• This record comes from PubMed

Molecular Pathology of ALS: What We Currently Know and What Important Information Is Still Missing

. 2021 Jul 29 ; 11 (8) : . [epub] 20210729

Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic

Document type Journal Article, Review

Grant support
00064165 MH CZ - DRO: Conceptual Development of Research Organization, the General University Hospital, Prague
00064190 MH CZ - DRO: Conceptual Development of Research Organization, the Thomayer University Hospital, Prague
NV19-04-00090 the Grants Agency of the Ministry of Health
NV18-04-00179 the Grants Agency of the Ministry of Health
GAUK 142120 Univerzita Karlova v Praze
Project Progress Q27/LF1 Univerzita Karlova v Praze

Links

PubMed 34441299
PubMed Central PMC8391180
DOI 10.3390/diagnostics11081365
PII: diagnostics11081365
Knihovny.cz E-resources

Despite an early understanding of amyotrophic lateral sclerosis (ALS) as a disease affecting the motor system, including motoneurons in the motor cortex, brainstem, and spinal cord, today, many cases involving dementia and behavioral disorders are reported. Therefore, we currently divide ALS not only based on genetic predisposition into the most common sporadic variant (90% of cases) and the familial variant (10%), but also based on cognitive and/or behavioral symptoms, with five specific subgroups of clinical manifestation-ALS with cognitive impairment, ALS with behavioral impairment, ALS with combined cognitive and behavioral impairment, the fully developed behavioral variant of frontotemporal dementia in combination with ALS, and comorbid ALS and Alzheimer's disease (AD). Generally, these cases are referred to as amyotrophic lateral sclerosis-frontotemporal spectrum disorder (ALS-FTSD). Clinical behaviors and the presence of the same pathognomonic deposits suggest that FTLD and ALS could be a continuum of one entity. This review was designed primarily to compare neuropathological findings in different types of ALS relative to their characteristic locations as well as the immunoreactivity of the inclusions, and thus, foster a better understanding of the immunoreactivity, distribution, and morphology of the pathological deposits in relation to genetic mutations, which can be useful in specifying the final diagnosis.

See more in PubMed

Jackson C.E., Rosenfeld J. Motor neuron disease. Phys. Med. Rehabil. Clin. N. Am. 2001;12:335–352. doi: 10.1016/S1047-9651(18)30073-1. PubMed DOI

Ludolph A., Drory V., Hardiman O., Nakano I., Ravits J., Robberecht W., Shefner J. WFN Research Group On ALS/MND. A revision of the El Escorial criteria—2015. Amyotroph. Lateral Scler. Front. Degener. 2015;16:291–292. doi: 10.3109/21678421.2015.1049183. PubMed DOI

Singer M.A., Statland J.M., Wolfe G.I., Barohn R.J. Primary lateral sclerosis. Muscle Nerve. 2007;35:291–302. doi: 10.1002/mus.20728. PubMed DOI

Liewluck T., Saperstein D.S. Progressive Muscular Atrophy. Neurol. Clin. 2015;33:761–773. doi: 10.1016/j.ncl.2015.07.005. PubMed DOI

Kim W.K., Liu X., Sandner J., Pasmantier M., Andrews J., Rowland L.P., Mitsumoto H. Study of 962 patients indicates progressive muscular atrophy is a form of ALS. Neurology. 2009;73:1686–1692. doi: 10.1212/WNL.0b013e3181c1dea3. PubMed DOI PMC

Rudnik-Schöneborn S., Zerres K. Spinal muscular atrophies. In: Rimoin D.L., Pyeritz R.E., Korf B.R., editors. Emery and Rimoin’s Principles and Practice of Medical Genetics. 6th ed. Elsevier; Amsterdam, The Netherlands: 2013.

Batista B.H., Almeida A.G., Nunes M.L., Pitrez P.M., Ehlers J.A. Paralisia bulbar progressiva juvenil doença de Fazio-Londe: Relato de caso Progressive bulbar palsy (Fazio-Londe disease): Case report. Arq. Neuropsiquiatr. 2002;60:830–834. doi: 10.1590/S0004-282X2002000500026. PubMed DOI

National Intitute of Neurological Disorders and Stroke Motor Neuron Diseases Fact Sheet. [(accessed on 14 June 2021)]; Available online: https://www.ninds.nih.gov/Disorders/Patient-Caregiver-Education/Fact-Sheets/Motor-Neuron-Diseases-Fact-Sheet.

Kolb S.J., Kissel J.T. Spinal Muscular Atrophy. Neurol. Clin. 2015;33:831–846. doi: 10.1016/j.ncl.2015.07.004. PubMed DOI PMC

Burr P., Reddivari A.K.R. StatPearls [Internet] StatPearls Publishing; Treasure Island, FL, USA: 2021. Spinal Muscle Atrophy. PubMed

Waldrop M.A., Elsheikh B.H. Spinal Muscular Atrophy in the Treatment Era. Neurol. Clin. 2020;38:505–518. doi: 10.1016/j.ncl.2020.03.002. PubMed DOI

Breza M., Koutsis G. Kennedy’s disease (spinal and bulbar muscular atrophy): A clinically oriented review of a rare disease. J. Neurol. 2019;266:565–573. doi: 10.1007/s00415-018-8968-7. PubMed DOI

Querin G., Sorarù G., Pradat P.-F. Kennedy disease (X-linked recessive bulbospinal neuronopathy): A comprehensive review from pathophysiology to therapy. Rev. Neurol. 2017;173:326–337. doi: 10.1016/j.neurol.2017.03.019. PubMed DOI

