Atmospheric aerosol growth rates at different background station types

. 2021 Mar ; 28 (11) : 13352-13364. [epub] 20201112

Jazyk angličtina Země Německo Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid33184792

Grantová podpora
LM2018122 ACTRIS-CZ

Odkazy

PubMed 33184792
PubMed Central PMC7943522
DOI 10.1007/s11356-020-11424-5
PII: 10.1007/s11356-020-11424-5
Knihovny.cz E-zdroje

Highly time-resolved particle number size distributions (PNSDs) were evaluated during 5 years (2013-2017) at four background stations in the Czech Republic located in different types of environments-urban background (Ústí nad Labem), industrial background (Lom), agricultural background (National Atmospheric Observatory Košetice), and suburban background (Prague-Suchdol). The PNSD data was used for new particle formation event determination as well as growth rate (GR) and condensation sink (CS) calculations. The differences or similarities of these parameters were evaluated from perspectives of the different pollution load, meteorological condition, and regional or long-range transport. The median growth rate (4 nm h-1) is very similar at all stations, and the most frequent length of growth lasted between 2 and 4 h. Condensation sink reflects the pollution load at the individual station and their connection to the environment type. The highest median, CS = 1.34 × 10-2 s-1, was recorded at the urban station (Ústí nad Labem), and the lowest (CS = 0.85 × 10-2 s-1) was recorded at the agricultural station (National Atmospheric Observatory Košetice). Conditional probability function polar plots illustrate the influence of source location to GR. These primary potential emission sources involve traffic, operation of a power plant, and domestic heating.

Zobrazit více v PubMed

Bousiotis D, Osto MD, Beddows DCS et al (2019) Analysis of new particle formation (NPF) events at nearby rural, urban background and urban roadside sites.  Atmos Chem Phys 19(8):5679–5694

Carslaw DC, Ropkins K. openair -- an R package for air quality data analysis. Environ Model Softw. 2012;27-28:52–61. doi: 10.1016/j.envsoft.2011.09.008. DOI

CHMI . Air pollution in the Czech Republic in 2018. Prague: Czech Hydrometeorological Institute; 2019.

Chu B, Matti Kerminen V, Bianchi F, et al. Atmospheric new particle formation in China. Atmos Chem Phys. 2019;19:115–138. doi: 10.5194/acp-19-115-2019. DOI

CSO (2020) Population of municipalities - 1 January 2019. https://www.czso.cz/csu/czso/population-of-municipalities-1-january-2019. Accessed 14 Aug 2020

Dada L, Paasonen P, Nieminen T, Buenrostro Mazon S, Kontkanen J, Peräkylä O, Lehtipalo K, Hussein T, Petäjä T, Kerminen VM, Bäck J, Kulmala M. Long-term analysis of clear-sky new particle formation events and nonevents in Hyytiälä. Atmos Chem Phys. 2017;17:6227–6241. doi: 10.5194/acp-17-6227-2017. DOI

Dal Maso M, Kulmala M, Riipinen I, et al. Formation and growth of fresh atmospheric aerosols: eight years of aerosol size distribution data from SMEAR II, Hyytiälä, Finland. Boreal Environ Res. 2005;10:323–336.

Draxler RR, Rolph GD. HYSPLIT (HYbrid Single-Particle Lagrangian Integrated Trajectory) In: NOAA Air Resour. Lab. Coll. Park. MD; 2013.

Fuchs NA, Sutugin AG. Topics in current aerosol research (part 2), high dispersed aerosols, Pard 2. New York: PERGAMON-ELSEVIER SCIENCE LTD; 1971.

Hamed A, Joutsensaari J, Mikkonen S, Sogacheva L, Dal Maso M, Kulmala M, Cavalli F, Fuzzi S, Facchini MC, Decesari S, Mircea M, Lehtinen KEJ, Laaksonen A. Nucleation and growth of new particles in Po Valley, Italy. Atmos Chem Phys. 2007;7:355–376. doi: 10.5194/acp-7-355-2007. DOI

Hinds W. Aerosol technology : properties, behavior, and measurement of airborne particles. New York: Wiley; 1999.

