractions at the traffic site, suggesting they could be primarily emitted as particles from vehicle traffic and subsequently partitioning to the gas phase along air transport. This study underlines the importance of inclusion of the gas phase in addition to the particulate phase when assessing the atmospheric fate of polycyclic aromatic compounds and also when assessing the related health risk.
Atmospheric Chemistry and Innovative Technologies Laboratory NCSR Demokritos Greece
Czech Hydrometeorological Institute Czech Republic
Department of Environmental Sciences Jožef Stefan Institute Slovenia
Zobrazit více v PubMed
Aas W., Mortier A., Bowersox V., Cherian R., Faluvegi G., Fagerli H., Hand J., Klimont Z., Galy-Lacaux C., Lehmann C.M.B., Myhre C.L., Myhre G., Olivié D., Sato K., Quaas J., Rao P.S.P., Schulz M., Shindell D., Skeie R.B., Stein A., Takemura T., Tsyro S., Vet R., Xu X. Global and regional trends of atmospheric sulfur. Sci. Rep. 2019;9:1–11. doi: 10.1038/s41598-018-37304-0. PubMed DOI PMC
Abbas I., Badran G., Verdin A., Ledoux F., Roumié M., Courcot D., Garçon G. Environmental Chemistry Letters. Springer International Publishing; 2018. Polycyclic aromatic hydrocarbon derivatives in airborne particulate matter: sources, analysis and toxicity. DOI
Adamiec E., Jarosz-Krzemińska E., Wieszała R. Heavy metals from non-exhaust vehicle emissions in urban and motorway road dusts. Environ. Monit. Assess. 2016;188:1–11. doi: 10.1007/s10661-016-5377-1. PubMed DOI PMC
Alam M.S., Keyte I.J., Yin J., Stark C., Jones A.M., Harrison R.M. Diurnal variability of polycyclic aromatic compound (PAC) concentrations: relationship with meteorological conditions and inferred sources. Atmos. Environ. 2015;122:427–438. doi: 10.1016/j.atmosenv.2015.09.050. DOI
Albinet A., Leoz-Garziandia E., Budzinski H., Villenave E. Polycyclic aromatic hydrocarbons (PAHs), nitrated PAHs and oxygenated PAHs in ambient air of the Marseilles area (South of France): concentrations and sources. Sci. Total Environ. 2007;384:280–292. doi: 10.1016/j.scitotenv.2007.04.028. PubMed DOI
Albinet A., Leoz-garziandia E., Budzinski H., Villenave E., Jaffrezo J.L. Nitrated and oxygenated derivatives of polycyclic aromatic hydrocarbons in the ambient air of two French alpine valleys part 2: particle size distribution. Atmos. Environ. 2008;42:55–64. doi: 10.1016/j.atmosenv.2007.10.008. DOI
Alves C.A., Vicente A.M.P., Gomes J., Nunes T., Duarte M., Bandowe B.A.M. Polycyclic aromatic hydrocarbons (PAHs) and their derivatives particles emitted in an urban road tunnel. Atmos. Res. 2016;180:128–137. doi: 10.1016/j.atmosres.2016.05.013. DOI
Alves C.A., Vicente A.M.P., Gomes J., Nunes T., Duarte M., Bandowe B.A.M. Polycyclic aromatic hydrocarbons (PAHs) and their derivatives (oxygenated-PAHs, nitrated-PAHs and azaarenes) in size-fractionated particles emitted in an urban road tunnel. Atmos. Res. 2016;180:128–137. doi: 10.1016/j.atmosres.2016.05.013. DOI
Alves C.A., Vicente A.M., Custódio D., Cerqueira M., Nunes T., Pio C., Lucarelli F., Calzolai G., Nava S., Diapouli E., Eleftheriadis K., Querol X., Musa Bandowe B.A. Polycyclic aromatic hydrocarbons and their derivatives (nitro-PAHs, oxygenated PAHs, and azaarenes) in PM2.5 from Southern European cities. Sci. Total Environ. 2017;595:494–504. doi: 10.1016/j.scitotenv.2017.03.256. PubMed DOI
Andersson J.T., Achten C. Time to say goodbye to the 16 EPA PAHs? Toward an up-to-date use of PACs for environmental purposes. Polycycl. Aromat. Compd. 2015;35:330–354. doi: 10.1080/10406638.2014.991042. PubMed DOI PMC
Arey J., Zielinska B., Atkinson R., Winer A.M., Ramdahl T., Pitts J.N. Reactions of fluoranthene and pyrene with the OH radical in the presence of NOx. Atmos. Environ. 1986;20:2339–2345.