Jubelt B. Post-polio syndrome. Curr. Treat. Options Neurol. 2004;6:87–93. doi: 10.1007/s11940-004-0018-3. PubMed DOI

Jay V. The legacy of Jean-Martin Charcot. Arch. Pathol. Lab. Med. 2000;124:10–11. doi: 10.5858/2000-124-0010-TLOJMC. PubMed DOI

Goetz C.G. Amyotrophic lateral sclerosis: Early contributions of Jean-Martin Charcot. Muscle Nerve. 2000;23:336–343. doi: 10.1002/(SICI)1097-4598(200003)23:3<336::AID-MUS4>3.0.CO;2-L. PubMed DOI

Editorial Dementia and motor neuron disease. Lancet. 1990;335:1250–1251. doi: 10.1016/0140-6736(90)91308-W. PubMed DOI

Rowland L.P., Shneider N.A. Amyotrophic lateral sclerosis. N. Engl. J. Med. 2001;344:1688–1700. doi: 10.1056/NEJM200105313442207. PubMed DOI

Bonafede R., Mariotti R. ALS Pathogenesis and Therapeutic Approaches: The Role of Mesenchymal Stem Cells and Extracellular Vesicles. Front. Cell. Neurosci. 2017;11:80. doi: 10.3389/fncel.2017.00080. PubMed DOI PMC

Chiò A., Logroscino G., Hardiman O., Swingler R., Mitchell D., Beghi E., Traynor B.G., Eurals Consortium Prognostic factors in ALS: A critical review. Amyotroph. Lateral Scler. 2009;10:310–323. doi: 10.3109/17482960802566824. PubMed DOI PMC

Rusina R., Mmatěj R., Cséfalvay Z., Keller J., Franková V., Vyhnálek M. Frontotemporální demence. Cesk Slov. Neurol. N. 2021;84/117:9–29. doi: 10.48095/cccsnn20219. DOI

Talbott E.O., Malek A.M., Lacomis D. The epidemiology of amyotrophic lateral sclerosis. Handb. Clin. Neurol. 2016;138:225–238. doi: 10.1016/B978-0-12-802973-2.00013-6. PubMed DOI

Chen S., Sayana P., Zhang X., Le W. Genetics of amyotrophic lateral sclerosis: An update. Mol. Neurodegener. 2013;8:28. doi: 10.1186/1750-1326-8-28. PubMed DOI PMC

DeJesus-Hernandez M., Mackenzie I.R., Boeve B.F., Boxer A.L., Baker M., Rutherford N.J., Nicholson A.M., Finch N.A., Flynn H., Adamson J., et al. Expanded GGGGCC Hexanucleotide Repeat in Noncoding Region of C9ORF72 Causes Chromosome 9p-Linked FTD and ALS. Neuron. 2011;72:245–256. doi: 10.1016/j.neuron.2011.09.011. PubMed DOI PMC

Renton A.E., Majounie E., Waite A., Simón-Sánchez J., Rollinson S., Gibbs J.R., Schymick J.C., Laaksovirta H., van Swieten J.C., Myl-lykangas L., et al. A hexanucleotide repeat expansion in C9ORF72 is the cause of chromosome 9p21-linked ALS-FTD. Neuron. 2011;72:257–268. doi: 10.1016/j.neuron.2011.09.010. PubMed DOI PMC

Masrori P., van Damme P. Amyotrophic lateral sclerosis: A clinical review. Eur. J. Neurol. 2020;27:1918–1929. doi: 10.1111/ene.14393. PubMed DOI PMC

Siddique T., Ajroud-Driss S. Familial amyotrophic lateral sclerosis, a historical perspective. Acta Myol. 2011;30:117–120. PubMed PMC

Mehta P.R., Jones A.R., Opie-Martin S., Shatunov A., Iacoangeli A., Al Khleifat A., Smith B.N., Topp S., Morrison K.E., Shaw P.J., et al. Younger age of onset in familial amyotrophic lateral sclerosis is a result of pathogenic gene variants, rather than ascertainment bias. J. Neurol. Neurosurg. Psychiatr. 2019;90:268–271. doi: 10.1136/jnnp-2018-319089. PubMed DOI PMC

Wijesekera L.L., Leigh P.N. Amyotrophic lateral sclerosis. Orphanet. J. Rare Dis. 2009;4:3. doi: 10.1186/1750-1172-4-3. PubMed DOI PMC

McCombe P.A., Henderson R.D. Effects of gender in amyotrophic lateral sclerosis. Gend. Med. 2010;7:557–570. doi: 10.1016/j.genm.2010.11.010. PubMed DOI

Burrell J.R., Vucic S., Kiernan M.C. Isolated bulbar phenotype of amyotrophic lateral sclerosis. Amyotroph. Lateral Scler. 2011;12:283–289. doi: 10.3109/17482968.2011.551940. PubMed DOI

Chen H., Richard M., Sandler D.P., Umbach D.M., Kamel F. Head injury and amyotrophic lateral sclerosis. Am. J. Epidemiol. 2007;166:810–816. doi: 10.1093/aje/kwm153. PubMed DOI PMC

Cabrera J.R., Rodríguez-Izquierdo I., Jiménez J.L., Muñoz-Fernández M.A. Analysis of ALS-related proteins during herpes simplex virus-2 latent infection. J. Neuroinflamm. 2020;17:371. doi: 10.1186/s12974-020-02044-4. PubMed DOI PMC

Berger M.M., Kopp N., Vital C., Redl B., Aymard M., Lina B. Detection and cellular localization of enterovirus RNA sequences in spinal cord of patients with ALS. Neurology. 2000;54:20–25. doi: 10.1212/WNL.54.1.20. PubMed DOI

Oluwole S.O., Yao Y., Conradi S., Kristensson K., Karlsson H. Elevated levels of transcripts encoding a human retroviral envelope protein (syncytin) in muscles from patients with motor neuron disease. Amyotroph. Lateral Scler. 2007;8:67–72. doi: 10.1080/17482960600864207. PubMed DOI

Sundaram R.S., Gowtham L., Nayak B.S. The role of excitatory neurotransmitter glutamate in brain physiology and pathology. Asian J Pharm. Clin. Res. 2012;5:1–7.