Hykyšová S, Brejcha J. Monitoring of PM10 air pollution in small settlements close to opencast mines in the North-Bohemian Brown Coal Basin. WIT Trans Ecol Environ. 2009;123:387–398. doi: 10.2495/AIR090351. DOI

Jeong CH, Evans GJ, McGuire ML, et al. Particle formation and growth at five rural and urban sites. Atmos Chem Phys. 2010;10:7979–7995. doi: 10.5194/acp-10-7979-2010. DOI

Kerminen V, Chen X, Vakkari V et al (2018) Atmospheric new particle formation and growth: review of field observations. Environ Res Lett 13(10):103003

Kuang C, Chen M, Zhao J, Smith J, McMurry PH, Wang J. Size and time-resolved growth rate measurements of 1 to 5 nm freshly formed atmospheric nuclei. Atmos Chem Phys. 2012;12:3573–3589. doi: 10.5194/acp-12-3573-2012. DOI

Kubelová L, Vodička P, Schwarz J, Cusack M, Makeš O, Ondráček J, Ždímal V. A study of summer and winter highly time-resolved submicron aerosol composition measured at a suburban site in Prague. Atmos Environ. 2015;118:45–57. doi: 10.1016/j.atmosenv.2015.07.030. DOI

Kulmala M, Petäjä T, Mönkkönen P, Koponen IK, Dal Maso M, Aalto PP, Lehtinen KEJ, Kerminen VM. On the growth of nucleation mode particles: source rates of condensable vapor in polluted and clean environments. Atmos Chem Phys Discuss. 2004;4:6943–6966. doi: 10.5194/acpd-4-6943-2004. DOI

Kulmala M, Vehkamaki H, Petaja T, et al. Formation and growth rates of ultrafine atmospheric particles: a review of observations. J Aerosol Sci. 2004;35:143–176. doi: 10.1016/j.jaerosci.2003.10.003. DOI

Kulmala M, Kerminen V-M, Petäjä T, Ding AJ, Wang L. Atmospheric gas-to-particle conversion : why NPF events are observed in megacities ? Faraday Discuss. 2017;200:271–288. doi: 10.1039/c6fd00257a. PubMed DOI

Ling Y, Wang Y, Duan J, Xie X, Liu Y, Peng Y, Qiao L, Cheng T, Lou S, Wang H, Li X, Xing X. Long-term aerosol size distributions and the potential role of volatile organic compounds (VOCs) in new particle formation events in Shanghai. Atmos Environ. 2019;202:345–356. doi: 10.1016/j.atmosenv.2019.01.018. DOI

Nie W, Ding A, Wang T, Kerminen VM, George C, Xue L, Wang W, Zhang Q, Petäjä T, Qi X, Gao X, Wang X, Yang X, Fu C, Kulmala M. Polluted dust promotes new particle formation and growth. Sci Rep. 2014;4:1–7. doi: 10.1038/srep06634. PubMed DOI PMC

Nieminen T, Kerminen V-M, Petäjä T, et al. Global analysis of continental boundary layer new particle formation based on long-term measurements. Atmospheric Chem Phys. 2018;18(19):14737–14756. doi: 10.5194/acp-18-14737-2018. DOI

O’Dowd CD, Hämeri K, Mäkelä J et al (2002) Coastal new particle formation: environmental conditions and aerosol physicochemical characteristics during nucleation bursts. J Geophys Res 107(D19). 10.1029/2000JD000206

Petäjä T, Mauldin RL, Kosciuch E et al (2009) Sulfuric acid and OH concentrations in a boreal forest site.  Atmospheric Chem Phys 9(19):7435–7448. 10.5194/acp-9-7435-2009

Pikridas M, Sciare J, Freutel F, Crumeyrolle S, von der Weiden-Reinmüller SL, Borbon A, Schwarzenboeck A, Merkel M, Crippa M, Kostenidou E, Psichoudaki M, Hildebrandt L, Engelhart GJ, Petäjä T, Prévôt ASH, Drewnick F, Baltensperger U, Wiedensohler A, Kulmala M, Beekmann M, Pandis SN. In situ formation and spatial variability of particle number concentration in a European megacity. Atmos Chem Phys. 2015;15:10219–10237. doi: 10.5194/acp-15-10219-2015. DOI

Pöschl U. Atmospheric aerosols: Composition, transformation, climate and health effects. Angew Chemie - Int Ed. 2005;44:7520–7540. doi: 10.1002/anie.200501122. PubMed DOI