Arey J., Harger W.P., Helmig D., Atkinson R. Bioassay-directed fractionation of mutagenic PAH atmospheric photooxidation products and ambient particulate extracts. Mutat. Res. Lett. 1992;281:67–76. doi: 10.1016/0165-7992(92)90038-J. PubMed DOI
ATEM . 2016. Zjištění aktuální dynamické skladby vozového parku v roce 2015, Prognóza skladby vozového parku do roku 2040 (Study on the dynamic fleet composition in 2015 and prognosis by 2040)
Bamford H.A., Baker J.E. Nitro-polycyclic aromatic hydrocarbon concentrations and sources in urban and suburban atmospheres of the Mid-Atlantic region. Atmos. Environ. 2003;37:2077–2091. doi: 10.1016/S1352-2310(03)00102-X. DOI
Bandowe B.A.M., Meusel H. Nitrated polycyclic aromatic hydrocarbons (nitro-PAHs) in the environment – a review. Sci. Total Environ. 2017;581–582:237–257. doi: 10.1016/j.scitotenv.2016.12.115. PubMed DOI
Bandowe B.A.M., Meusel H., Huang R. jin, Ho K., Cao J., Hoffmann T., Wilcke W. PM2.5-bound oxygenated PAHs, nitro-PAHs and parent-PAHs from the atmosphere of a Chinese megacity: seasonal variation, sources and cancer risk assessment. Sci. Total Environ. 2014;473–474:77–87. doi: 10.1016/j.scitotenv.2013.11.108. PubMed DOI
Besis A., Tsolakidou A., Balla D., Samara C., Voutsa D., Pantazaki A., Choli-Papadopoulou T., Lialiaris T.S. Toxic organic substances and marker compounds in size-segregated urban particulate matter - implications for involvement in the in vitro bioactivity of the extractable organic matter. Environ. Pollut. 2017;230:758–774. doi: 10.1016/j.envpol.2017.06.096. PubMed DOI
Ciccioli P., Cecinato A., Brancaleoni E., Draisci R., Liberti A. Evaluation of nitrated polycydic aromatic hydrocarbons in anthropogenic emission and air samples: a possible means of detecting reactions of carbonaceous particles in the atmosphere. Aerosol Sci. Technol. 1989;10:296–310. doi: 10.1080/02786828908959266. DOI
Cohen A.J., Brauer M., Burnett R., Anderson H.R., Frostad J., Estep K., Balakrishnan K., Brunekreef B., Morawska L., Iii C.A.P., Shin H., Straif K., Shaddick G., Thomas M., Dingenen R. Van, Donkelaar A. Van, Vos T., Murray C.J.L., Forouzanfar M.H. Estimates and 25-year trends of the global burden of disease attributable to ambient air pollution: an analysis of data from the Global Burden of Diseases Study 2015. Lancet. 2015;389:1907–1918. doi: 10.1016/S0140-6736(17)30505-6. PubMed DOI PMC
Councell T.B., Duckenfield K.U., Landa E.R., Callender E. Tire-wear particles as a source of zinc to the environment. Environ. Sci. Technol. 2004;38:4206–4214. doi: 10.1021/es034631f. PubMed DOI
Dachs J., Eisenreich S.J. Adsorption onto aerosol soot carbon dominates gas-particle partitioning of polycyclic aromatic hydrocarbons. Environ. Sci. Technol. 2000;34:3690–3697. doi: 10.1021/es991201+. DOI
Degrendele C., Audy O., Hofman J., Kučerik J., Kukučka P., Mulder M.D., Přibylová P., Prokeš R., Šáňka M., Schaumann G.E., Lammel G. Diurnal variations of air-soil exchange of semivolatile organic compounds (PAHs, PCBs, OCPs, and PBDEs) in a Central European receptor area. Environ. Sci. Technol. 2016;50 doi: 10.1021/acs.est.5b05671. PubMed DOI
Degrendele C., Wilson J., Kukučka P., Klánová J., Lammel G. Are atmospheric PBDE levels declining in central Europe? Examination of the seasonal and semi-long-term variations, gas – particle partitioning and implications for long-range atmospheric transport. Atmos. Chem. Phys. 2018;2008:12877–12890. doi: 10.5194/acp-18-12877-2018. DOI