Matej R., Botond G., Laszlo L., Kopitar-Jerala N., Rusina R., Budka H., Kovacs G.G. Increased neuronal Rab5 immunoreactive endosomes do not colocalize with TDP-43 in motor neuron disease. Exp. Neurol. 2010;225:133–139. doi: 10.1016/j.expneurol.2010.06.004. PubMed DOI

Turner M.R., Goldacre R., Ramagopalan S., Talbot K., Goldacre M.J. Autoimmune disease preceding amyotrophic lateral sclerosis: An epidemiologic study. Neurology. 2013;81:1222–1225. doi: 10.1212/WNL.0b013e3182a6cc13. PubMed DOI PMC

Štětkářová I., Matěj R., Ehler E. Nové poznatky v dia gnostice a léčbě amyotrofické laterální sklerózy. Cesk Slov Neurol. N. 2018;81:546–554. doi: 10.14735/amcsnn2018546. DOI

Janssen C., Schmalbach S., Boeselt S., Sarlette A., Dengler R., Petri S. Differential Histone Deacetylase mRNA Expression Patterns in Amyotrophic Lateral Sclerosis. J. Neuropathol. Exp. Neurol. 2010;69:573–581. doi: 10.1097/NEN.0b013e3181ddd404. PubMed DOI

Armon C. An evidence-based medicine approach to the evaluation of the role of exogenous risk factors in sporadic amyo-trophic lateral sclerosis. Neuroepidemiology. 2003;22:217–228. doi: 10.1159/000070562. PubMed DOI

Geser F., Brandmeir N.J., Kwong L.K. Evidence of multisystem disorder in whole-brain map of pathological TDP-43 in amyo-trophic lateral sclerosis. Arch. Neurol. 2008;65:636–641. doi: 10.1001/archneur.65.5.636. PubMed DOI

Vucic S., Rothstein J.D., Kiernan M.C. Advances in treating amyotrophic lateral sclerosis: Insights from pathophysiological studies. Trends Neurosci. 2014;37:433–442. doi: 10.1016/j.tins.2014.05.006. PubMed DOI

Wu C.H., Fal-lini C., Ticozzi N., Keagle P.J., Sapp P.C., Piotrowska K., Lowe P., Koppers M., McKenna-Yasek D., Baron D.M., et al. Mutations in the profilin 1 gene cause familial amyotrophic lateral sclerosis. Nature. 2012;488:499–503. doi: 10.1038/nature11280. PubMed DOI PMC

Gorges M., Vercruysse P., Müller H.P., Huppertz H.J., Rosenbohm A., Nagel G., Weydt P., Petersén Å., Ludolph A.C., Kassubek J., et al. Hypothalamic atrophy is related to body mass index and age at onset in amyotrophic lateral sclerosis. J. Neurol. Neurosurg. Psychiatr. 2017;88:1033–1041. doi: 10.1136/jnnp-2017-315795. PubMed DOI

Eisen A., Braak H., Del Tredici K., Lemon R., Ludolph A.C., Kiernan M.C. Cortical influences drive amyotrophic lateral sclerosis. J. Neurol. Neurosurg. Psychiatr. 2017;88:917–924. doi: 10.1136/jnnp-2017-315573. PubMed DOI

Kawakami I., Arai T., Hasegawa M. The basis of clinicopathological heterogeneity in TDP-43 proteinopathy. Acta Neuropathol. 2019;138:751–770. doi: 10.1007/s00401-019-02077-x. PubMed DOI PMC

Graus F., Delattre J.Y., Antoine J.C., Dalmau J., Giometto B., Grisold W., Honnorat J., Smitt P.S., Vedeler C., Verschuuren J.J., et al. Recommended diagnostic criteria for paraneoplastic neurological syndromes. J. Neurol. Neurosurg. Psychiatr. 2004;75:1135–1140. doi: 10.1136/jnnp.2003.034447. PubMed DOI PMC

Brown R.H., Al-Chalabi A. Amyotrophic lateral sclerosis. N. Engl. J. Med. 2013;377:162–172. doi: 10.1056/NEJMra1603471. PubMed DOI

Preston D.C., Shapiro B.E. Amyotrophic Lateral Sclerosis and its Variants. In: Preston D.C., Shapiro B.E., editors. Electromyography and Neuromuscular Disorders. 3rd ed. W.B. Saunders; London, UK: 2013. pp. 417–431.