Pushpawela B, Jayaratne R, Morawska L. Temporal distribution and other characteristics of new particle formation events in an urban environment. Environ Pollut. 2018;233:552–560. doi: 10.1016/j.envpol.2017.10.102. PubMed DOI

RSD (2020) Celostátní sčítání dopravy 2016. http://scitani2016.rsd.cz/pages/informations/default.aspx. Accessed 10 Aug 2020

Skrabalova L, Zikova N, Zdimal V. Shrinkage of newly formed particles in an urban environment. Aerosol Air Qual Res. 2015;15:1313–1324. doi: 10.4209/aaqr.2015.01.0015. DOI

Stocker TF, Qin D, Plattner GK et al (2013) IPCC, 2013: climate change 2013: the physical science basis. In: Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge and New York, pp 1535

UNIPETROL (2020) Chempark Záluží. https://www.unipetrolrpa.cz/en/ServicesandChempark/ChemparkZaluzi/Pages/default.aspx. Accessed 10 Aug 2020

Ústí nad L (2020) Economy. https://www.usti-nad-labem.cz/en/city/introduction/economy.html. Accessed 14 Aug 2020

Wang YQ, Zhang XY, Draxler RR. TrajStat: GIS-based software that uses various trajectory statistical analysis methods to identify potential sources from long-term air pollution measurement data. Environ Model Softw. 2009;24:938–939. doi: 10.1016/j.envsoft.2009.01.004. DOI

Wiedensohler A, Birmili W, Nowak A, Sonntag A, Weinhold K, Merkel M, Wehner B, Tuch T, Pfeifer S, Fiebig M, Fjäraa AM, Asmi E, Sellegri K, Depuy R, Venzac H, Villani P, Laj P, Aalto P, Ogren JA, Swietlicki E, Williams P, Roldin P, Quincey P, Hüglin C, Fierz-Schmidhauser R, Gysel M, Weingartner E, Riccobono F, Santos S, Grüning C, Faloon K, Beddows D, Harrison R, Monahan C, Jennings SG, O'Dowd CD, Marinoni A, Horn HG, Keck L, Jiang J, Scheckman J, McMurry PH, Deng Z, Zhao CS, Moerman M, Henzing B, de Leeuw G, Löschau G, Bastian S. Mobility particle size spectrometers: harmonization of technical standards and data structure to facilitate high quality long-term observations of atmospheric particle number size distributions. Atmos Meas Tech. 2012;5:657–685. doi: 10.5194/amt-5-657-2012. DOI

WMO (2016) WMO/GAW aerosol measurement procedures, guidelines and recommendations, 2nd edn. World Meteorological Organization GAW Rep. 227, pp 93. https://library.wmo.int/opac/doc_num.php?explnum_id=3073

Yli-Juuti T, Nieminen T, Hirsikko A, Aalto PP, Asmi E, Hõrrak U, Manninen HE, Patokoski J, Dal Maso M, Petäjä T, Rinne J, Kulmala M, Riipinen I. Growth rates of nucleation mode particles in Hyytiälä during 2003-2009: variation with particle size, season, data analysis method and ambient conditions. Atmos Chem Phys. 2011;11:12865–12886. doi: 10.5194/acp-11-12865-2011. DOI

Zhang R, Khalizov A, Wang L, et al. Nucleation and growth of nanoparticles in the atmosphere. Chem Rev. 2011;112(3):1957–2011. doi: 10.1021/cr2001756. PubMed DOI

Zhang J, Chen Z, Lu Y, Gui H, Liu J, Wang J, Yu T, Cheng Y. Observations of new particle formation, subsequent growth and shrinkage during summertime in Beijing. Aerosol Air Qual Res. 2016;16:1591–1602. doi: 10.4209/aaqr.2015.07.0480. DOI

Zhao C, Li Y, Zhang F, Sun Y, Wang P. Growth rates of fine aerosol particles at a site near Beijing in June 2013. Adv Atmos Sci. 2018;35:209–217. doi: 10.1007/s00376-017-7069-3. DOI

Zíková N, Wang Y, Yang F, Li X, Tian M, Hopke PK. On the source contribution to Beijing PM2.5 concentrations. Atmos Environ. 2016;134:84–95. doi: 10.1016/j.atmosenv.2016.03.047. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...