Degrendele C., Fiedler H., Kočan A., Kukučka P., Přibylová P., Prokeš R., Klánová J., Lammel G., Prokeš R., Klánová J., Lammel G. Multiyear levels of PCDD/Fs, dl-PCBs and PAHs in background air in central Europe and implications for deposition. Chemosphere. 2020;240 doi: 10.1016/j.chemosphere.2019.124852. PubMed DOI
Drotikova T., Ali A.M., Karine Halse A., Reinardy H.C., Kallenborn R. Polycyclic aromatic hydrocarbons (PAHs) and oxy- and nitro-PAHs in ambient air of the Arctic town Longyearbyen, Svalbard. Atmos. Chem. Phys. 2020;20:9997–10014. doi: 10.5194/acp-20-9997-2020. DOI
Drotikova T., Dekhtyareva A., Kallenborn R., Albinet A. Polycyclic aromatic hydrocarbons (PAHs) and their nitrated and oxygenated derivatives in the Arctic boundary layer: seasonal trends and local anthropogenic influence. Atmos. Chem. Phys. Discuss. 2021;30:1–27. doi: 10.5194/acp-2021-193. DOI
Durant J.L., Busby W.F., Lafleur A.L., Penman B.W., Crespi C.L. Human cell mutagenicity of oxygenated, nitrated and unsubstituted polycyclic aromatic hydrocarbons associated with urban aerosols. Mutat. Res. Fundam. Mol. Mech. Mutagen. 1996;371:123–157. doi: 10.1016/S0165-1218(96)90103-2. PubMed DOI
EEA . 2020. Air Quality in Europe—2020 Report. (Copenhagen)
EEA . European Environment Agency; Copenhagen: 2020. European Union Emission Inventory Report 1990–2018 Under the UNECE Convention On Long-range Transboundary Air Pollution (LRTAP); Rep. No 05/2020. DOI
Fan Z., Chen D., Birla P., Kamens R.M. Modeling of nitro-polycyclic aromatic hydrocarbon formation and decay in the atmosphere. Atmos. Environ. 1995;29:1171–1181. doi: 10.1016/1352-2310(94)00347-N. DOI
Feilberg A., Ohura T., Nielsen T., Poulsen M.W.B., Amagai T. Occurrence and photostability of 3-nitrobenzanthrone associated with atmospheric particles. Atmos. Environ. 2002;36:3591–3600. doi: 10.1016/S1352-2310(02)00255-8. DOI
Fuzzi S., Andreae M.O., Huebert B.J., Kulmala M., Bond T.C., Boy M., Doherty S.J., Guenther A., Kanakidou M., Kawamura K., Kerminen V.M., Lohmann U., Russell L.M., Pöschl U. Critical assessment of the current state of scientific knowledge, terminology, and research needs concerning the role of organic aerosols in the atmosphere, climate, and global change. Atmos. Chem. Phys. 2006;6:2017–2038. doi: 10.5194/acp-6-2017-2006. DOI
Happo M.S., Hirvonen M.R., Halinen A.I., Jalava P.I., Pennanen A.S., Sillanpaa M., Hillamo R., Salonen R.O. Chemical compositions responsible for inflammation and tissue damage in the mouse lung by coarse and fine particulate samples from contrasting air pollution in Europe. Inhal. Toxicol. 2008;20:1215–1231. doi: 10.1080/08958370802147282. PubMed DOI
Harrison R.M., Alam M.S., Dang J., Ismail I.M., Basahi J., Alghamdi M.A., Hassan I.A., Khoder M. Relationship of polycyclic aromatic hydrocarbons with oxy(quinone) and nitro derivatives during air mass transport. Sci. Total Environ. 2016;572:1175–1183. doi: 10.1016/j.scitotenv.2016.08.030. PubMed DOI
Hayakawa K. Environmental behaviors and toxicities of polycyclic aromatic hydrocarbons and nitropolycyclic aromatic hydrocarbons. Chem. Pharm. Bull. 2016;64:83–94. doi: 10.1248/cpb.c15-00801. PubMed DOI
Hays M.D., Preston W., George B.J., George I.J., Snow R., Faircloth J., Long T., Baldauf R.W., McDonald J. Temperature and driving cycle significantly affect carbonaceous gas and particle matter emissions from diesel trucks. Energy Fuel. 2017;31:11034–11042. doi: 10.1021/acs.energyfuels.7b01446. PubMed DOI PMC