Statland J.M., Barohn R.J., Dimachkie M.M., Floeter M.K., Mitsumoto H. Primary Lateral Sclerosis. Neurol. Clin. 2015;33:749–760. doi: 10.1016/j.ncl.2015.07.007. PubMed DOI PMC

Ghasemi M. Amyotrophic lateral sclerosis mimic syndromes. Iran J. Neurol. 2016;15:85–91. PubMed PMC

Al-Ghawi E., Al-Harbi T., Al-Sarawi A., Binfalah M. Monomelic amyotrophy with proximal upper limb involvement: A case report. J. Med. Case Rep. 2016;10:54. doi: 10.1186/s13256-016-0843-5. PubMed DOI PMC

Goldstein L.H., Abrahams S. Changes in cognition and behaviour in amyotrophic lateral sclerosis: Nature of impairment and implications for assessment. Lancet Neurol. 2013;12:368–380. doi: 10.1016/S1474-4422(13)70026-7. PubMed DOI

Rusina R., Vandenberghe R., Bruffaerts R. Cognitive and Behavioral Manifestations in ALS: Beyond Motor System Involvement. Diagnostics. 2021;11:624. doi: 10.3390/diagnostics11040624. PubMed DOI PMC

Kiernan M.C., Vucic S., Cheah B.C., Turner M.R., Eisen A., Hardiman O., Burrell J.R., Zoing M.C. Amyotrophic lateral sclerosis. Lancet. 2011;377:942–955. doi: 10.1016/S0140-6736(10)61156-7. PubMed DOI

McGee S. Examination of the Motor System: Approach to Weakness. In: McGee S., editor. Evidence-Based Physical Diagnosis. 4th ed. Elsevier; Amsterdam, The Netherlands: 2018. pp. 551–568. DOI

Gibbons C.J., Thornton E.W., Young C.A. The patient experience of fatigue in motor neurone disease. Front. Psychol. 2013;4 doi: 10.3389/fpsyg.2013.00788. PubMed DOI PMC

Benny R., Shetty K. The split hand sign. Ann. Indian Acad. Neurol. 2012;15:175–176. doi: 10.4103/0972-2327.99700. PubMed DOI PMC

Wang Z.-L., Cui L., Liu M., Zhang K., Liu S., Ding Q., Hu Y. Reassessment of Split-Leg Signs in Amyotrophic Lateral Sclerosis: Differential Involvement of the Extensor Digitorum Brevis and Abductor Hallucis Muscles. Front. Neurol. 2019;10 doi: 10.3389/fneur.2019.00565. PubMed DOI PMC

Schreiber H., Gaigalat T., Wiedemuth-Catrinescu U., Graf M., Uttner I., Muche R., Ludolph A.C. Cognitive function in bulbar– and spinal–onset amyotrophic lateral sclerosis. A longitudinal study in 52 patients. J. Neurol. 2005;252:772–781. doi: 10.1007/s00415-005-0739-6. PubMed DOI

Beeldman E., Raaphorst J., Klein Twennaar M., Govaarts R., Pijnenburg Y.A.L., de Haan R.J., de Visser M., Schmand B.A. The cognitive profile of behavioural variant FTD and its similarities with ALS: A systematic review and meta-analysis. J. Neurol. Neurosurg. Psychiatr. 2018;89:995–1002. doi: 10.1136/jnnp-2017-317459. PubMed DOI

Strong M.J., Abrahams S., Goldstein L.H., Woolley S., Mclaughlin P., Snowden J., Mioshi E., Roberts-South A., Benatar M., Hortobágyi T., et al. Amyotrophic lateral sclerosis—frontotemporal spectrum disorder (ALS-FTSD): Revised diagnostic criteria. Amyotroph. Lateral Scler. Front. Degener. 2017;18:153–174. doi: 10.1080/21678421.2016.1267768. PubMed DOI PMC

Brooks B.R., Miller R.G., Swash M., Munsat T.L. World Federation of Neurology Research Group on Motor Neuron Diseases. El Escorial revisited: Revised criteria for the di-agnosis of amyotrophic lateral sclerosis. Amyotroph. Lateral Scler. Other Mot. Neuron Disord. 2000;1:293–299. doi: 10.1080/146608200300079536. PubMed DOI

Rafalowska J., Wasowicz B. Syringomyelia simulating amyotrophic lateral sclerosis. Pol. Med. J. 1968;7:1214–1218. PubMed

Kennedy Disease. [(accessed on 15 June 2021)]; Available online: https://www.orpha.net/consor/cgi-bin/OC_Exp.php?lng=en&Expert=481.

Rowland L.P. Diagnosis of amyotrophic lateral sclerosis. J. Neurol. Sci. 1998;160(Suppl. 1):S6–S24. doi: 10.1016/S0022-510X(98)00193-2. PubMed DOI

Mélé N., Berzero G., Maisonobe T., Salachas F., Nicolas G., Weiss N., Beaudonnet G., Ducray F., Psimaras D., Lenglet T. Motor neuron disease of paraneoplastic origin: A rare but treatable condition. J. Neurol. 2018;265:1590–1599. doi: 10.1007/s00415-018-8881-0. PubMed DOI

Hudgson P. Polymyositis and Dermatomyositis in Adults. Clin. Rheum. Dis. 1984;10:85–93. doi: 10.1016/S0307-742X(21)00485-9. PubMed DOI

Dabby R., Lange D.J., Trojaborg W., Hays A.P., Lovelace R.E., Brannagan T.H., Rowland L.P. Inclusion body myositis mimicking motor neuron disease. Arch. Neurol. 2001;58:1253–1256. doi: 10.1001/archneur.58.8.1253. PubMed DOI

Wicks P., Abrahams S., Papps B., Al-Chalabi A., Shaw C.E., Leigh P.N., Goldstein L.H. SOD1 and cognitive dysfunction in familial amyotrophic lateral sclerosis. J. Neurol. 2009;256:234–241. doi: 10.1007/s00415-009-0078-0. PubMed DOI

Hayashi Y., Homma K., Ichijo H. SOD1 in neurotoxicity and its controversial roles in SOD1 mutation-negative ALS. Adv. Biol. Regul. 2016;60:95–104. doi: 10.1016/j.jbior.2015.10.006. PubMed DOI

