Agroinfiltration Mediated Scalable Transient Gene Expression in Genome Edited Crop Plants

. 2021 Oct 08 ; 22 (19) : . [epub] 20211008

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid34639221

Grantová podpora
SR/WOS-A/LS-610/2016 Department of Science and Technology
VT2019-2021 University of Hradec Kralove
UHHK, 00179906 MH CZ-DRO

Agrobacterium-mediated transformation is one of the most commonly used genetic transformation method that involves transfer of foreign genes into target plants. Agroinfiltration, an Agrobacterium-based transient approach and the breakthrough discovery of CRISPR/Cas9 holds trending stature to perform targeted and efficient genome editing (GE). The predominant feature of agroinfiltration is the abolishment of Transfer-DNA (T-DNA) integration event to ensure fewer biosafety and regulatory issues besides showcasing the capability to perform transcription and translation efficiently, hence providing a large picture through pilot-scale experiment via transient approach. The direct delivery of recombinant agrobacteria through this approach carrying CRISPR/Cas cassette to knockout the expression of the target gene in the intercellular tissue spaces by physical or vacuum infiltration can simplify the targeted site modification. This review aims to provide information on Agrobacterium-mediated transformation and implementation of agroinfiltration with GE to widen the horizon of targeted genome editing before a stable genome editing approach. This will ease the screening of numerous functions of genes in different plant species with wider applicability in future.

Zobrazit více v PubMed

Adli M. The CRISPR tool kit for genome editing and beyond. Nat. Commun. 2018;9:1911. doi: 10.1038/s41467-018-04252-2. PubMed DOI PMC

Gaj T., Gersbach C.A., Barbas C.F. ZFN, TALEN, and CRISPR/Cas-based methods for genome engineering. Trends Biotechnol. 2013;31:397–405. doi: 10.1016/j.tibtech.2013.04.004. PubMed DOI PMC

Hsu P.D., Lander E.S., Zhang F. Development and applications of CRISPR-Cas9 for genome engineering. Cell. 2014;157:1262–1278. doi: 10.1016/j.cell.2014.05.010. PubMed DOI PMC

Zlobin N.E., Lebedeva M.V., Taranov V.V. CRISPR/Cas9 genome editing through in planta transformation. Crit. Rev. Biotechnol. 2020;40:153–168. doi: 10.1080/07388551.2019.1709795. PubMed DOI

Anami S., Njuguna E., Coussens G., Aesaert S., Van Lijsebettens M. Higher plant transformation: Principles and molecular tools. Int. J. Dev. Biol. 2013;57:483–494. doi: 10.1387/ijdb.130232mv. PubMed DOI

Tzfira T., Citovsky V. Agrobacterium-mediated genetic transformation of plants: Biology and biotechnology. Curr. Opin. Biotechnol. 2006;17:147–154. doi: 10.1016/j.copbio.2006.01.009. PubMed DOI

Kapila J., De Rycke R., van Montagu M., Angenon G. An Agrobacterium-mediated transient gene expression system for intact leaves. Plant Sci. 1997;122:101–108. doi: 10.1016/S0168-9452(96)04541-4. DOI

Klein T.M., Wolf E.D., Sanford J.C. High-velocity microprojectiles for delivering nucleic acids into living cells. Nature. 1987;327:70–73. doi: 10.1038/327070a0. PubMed DOI

Paszkowski J., Shillito R.D., Saul M., Mandák V., Hohn T., Hohn B., Potrykus I. Direct gene transfer to plants. EMBO J. 1984;3:2717–2722. doi: 10.1002/j.1460-2075.1984.tb02201.x. PubMed DOI PMC

D’Halluin K., Bonne E., Bossut M., De Beuckeleer M., Leemans J. Transgenic maize plants by tissue electroporation. Plant Cell. 1992;4:1495–1505. PubMed PMC

De la Peña A., Lörz H., Schell J. Transgenic rye plants obtained by injecting DNA into young floral tillers. Nature. 1987;325:274–276. doi: 10.1038/325274a0. DOI

Krens F.A., Molendijk L., Wullems G.J., Schilperoort R.A. In vitro transformation of plant protoplasts with Ti-plasmid DNA. Nature. 1982;296:72–74. doi: 10.1038/296072a0. DOI