Ho K.F., Ho S.S.H., Lee S.C., Cheng Y., Chow J.C., Watson J.G., Louie P.K.K., Tian L. Emissions of gas- and particle-phase polycyclic aromatic hydrocarbons (PAHs) in the Shing Mun Tunnel, Hong Kong. Atmos. Environ. 2009;43:6343–6351. doi: 10.1016/j.atmosenv.2009.09.025. DOI
Holubová Šmejkalová A., Zíková N., Ždímal V., Plachá H., Bitter M. Atmospheric aerosol growth rates at different background station types. Environ. Sci. Pollut. Res. 2020 doi: 10.1007/s11356-020-11424-5. PubMed DOI PMC
Huang B., Liu M., Bi X., Chaemfa C., Ren Z., Wang X., Sheng G., Fu J. Phase distribution, sources and risk assessment of PAHs, NPAHs and OPAHs in a rural site of Pearl River Delta region, China. Atmos. Pollut. Res. 2014;5:210–218. doi: 10.5094/APR.2014.026. DOI
Huang W., Huang B., Bi X., Lin Q., Liu M., Ren Z., Zhang G., Wang X., Sheng G., Fu J. Emission of PAHs, NPAHs and OPAHs from residential honeycomb coal briquette combustion. Energy Fuel. 2014;28:636–642. doi: 10.1021/ef401901d. DOI
Idowu O., Semple K.T., Ramadass K., Connor W.O., Hansbro P., O’Connor W., Hansbro P., Thavamani P. Beyond the obvious: environmental health implications of polar polycyclic aromatic hydrocarbons. Environ. Int. 2019;123:543–557. doi: 10.1016/j.envint.2018.12.051. PubMed DOI
Inomata S., Fushimi A., Sato K., Fujitani Y., Yamada H. 4-Nitrophenol, 1-nitropyrene, and 9-nitroanthracene emissions in exhaust particles from diesel vehicles with different exhaust gas treatments. Atmos. Environ. 2015;110:93–102. doi: 10.1016/j.atmosenv.2015.03.043. DOI
Jalava P.I., Hirvonen M.R., Sillanp M., Pennanen A.S., Happo M.S., Hillamo R., Cassee F.R., Gerlofs-Nijland M., Borm P.J.A., Schins R.P.F., Janssen N.A.H., Salonen R.O. Associations of urban air particulate composition with inflammatory and cytotoxic responses in RAW 246.7 cell line. Inhal. Toxicol. 2009;21:994–1006. doi: 10.1080/08958370802695710. PubMed DOI
Joumard R., Laurikko J., Han T. Le, Geivanidis S., Samaras Z., Merétei T., Devaux P., André J.M., Cornelis E., Lacour S., Prati M.V., Vermeulen R., Zallinger M. Accuracy of exhaust emission factor measurements on chassis dynamometer. J. Air Waste Manag. Assoc. 2009;59:695–703. doi: 10.3155/1047-3289.59.6.695. PubMed DOI
Jung K.H., Yan B., Chillrud S.N., Perera F.P., Whyatt R., Camann D., Kinney P.L., Miller R.L. Assessment of benzo(a)pyrene-equivalent carcinogenicity and mutagenicity of residential indoor versus outdoor polycyclic aromatic hydrocarbons exposing young children in New York city. Int. J. Environ. Res. Public Health. 2010;7:1889–1900. doi: 10.3390/ijerph7051889. PubMed DOI PMC
Karavalakis G., Boutsika V., Stournas S., Bakeas E. Biodiesel emissions profile in modern diesel vehicles. Part 2: effect of biodiesel origin on carbonyl, PAH, nitro-PAH and oxy-PAH emissions. Sci. Total Environ. 2011;409:738–747. doi: 10.1016/j.scitotenv.2010.11.010. PubMed DOI
Karavalakis G., Poulopoulos S., Zervas E. Impact of diesel fuels on the emissions of non-regulated pollutants. Fuel. 2012;102:85–91. doi: 10.1016/j.fuel.2012.05.030. DOI
Kawanaka Y., Sakamoto K., Wang N., Yun S.J. Simple and sensitive method for determination of nitrated polycyclic aromatic hydrocarbons in diesel exhaust particles by gas chromatography-negative ion chemical ionisation tandem mass spectrometry. J. Chromatogr. A. 2007;1163:312–317. doi: 10.1016/j.chroma.2007.06.038. PubMed DOI
Kelly J.M., Ivatt P.D., Evans M.J., Kroll J.H., Hrdina A.I.H., Kohale I.N., White F.M., Engelward B.P., Selin N.E. Global cancer risk from unregulated polycyclic aromatic hydrocarbons. Geohealth. 2021:1–16. doi: 10.1002/essoar.10506200.1. PubMed DOI PMC