Ajroud-Driss S., Siddique T. Sporadic and hereditary amyotrophic lateral sclerosis (ALS) Biochim. Biophys. Acta. 2015;1852:679–684. doi: 10.1016/j.bbadis.2014.08.010. PubMed DOI

Liscic R.M., Grinberg L.T., Zidar J., Gitcho M.A., Cairns N.J. ALS and FTLD: Two faces of TDP-43 proteinopathy. Eur. J. Neurol. 2008;15:772–780. doi: 10.1111/j.1468-1331.2008.02195.x. PubMed DOI PMC

Mc Cann E.P., Henden L., Fifita J.A., Zhang K.Y., Grima N., Bauer D.C., Chan Moi Fat S., Twine N.A., Pamphlett R., Kiernan M.C., et al. Evidence for polygenic and oligogenic basis of Australian sporadic amyotrophic lateral sclerosis. J. Med. Genet. 2020;14:06866. PubMed

Ellison D., Love S., Chimelli L. Neuropathology—A Reference Text of CNS Pathology. 3rd ed. Mosby; London, UK: 2013.

Roeben B., Wilke C., Bender B., Ziemann U., Synofzik M. The motor band sign in ALS: Presentations and frequencies in a consecutive series of ALS patients. J. Neurol. Sci. 2019;406:116440. doi: 10.1016/j.jns.2019.116440. PubMed DOI

Kiernan J.A., Hudson A.J. Frontal lobe atrophy in motor neuron diseases. Brain. 1994;117:747–757. doi: 10.1093/brain/117.4.747. PubMed DOI

Bede P., Chipika R.H., Finegan E., Li Hi Shing S., Doherty M.A., Hengeveld J.C., Vajda A., Hutchinson S., Donaghy C., McLaughlin R.L., et al. Brainstem pathology in amyotrophic lateral sclerosis and primary lateral sclerosis: A longitudinal neuroimaging study. NeuroImage Clin. 2019;24:102054. doi: 10.1016/j.nicl.2019.102054. PubMed DOI PMC

Hirano A. Neuropathology of ALS: An overview. Neurology. 1996;47(Suppl. 2):63–66. doi: 10.1212/WNL.47.4_Suppl_2.63S. PubMed DOI

Pun S., Santos A.F., Saxena S., Xu L., Caroni P. Selective vulnerability and pruning of phasic motoneuron axons in motoneuron disease alleviated by CNTF. Nat. Neurosci. 2006;9:408–419. doi: 10.1038/nn1653. PubMed DOI

Hegedus J., Putman C.T., Gordon T. Time course of preferential motor unit loss in the SOD1 G93A mouse model of amyo-trophic lateral sclerosis. Neurobiol. Dis. 2007;28:154–164. doi: 10.1016/j.nbd.2007.07.003. PubMed DOI

Shanmukha S., Narayanappa G., Nalini A., Alladi P.A., Raju T.R. Sporadic amyotrophic lateral sclerosis (SALS)—skeletal muscle response to cerebrospinal fluid from SALS patients in a rat model. Dis. Model. Mech. 2018;11:dmm031997. doi: 10.1242/dmm.031997. PubMed DOI PMC

Telerman-Toppet N., Coers C. Motor innervation and fiber type pattern in amyotrophic lateral sclerosis and in Charcot-Marie-Tooth disease. Muscle Nerve. 1978;1:133–139. doi: 10.1002/mus.880010205. PubMed DOI

Dickson D.W., Weller R.O. Neurodegeneration: The Molecular Pathology of Dementia and Movement Disorders. 2nd ed. Wiley-Blackwell; Chichester, UK: 2011.

Okamoto K., Hirai S., Shoji M., Senoh Y., Yamazaki T. Axonal swellings in the corticospinal tracts in amyotrophic lateral sclerosis. Acta Neuropathol. 1990;80:222–226. doi: 10.1007/BF00308929. PubMed DOI

Okamoto K., Mizuno Y., Fujita Y. Bunina bodies in amyotrophic lateral sclerosis. Neuropathology. 2008;28:109–115. doi: 10.1111/j.1440-1789.2007.00873.x. PubMed DOI

Cooper-Knock J., Hewitt C., Highley J.R., Brockington A., Milano A., Man S., Martindale J., Hartley J., Walsh T., Gelsthorpe C., et al. Clinico-pathological features in amyotrophic lateral sclerosis with expansions in C9ORF72. Brain. 2012;135:751–764. doi: 10.1093/brain/awr365. PubMed DOI PMC

Rea S.L., Foster A.D., Rea S.L. The role of sequestosome 1/p62 protein in amyotrophic lateral sclerosis and frontotemporal dementia pathogenesis. Neural Regen. Res. 2020;15:2186–2194. doi: 10.4103/1673-5374.284977. PubMed DOI PMC

Mizusawa H., Nakamura H., Wakayama I., Yen S.H., Hirano A. Skein-like inclusions in the anterior horn cells in motor neuron disease. J. Neurol. Sci. 1991;105:14–21. doi: 10.1016/0022-510X(91)90112-K. PubMed DOI

Strong M.J. The evidence for altered RNA metabolism in amyotrophic lateral sclerosis (ALS) J. Neurol. Sci. 2010;288:1–12. doi: 10.1016/j.jns.2009.09.029. PubMed DOI

Strong M.J., Donison N.S., Volkening K. Alterations in Tau Metabolism in ALS and ALS-FTSD. Front. Neurol. 2020;11 doi: 10.3389/fneur.2020.598907. PubMed DOI PMC