Keyte I.J., Harrison R.M., Lammel G. Chemical reactivity and long-range transport potential of polycyclic aromatic hydrocarbons—a review. Chem. Soc. Rev. 2013;42:9333–9391. doi: 10.1039/c3cs60147a. PubMed DOI
Kitanovski Z., Shahpoury P., Samara C., Voliotis A., Lammel G. Composition and mass size distribution of nitrated and oxygenated aromatic compounds in ambient particulate matter from southern and central Europe-implications for the origin. Atmos. Chem. Phys. 2020;20:2471–2487. doi: 10.5194/acp-20-2471-2020. DOI
Kristensson A., Johansson C., Westerholm R., Swietlicki E., Gidhagen L., Wideqvist U., Vesely V. Real-world traffic emission factors of gases and particles measured in a road tunnel in Stockholm, Sweden. Atmos. Environ. 2004;38:657–673. doi: 10.1016/j.atmosenv.2003.10.030. DOI
Lammel G., Mulder M.D., Shahpoury P., Kukučka P., Lišková H., Přibylová P., Prokeš R., Wotawa G. Nitro-polycyclic aromatic hydrocarbons - gas-particle partitioning, mass size distribution, and formation along transport in marine and continental background air. Atmos. Chem. Phys. 2017;17:6257–6270. doi: 10.5194/acp-17-6257-2017. DOI
Lammel G., Kitanovski Z., Kukučka P., Novák J., Arangio A.M., Codling G.P., Filippi A., Hovorka J., Kuta J., Leoni C., Příbylová P., Prokeš R., Sáňka O., Shahpoury P., Tong H., Wietzoreck M. Oxygenated and nitrated polycyclic aromatic hydrocarbons in ambient air - levels, phase partitioning, mass size distributions, and inhalation bioaccessibility. Environ. Sci. Technol. 2020;54:2615–2625. doi: 10.1021/acs.est.9b06820. PubMed DOI PMC
Landrigan P.J., Fuller R., Acosta N.J.R., Adeyi O., Arnold R., Basu N.N., Baldé A.B., Bertollini R., Bose-O’Reilly S., Boufford J.I., Breysse P.N., Chiles T., Mahidol C., Coll-Seck A.M., Cropper M.L., Fobil J., Fuster V., Greenstone M., Haines A., Hanrahan D., Hunter D., Khare M., Krupnick A., Lanphear B., Lohani B., Martin K., Mathiasen K.V., McTeer M.A., Murray C.J.L., Ndahimananjara J.D., Perera F., Potočnik J., Preker A.S., Ramesh J., Rockström J., Salinas C., Samson L.D., Sandilya K., Sly P.D., Smith K.R., Steiner A., Stewart R.B., Suk W.A., van Schayck O.C.P., Yadama G.N., Yumkella K., Zhong M. The Lancet Commissions The Lancet Commission on pollution and health. Lancet. 2017:6736. doi: 10.1016/S0140-6736(17)32345-0. PubMed DOI
Lelieveld J., Evans J.S., Fnais M., Giannadaki D., Pozzer A. The contribution of outdoor air pollution sources to premature mortality on a global scale. Nature. 2015;525:367–371. doi: 10.1038/nature15371. PubMed DOI
Lelieveld J., Klingmüller K., Pozzer A., Pöschl U., Fnais M., Daiber A., Münzel T. Cardiovascular disease burden from ambient air pollution in Europe reassessed using novel hazard ratio functions. Eur. Heart J. 2019;40:1590–1596. doi: 10.1093/eurheartj/ehz135. PubMed DOI PMC
Lin Y., Qiu X., Ma Y., Ma J., Zheng M., Shao M. Concentrations and spatial distribution of polycyclic aromatic hydrocarbons (PAHs) and nitrated PAHs (NPAHs) in the atmosphere of North China, and the transformation from PAHs to NPAHs. Environ. Pollut. 2015;196:164–170. doi: 10.1016/j.envpol.2014.10.005. PubMed DOI
Logar M., Mekinda Majaron T., Verbič J. 2018. Slovenia’s Informative Inventory Report 2018. Submission Under UNECE Convention on Long-range Transboundary Air Pollution and Directive (EU) 2016/2284 on the Reduction of Natural Emissions of Certain Atmospheric Pollutants.
Lohmann R., Lammel G. Adsorptive and absorptive contributions to the gas-particle partitioning of polycyclic aromatic hydrocarbons: state of knowledge and recommended parametrization for modeling. Environ. Sci. Technol. 2004;38:3793–3803. doi: 10.1021/es035337q. PubMed DOI
Lundstedt S., Bandowe B.A.M., Wilcke W., Boll E., Christensen J.H., Vila J., Grifoll M., Faure P., Biache C., Lorgeoux C., Larsson M., Frech Irgum K., Ivarsson P., Ricci M. First intercomparison study on the analysis of oxygenated polycyclic aromatic hydrocarbons (oxy-PAHs) and nitrogen heterocyclic polycyclic aromatic compounds (N-PACs) in contaminated soil. TrAC Trends Anal. Chem. 2014;57:83–92. doi: 10.1016/j.trac.2014.01.007. DOI
Mauderly J.L., Chow J.C. Health effects of organic aerosols. Inhal. Toxicol. 2008 doi: 10.1080/08958370701866008. PubMed DOI
Neuhäuser J. 2017. D2.2 Report and Data on Emission Inventory at City Level for the Considered Pollutants and GHGs for the Years 2015, 2020 and 2030.
Nežiková B., Degrendele C., Bandowe B.A.M., Holubová Šmejkalová A., Kukučka P., Martiník J., Mayer L., Prokeš R., Přibylová P., Klánová J., Lammel G. Three years of atmospheric concentrations of nitrated and oxygenated polycyclic aromatic hydrocarbons and oxygen heterocycles at a central European background site. Chemosphere. 2021 doi: 10.1016/j.chemosphere.2020.128738. PubMed DOI
Novak J., Hilscherova K., Landlova L., Cupr P., Kohut L., Giesy J.P., Klanova J. Composition and effects of inhalable size fractions of atmospheric aerosols in the polluted atmosphere. Part II. In vitro biological potencies. Environ. Int. 2014;63:64–70. doi: 10.1016/j.envint.2013.10.013. PubMed DOI
Nováková Z., Novák J., Kitanovski Z., Kukučka P., Smutná M., Wietzoreck M., Lammel G., Hilscherová K. Toxic potentials of particulate and gaseous air pollutant mixtures and the role of PAHs and their derivatives. Environ. Int. 2020;139 doi: 10.1016/j.envint.2020.105634. PubMed DOI
OEHHA Benzo(a)pyrene as a toxic air contaminant [WWW Document] 1994. http://www.arb.ca.gov/toxics/id/summary/bap.pdf URL.
Perraudin E., Budzinski H., Villenave E. Identification and quantification of ozonation products of anthracene and phenanthrene adsorbed on silica particles. Atmos. Environ. 2007;41:6005–6017. doi: 10.1016/j.atmosenv.2007.03.010. DOI
Pöschl U. Atmospheric aerosols: composition, transformation, climate and health effects. Angew. Chem. Int. Ed. 2005;44:7520–7540. doi: 10.1002/anie.200501122. PubMed DOI
Ringuet J., Albinet A., Leoz-Garziandia E., Budzinski H., Villenave E. Diurnal/nocturnal concentrations and sources of particulate-bound PAHs, OPAHs and NPAHs at traffic and suburban sites in the region of Paris (France) Sci. Total Environ. 2012;437:297–305. doi: 10.1016/j.scitotenv.2012.07.072. PubMed DOI
Ringuet J., Leoz-Garziandia E., Budzinski H., Villenave E., Albinet A. Particle size distribution of nitrated and oxygenated polycyclic aromatic hydrocarbons (NPAHs and OPAHs) on traffic and suburban sites of a European megacity: Paris (France) Atmos. Chem. Phys. 2012;12:8877–8887. doi: 10.5194/acp-12-8877-2012. DOI
Samburova V., Zielinska B., Khlystov A. Do 16 polycyclic aromatic hydrocarbons represent PAH air toxicity? Toxics. 2017;5:29–33. doi: 10.3390/toxics5030017. PubMed DOI PMC