MacKenzie I.R., Frick P., Neumann M. The neuropathology associated with repeat expansions in the C9ORF72 gene. Acta Neuropathol. 2013;127:347–357. doi: 10.1007/s00401-013-1232-4. PubMed DOI

Cohen T.J., Lee V.M., Trojanowski J.Q. TDP-43 functions and pathogenic mechanisms implicated in TDP-43 proteinopathies. Trends Mol. Med. 2011;17:659–667. doi: 10.1016/j.molmed.2011.06.004. PubMed DOI PMC

Deng H.X., Bigio E.H., Zhai H., Fecto F., Ajroud K., Shi Y., Yan J., Mishra M., Ajroud-Driss S., Heller S., et al. Differential Involvement of Optineurin in Amyotrophic Lateral Sclerosis with or Without SOD1 Mutations. Arch. Neurol. 2011;68:1057–1061. doi: 10.1001/archneurol.2011.178. PubMed DOI PMC

Saez-Atienzar S., Bandres-Ciga S., Langston R.G., Kim J.J., Choi S.W., Reynolds R.H., Abramzon Y., Dewan R., Ahmed S., Landers J.E., et al. Genetic analysis of amyotrophic lateral sclerosis identifies contributing pathways and cell types. Sci. Adv. 2021;7:eabd9036. doi: 10.1126/sciadv.abd9036. PubMed DOI PMC

Kang S.H., Li Y., Fukaya M., Lorenzini I., Cleveland D.W., Ostrow L.W., Rothstein J.D., Bergles D.E. Degeneration and impaired regeneration of gray matter oligodendrocytes in amyotrophic lateral sclerosis. Nat. Neurosci. 2013;16:571–579. doi: 10.1038/nn.3357. PubMed DOI PMC

Brettschneider J., del Tredici K., Toledo J.B., Robinson J.L., Irwin D.J., Grossman M., Suh E., van Deerlin V.M., Wood E.M., Baek Y., et al. Stages of pTDP-43 pathology in amyotrophic lateral sclerosis. Ann. Neurol. 2013;74:20–38. doi: 10.1002/ana.23937. PubMed DOI PMC

Moisse K., Mepham J., Volkening K., Welch I., Hill T., Strong M.J. Cytosolic TDP-43 expression following axotomy is associated with caspase 3 activation in NFL−/− mice: Support for a role for TDP-43 in the physiological response to neuronal injury. Brain Res. 2009;1296:176–186. doi: 10.1016/j.brainres.2009.07.023. PubMed DOI

Lagier-Tourenne C., Polymenidou M., Hutt K.R., Vu A.Q., Baughn M., Huelga S.C., Clutario K.M., Ling S.-C., Liang T.Y., Mazur C., et al. Divergent roles of ALS-linked proteins FUS/TLS and TDP-43 intersect in processing long pre-mRNAs. Nat. Neurosci. 2012;15:1488–1497. doi: 10.1038/nn.3230. PubMed DOI PMC

Orban P., Devon R.S., Hayden M.R., Leavitt B.R. Juvenile amyotrophic lateral sclerosis. Hum. Hypothal. Neuropsychiatr. Disord. 2007;82:301–312. doi: 10.1016/s0072-9752(07)80018-2. PubMed DOI

Ben Hamida M., Hentati F., Ben Hamida C. Hereditary motor system diseases (chronic juvenile amyotrophic lateral sclerosis). Conditions combining a bilateral pyramidal syndrome with limb and bulbar amyotrophy. Brain. 1990;113:347–363. doi: 10.1093/brain/113.2.347. PubMed DOI

Deng H.X., Chen W., Hong S.T., Boycott K.M., Gorrie G.H., Siddique N., Yang Y., Fecto F., Shi Y., Zhai H., et al. Mutations in UBQLN2 cause dominant X-linked juvenile and adult-onset ALS and ALS/dementia. Nature. 2011;477:211–215. doi: 10.1038/nature10353. PubMed DOI PMC

Blokhuis A.M., Groen E.J., Koppers M., van den Berg L.H., Pasterkamp R.J. Protein aggregation in amyotrophic lateral sclerosis. Acta Neuropathol. 2013;125:777–794. doi: 10.1007/s00401-013-1125-6. PubMed DOI PMC

Shin W.H., Park J.H., Chung K.C. The central regulator p62 between ubiquitin proteasome system and autophagy and its role in the mitophagy and Parkinson’s disease. BMB Rep. 2020;53:56–63. doi: 10.5483/BMBRep.2020.53.1.283. PubMed DOI PMC

Cohen-Kaplan V., Livneh I., Avni N., Fabre B., Ziv T., Kwon Y.T., Ciechanover A. p62- and ubiquitin-dependent stress-induced autophagy of the mammalian 26S proteasome. Proc. Natl. Acad. Sci. USA. 2016;113:E7490–E7499. doi: 10.1073/pnas.1615455113. PubMed DOI PMC

Bjørkøy G., Lamark T., Johansen T. p62/SQSTM1: A Missing Link between Protein Aggregates and the Autophagy Machinery. Autophagy. 2006;2:138–139. doi: 10.4161/auto.2.2.2405. PubMed DOI

Ji A.L., Zhang X., Chen W.W., Huang W.J. Genetics insight into the amyotrophic lateral sclerosis/frontotemporal dementia spectrum. J. Med. Genet. 2017;54:145–154. doi: 10.1136/jmedgenet-2016-104271. PubMed DOI

Lopate G., Baloh R.H., Al-Lozi M.T., Miller T.M., Fernandes Filho J.A., Ni O., Leston A., Florence J., Schierbecker J., Allred P. Familial ALS with extreme phenotypic variability due to the I113T SOD1 mutation. Amyotroph. Lateral Scler. 2010;11:232–236. doi: 10.3109/17482960902898069. PubMed DOI