Saraga D., Maggos T., Degrendele C., Klánová J., Horvat M., Kocman D., Kanduč T., Garcia Dos Santos S., Franco R., Gómez P.M., Manousakas M., Bairachtari K., Eleftheriadis K., Kermenidou M., Karakitsios S., Gotti A., Sarigiannis D. Multi-city comparative PM2.5 source apportionment for fifteen sites in Europe: the ICARUS project. Sci. Total Environ. 2021;751 doi: 10.1016/j.scitotenv.2020.141855. PubMed DOI
Sauret-Szczepanski N., Lane D.A. Smog chamber study of acenaphthene: gas/particle partition measurements of the products formed by reaction with the OH radical. Polycycl. Aromat. Compd. 2004;24:161–172. doi: 10.1080/10406630490460610. DOI
Shahpoury P., Lammel G., Albinet A., Sofuoǧlu A., Dumanoğlu Y., Sofuoǧlu S.C., Wagner Z., Ždimal V. Evaluation of a conceptual model for gas-particle partitioning of polycyclic aromatic hydrocarbons using polyparameter linear free energy relationships. Environ. Sci. Technol. 2016;50:12312–12319. doi: 10.1021/acs.est.6b02158. PubMed DOI
Shen G., Tao S., Wei S., Chen Y., Zhang Y., Shen H., Huang Y., Zhu D., Yuan C., Wang H., Wang Y., Pei L., Liao Y., Duan Y., Wang B., Wang R., Lv Y., Li W., Wang X., Zheng X. Field measurement of emission factors of PM, EC, OC, parent, nitro-, and oxy- polycyclic aromatic hydrocarbons for residential briquette, coal cake, and wood in rural Shanxi, China. Environ. Sci. Technol. 2013;47:2998–3005. doi: 10.1021/es304599g. PubMed DOI PMC
Sies H., Berndt C., Jones D.P. Oxidative stress. Annu. Rev. Biochem. 2017;86:715–748. doi: 10.1016/B978-0-12-411604-7.00006-4. PubMed DOI
Sklorz M., Briedé J.J., Schnelle-Kreis J., Liu Y., Cyrys J., De Kok T.M., Zimmermann R. Concentration of oxygenated polycyclic aromatic hydrocarbons and oxygen free radical formation from urban particulate matter. J. Toxicol. Environ. Health A. 2007;70:1866–1869. doi: 10.1080/15287390701457654. PubMed DOI
Srivastava D., Daellenbach K.R., Zhang Y., Bonnaire N., Chazeau B., Perraudin E., Gros V., Lucarelli F., Villenave E., Prévôt A.S.H., El Haddad I., Favez O., Albinet A. Comparison of five methodologies to apportion organic aerosol sources during a PM pollution event. Sci. Total Environ. 2021;757 doi: 10.1016/j.scitotenv.2020.143168. PubMed DOI
Tang N., Sato K., Tokuda T., Tatematsu M., Hama H., Suematsu C., Kameda T., Toriba A., Hayakawa K. Factors affecting atmospheric 1-, 2-nitropyrenes and 2-nitrofluoranthene in winter at Noto peninsula, a remote background site, Japan. Chemosphere. 2014;107:324–330. doi: 10.1016/j.chemosphere.2013.12.077. PubMed DOI
Tevlin A., Galarneau E., Zhang T., Hung H. Polycyclic aromatic compounds (PACs) in the Canadian environment: ambient air and deposition. Environ. Pollut. 2021:271. doi: 10.1016/j.envpol.2021.116425. PubMed DOI
Tomaz S., Shahpoury P., Jaffrezo J.L., Lammel G., Perraudin E., Villenave E., Albinet A. One-year study of polycyclic aromatic compounds at an urban site in Grenoble (France): seasonal variations, gas/particle partitioning and cancer risk estimation. Sci. Total Environ. 2016;565:1071–1083. doi: 10.1016/j.scitotenv.2016.05.137. PubMed DOI
U.S. EPA . 2012. Estimation Programs Interface Suite (EPI Suite) for Microsoft Windows, v 4.11.
USEPA . 2010. Development of a Relative Potency Factor (Rpf) Approach for Polycyclic Aromatic Hydrocarbon (PAH) Mixtures (External Review Draft) (Washington. doi:DCEPA/635/R-08/012A)
Valavanidis A., Fiotakis K., Vlachogianni T. Airborne particulate matter and human health: toxicological assessment and importance of size and composition of particles for oxidative damage and carcinogenic mechanisms. J. Environ. Sci. Health C Environ. Carcinog. Ecotoxicol. Rev. 2008;26:339–362. doi: 10.1080/10590500802494538. PubMed DOI
Verma V., Fang T., Xu L., Peltier R.E., Russell A.G., Ng N.L., Weber R.J. Organic aerosols associated with the generation of reactive oxygen species (ROS) by water-soluble PM2.5. Environ. Sci. Technol. 2015;49:4646–4656. doi: 10.1021/es505577w. PubMed DOI
Vicente A., Calvo A., Fernandes A.P., Nunes T., Monteiro C., Pio C., Alves C. Hydrocarbons in particulate samples from wildfire events in central Portugal in summer 2010. J. Environ. Sci. (China) 2017;53:122–131. doi: 10.1016/j.jes.2016.02.022. PubMed DOI
Walgraeve C., Demeestere K., Dewulf J., Zimmermann R., Van Langenhove H. Oxygenated polycyclic aromatic hydrocarbons in atmospheric particulate matter: molecular characterization and occurrence. Atmos. Environ. 2010;44:1831–1846. doi: 10.1016/j.atmosenv.2009.12.004. DOI
Wei C., Bandowe B.A.M., Han Y., Cao J., Zhan C., Wilcke W. Polycyclic aromatic hydrocarbons (PAHs) and their derivatives (alkyl-PAHs, oxygenated-PAHs, nitrated-PAHs and azaarenes) in urban road dusts from Xi’an, Central China. Chemosphere. 2015;134:512–520. doi: 10.1016/j.chemosphere.2014.11.052. PubMed DOI
Wei C., Han Y., Bandowe B.A.M., Cao J., Huang R.J., Ni H., Tian J., Wilcke W. Occurrence, gas/particle partitioning and carcinogenic risk of polycyclic aromatic hydrocarbons and their oxygen and nitrogen containing derivatives in Xi’an, central China. Sci. Total Environ. 2015;505:814–822. doi: 10.1016/j.scitotenv.2014.10.054. PubMed DOI
Whaley C.H., Galarneau E., Makar P.A., Moran M.D., Zhang J. How much does traffic contribute to benzene and polycyclic aromatic hydrocarbon air pollution? Results from a high-resolution North American air quality model centred on Toronto, Canada. Atmos. Chem. Phys. 2020;20:2911–2925. doi: 10.5194/acp-20-2911-2020. DOI
WHO Air Quality Guidelines for Europe [WWW Document]. WHO Reg. Off. Eur. Copenhagen, Denmark. 2000. https://www.euro.who.int/en/publications/abstracts/air-quality-guidelines-for-europe
Xing W., Zhang L., Yang L., Zhou Q., Zhang X., Toriba A., Hayakawa K., Tang N. Characteristics of PM2.5-bound polycyclic aromatic hydrocarbons and nitro-polycyclic aromatic hydrocarbons at a roadside air pollution monitoring station in Kanazawa, Japan. Int. J. Environ. Res. Public Health. 2020;17:1–11. doi: 10.3390/ijerph17030805. PubMed DOI PMC
Yang X.Y., Igarashi K., Tang N., Lin J.M., Wang W., Kameda T., Toriba A., Hayakawa K. Indirect- and direct-acting mutagenicity of diesel, coal and wood burning-derived particulates and contribution of polycyclic aromatic hydrocarbons and nitropolycyclic aromatic hydrocarbons. Mutat. Res. Genet. Toxicol. Environ. Mutagen. 2010;695:29–34. doi: 10.1016/j.mrgentox.2009.10.010. PubMed DOI
Zhang J., Yang L., Mellouki A., Chen J., Chen X., Gao Y., Jiang P., Li Y., Yu H., Wang W. Atmospheric PAHs, NPAHs, and OPAHs at an urban, mountainous, and marine sites in Northern China: molecular composition, sources, and ageing. Atmos. Environ. 2018;173:256–264. doi: 10.1016/j.atmosenv.2017.11.002. DOI
Zhao J., Zhang J., Sun L., Liu Y., Lin Y., Li Y., Wang T., Mao H. Characterization of PM2.5-bound nitrated and oxygenated polycyclic aromatic hydrocarbons in ambient air of Langfang during periods with and without traffic restriction. Atmos. Res. 2018;213:302–308. doi: 10.1016/j.atmosres.2018.06.015. DOI
Zielinska B., Sagebiel J., Mc Donald J.D., Whitney K., Lawson D.R. Emission rates and comparative chemical composition from selected in-use diesel and gasoline-fueled vehicles. J. Air Waste Manag. Assoc. 2004;54:1138–1150. doi: 10.1080/10473289.2004.10470973. PubMed DOI