Kato S., Hayashi H., Nakashima K., Nanba E., Kato M., Hirano A., Nakano I., Asayama K., Ohama E. Pathological characterization of astrocytic hyaline inclusions in familial amyotrophic lateral sclerosis. Am. J. Pathol. 1997;151:611–620. PubMed PMC

Rusina R., Ridzon P., Kulišťák P., Keller O., Bartos A., Buncova M., Fialová L., Koukolík F., Matej R. Relationship between ALS and the degree of cognitive impairment, markers of neurodegeneration and predictors for poor outcome. A prospective study. Eur. J. Neurol. 2009;17:23–30. doi: 10.1111/j.1468-1331.2009.02717.x. PubMed DOI

Gregory J.M., Fagegaltier D., Phatnani H., Harms M.H. Genetics of Amyotrophic Lateral Sclerosis. Curr. Genet. Med. Rep. 2020;8:121–131. doi: 10.1007/s40142-020-00194-8. DOI

Chiò A., Moglia C., Canosa A., Manera U., Vasta R., Brunetti M., Barberis M., Corrado L., D’Alfonso S., Bersano E., et al. Cognitive impairment across ALS clinical stages in a population-based cohort. Neurology. 2019;93:e984–e994. doi: 10.1212/WNL.0000000000008063. PubMed DOI PMC

Moore K.M., Nicholas J., Grossman M., McMillan C.T., Irwin D.J., Massimo L., van Deerlin V.M., Warren J.D., Fox N.C., Rossor M.N., et al. Age at symptom onset and death and disease duration in genetic frontotemporal dementia: An international retrospective cohort study. Lancet Neurol. 2020;19:145–156. doi: 10.1016/S1474-4422(19)30394-1. PubMed DOI PMC

Millecamps S., Boillée S., Le Ber I., Seilhean D., Teyssou E., Giraudeau M., Moigneu C., Vandenberghe N., Danel-Brunaud V., Corcia P., et al. Phenotype difference between ALS patients with expanded repeats inC9ORF72and patients with mutations in other ALS-related genes. J. Med. Genet. 2012;49:258–263. doi: 10.1136/jmedgenet-2011-100699. PubMed DOI

Khan B.K., Yokoyama J.S., Takada L.T., Sha S.J., Rutherford N.J., Fong J.C., Karydas A.M., Wu T., Ketelle R.S., Baker M.C., et al. Atypical, slowly progressive behavioural variant frontotemporal dementia associated withC9ORF72hexanucleotide expansion. J. Neurol. Neurosurg. Psychiatr. 2012;83:358–364. doi: 10.1136/jnnp-2011-301883. PubMed DOI PMC

Mackenzie I.R., Neumann M., Baborie A., Sampathu D.M., Du P.D., Jaros E., Perry R.H., Trojanowski J.Q., Mann D.M.A., Lee V.M.Y. A harmonized classification system for FTLD-TDP pathology. Acta Neuropathol. 2011;122:111–113. doi: 10.1007/s00401-011-0845-8. PubMed DOI PMC

Davidson Y., Kelley T., MacKenzie I.R.A., Pickering-Brown S., Du Plessis D., Neary D., Snowden J.S., Mann D.M.A. Ubiquitinated pathological lesions in frontotemporal lobar degeneration contain the TAR DNA-binding protein, TDP-43. Acta Neuropathol. 2007;113:521–533. doi: 10.1007/s00401-006-0189-y. PubMed DOI

MacKenzie I.R., Bigio E.H., Ince P.G., Geser F., Neumann M., Cairns N.J., Kwong L.K., Forman M.S., Ravits J., Stewart H., et al. Pathological TDP-43 distinguishes sporadic amyotrophic lateral sclerosis from amyotrophic lateral sclerosis withSOD1 mutations. Ann. Neurol. 2007;61:427–434. doi: 10.1002/ana.21147. PubMed DOI

Al-Sarraj S., King A., Troakes C., Smith B., Maekawa S., Bodi I., Rogelj B., Al-Chalabi A., Hortobágyi T., Shaw C. p62 positive, TDP-43 negative, neuronal cytoplasmic and intranuclear inclusions in the cerebellum and hippocampus define the pathology of C9orf72-linked FTLD and MND/ALS. Acta Neuropathol. 2011;122:691–702. doi: 10.1007/s00401-011-0911-2. PubMed DOI

Geser F., Lee V.M.-Y., Trojanowski J.Q. Amyotrophic lateral sclerosis and frontotemporal lobar degeneration: A spectrum of TDP-43 proteinopathies. Neuropathology. 2010;30:103–112. doi: 10.1111/j.1440-1789.2009.01091.x. PubMed DOI PMC

Fichou Y., Al-Hilaly Y.K., Devred F., Smet-Nocca C., Tsvetkov P.O., Verelst J., Winderickx J., Geukens N., Vanmechelen E., Perrotin A., et al. The elusive tau molecular structures: Can we translate the recent breakthroughs into new targets for intervention? Acta Neuropathol. Commun. 2019;7:1–17. doi: 10.1186/s40478-019-0682-x. PubMed DOI PMC

Stejskalova Z., Rohan Z., Rusina R., Tesar A., Kukal J., Kovacs G.G., Bartos A., Matej R. Pyramidal system involvement in progressive supranuclear palsy—A clinicopathological correlation. BMC Neurol. 2019;19:42. doi: 10.1186/s12883-019-1270-1. PubMed DOI PMC

Ahmed Z., Doherty K.M., Silveira-Moriyama L.S., Bandopadhyay R., Lashley T., Mamais A., Hondhamuni G., Wray S., Newcombe J., O’Sullivan S.S., et al. Globular glial tauopathies (GGT) presenting with motor neuron disease or frontotemporal dementia: An emerging group of 4-repeat tauopathies. Acta Neuropathol. 2011;122:415–428. doi: 10.1007/s00401-011-0857-4. PubMed DOI

Lantos P.L., Quinn N. Multiple system atrophy. In: Dickson D.W., editor. Neurodegeneration: The Molecular Pathology of Dementia and Movement Disorders. 1st ed. ISN Neuropath Press; Basel, Switzerland: 2003. pp. 203–214.

Bowser R., Hamilton R.L. Alzheimer disease pathology in amyotrophic lateral sclerosis. Acta Neuropathol. 2004;107:515–522. doi: 10.1007/s00401-004-0843-1. PubMed DOI

Forrest S.L., Crockford D.R., Sizemova A., McCann H., Shepherd C.E., McGeachie A.B., Affleck A.J., Carew-Jones F., Bartley L., Kwok J.B., et al. Coexisting Lewy body disease and clinical parkinsonism in frontotemporal lobar degeneration. Neurology. 2019;92:e2472–e2482. doi: 10.1212/WNL.0000000000007530. PubMed DOI

Brait K., Fahn S., Schwarz G.A. Sporadic and familial parkinsonism and motor neuron disease. Neurology. 1973;23:990. doi: 10.1212/WNL.23.9.990. PubMed DOI

Manno C., Lipari A., Bono V., Taiello A.C., La Bella V. Sporadic Parkinson disease and Amyotrophic Lateral Sclerosis complex (Brait–Fahn–Schwartz Disease) J. Neurol. Sci. 2013;326:104–106. doi: 10.1016/j.jns.2013.01.009. PubMed DOI

Kumar-Singh S. Progranulin and TDP-43: Mechanistic Links and Future Directions. J. Mol. Neurosci. 2011;45:561–573. doi: 10.1007/s12031-011-9625-0. PubMed DOI PMC

Majumder V., Gregory J.M., Barria M.A., Green A., Pal S. TDP-43 as a potential biomarker for amyotrophic lateral sclerosis: A systematic review and meta-analysis. BMC Neurol. 2018;18:90. doi: 10.1186/s12883-018-1091-7. PubMed DOI PMC

Junttila A., Kuvaja M., Hartikainen P., Siloaho M., Helisalmi S., Moilanen V., Kiviharju A., Jansson L., Tienari P.J., Remes A.M., et al. Cerebrospinal Fluid TDP-43 in Frontotemporal Lobar Degeneration and Amyotrophic Lateral Sclerosis Patients with and without the C9ORF72 Hexanucleotide Expansion. Dement. Geriatr. Cogn. Disord. Extra. 2016;6:142–149. doi: 10.1159/000444788. PubMed DOI PMC

Yang X., Ji Y., Wang W., Zhang L., Chen Z., Yu M., Shen Y., Ding F., Gu X., Sun H. Amyotrophic Lateral Sclerosis: Molecular Mechanisms, Biomarkers, and Therapeutic Strategies. Antioxidants. 2021;10:1012. doi: 10.3390/antiox10071012. PubMed DOI PMC

Elden A.C., Kim H.-J., Hart M.P., Chen-Plotkin A.S., Johnson B.S., Fang X., Armakola M., Geser F., Greene R., Lu M.M., et al. Ataxin-2 intermediate-length polyglutamine expansions are associated with increased risk for ALS. Nature. 2010;466:1069–1075. doi: 10.1038/nature09320. PubMed DOI PMC

Zhang F., Zhang Q., Ke Y., Hao J., Lu L., Lu N., Chen X. Serum uric acid levels in patients with amyotrophic lateral sclerosis: A meta-analysis. Sci. Rep. 2018;8:1–6. doi: 10.1038/s41598-018-19609-2. PubMed DOI PMC

Steinacker P., Feneberg E., Halbgebauer S., Witzel S., Verde F., Oeckl P., van Damme P., Gaur N., Gray E., Grosskreutz J., et al. Chitotriosidase as biomarker for early stage amyotrophic lateral sclerosis: A multicenter study. Amyotroph. Lateral Scler. Front. Degener. 2021;22:276–286. doi: 10.1080/21678421.2020.1861023. PubMed DOI

Verde F., Steinacker P., Weishaupt J.H., Kassubek J., Oeckl P., Halbgebauer S., von Tumani H., Arnim C.A.F., Dorst J., Feneberg E., et al. Neurofilament light chain in serum for the diagnosis of amyotrophic lateral sclerosis. J. Neurol. Neurosurg. Psychiatr. 2019;90:157–164. doi: 10.1136/jnnp-2018-318704. PubMed DOI

Agnello L., Colletti T., Lo Sasso B., Vidali M., Spataro R., Gambino C.M., Giglio R.V., Piccoli T., Bivona G., La Bella V., et al. Tau protein as a diagnostic and prognostic biomarker in amyotrophic lateral sclerosis. Eur. J. Neurol. 2021;28:1868–1875. doi: 10.1111/ene.14789. PubMed DOI

Newest 20 citations...

See more in
Medvik | PubMed

The Role of Micronutrients in Neurological Disorders

. 2023 Sep 25 ; 15 (19) : . [epub] 20230925

Cerebral Iron Deposition in Neurodegeneration

. 2022 May 17 ; 12 (5) : . [epub] 20220517

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...