Clough S.J., Bent A.F. Floral dip: A simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J. 1998;16:735–743. doi: 10.1046/j.1365-313x.1998.00343.x. PubMed DOI

Sandhya D., Jogam P., Allini V.R., Abbagani S., Alok A. The present and potential future methods for delivering CRISPR/Cas9 components in plants. J. Genet. Eng. Biotechnol. 2020;18:1–11. doi: 10.1186/s43141-020-00036-8. PubMed DOI PMC

Guidarelli M., Baraldi E. Transient transformation meets gene function discovery: The strawberry fruit case. Front. Plant Sci. 2015;6:444. doi: 10.3389/fpls.2015.00444. PubMed DOI PMC

Twyman R.M., Kohli A., Stoger E., Christou P. Foreign DNA: Integration and Expression in Transgenic Plants. In: Setlow J.K., editor. Genetic Engineering: Principles and Methods. Volume 24. Springer; Boston, MA, USA: 2002. pp. 107–136. PubMed

Chhikara S., Chaudhary D., Yadav M., Sainger M., Jaiwal P.K. A non-tissue culture approach for developing transgenic Brassica juncea L. plants with Agrobacterium tumefaciens. In Vitro Cell Dev. Biol. Plant. 2012;48:7–14. doi: 10.1007/s11627-011-9408-x. DOI

Jones H.D. Future of breeding by genome editing is in the hands of regulators. GM Crops Food. 2015;6:223–232. doi: 10.1080/21645698.2015.1134405. PubMed DOI PMC

Ashraf A., Rahman A. Conference: Workshop Hand Book for 1st National Conference on CRISPR-Cas9 Genome Editing Technology. 2017. [(accessed on 10 September 2021)]. CRISPR/Cas9 and Biosafety Issues; pp. 1–10. Available online: https://www.researchgate.net/publication/333557456_CRISPRCas9_and_Biosafety_Issues.

Lee M.W., Yang Y. Transient Expression Assay by Agroinfiltration of Leaves. Methods Mol. Biol. 2006;323:225–229. doi: 10.1385/1-59745-003-0:225. PubMed DOI

González M.N., Massa G.A., Andersson M., Andrea C., Oneto D., Turesson H., Storani L., Olsson N., Fält A.S., Hofvander P., et al. Comparative potato genome editing: Agrobacterium tumefaciens-mediated transformation and protoplasts transfection delivery of CRISPR/Cas9 components directed to StPPO2 gene. Plant Cell Tiss. Organ Cult. 2021;145:291–305. doi: 10.1007/s11240-020-02008-9. DOI

Zhang Z., Mao Y., Ha S., Liu W., Botella J.R., Zhu J.K. A multiplex CRISPR/Cas9 platform for fast and efficient editing of multiple genes in Arabidopsis. Plant Cell Rep. 2016;35:1519–1533. doi: 10.1007/s00299-015-1900-z. PubMed DOI PMC

Kim H., Choi J., Won K.H. A stable DNA-free screening system for CRISPR/RNPs-mediated gene editing in hot and sweet cultivars of Capsicum annuum. BMC Plant Biol. 2020;20:449. doi: 10.1186/s12870-020-02665-0. PubMed DOI PMC

Malzahn A., Lowder L., Qi Y. Plant genome editing with TALEN and CRISPR. Cell Biosci. 2017;7:21. doi: 10.1186/s13578-017-0148-4. PubMed DOI PMC

Donini M., Marusic C. Current state-of-the-art in plant-based antibody production systems. Biotechnol. Lett. 2019;41:335–346. doi: 10.1007/s10529-019-02651-z. PubMed DOI

Jinek M., Chylinski K., Fonfara I., Hauer M., Doudna J.A., Charpentier E. A programmable dual-RNA–guided DNA endonuclease in adaptive bacterial immunity. Science. 2012;337:816–821. doi: 10.1126/science.1225829. PubMed DOI PMC

Zhang Y., Liang Z., Zong Y., Wang Y., Liu J., Chen K., Qiu J.-L., Gao C. Efficient and transgene-free genome editing in wheat through transient expression of CRISPR/Cas9 DNA or RNA. Nat. Commun. 2016;7:12617. doi: 10.1038/ncomms12617. PubMed DOI PMC

Liang Z., Chen K., Li T., Zhang Y., Wang Y., Zhao Q., Liu J., Zhang H., Liu C., Ran Y., et al. Efficient DNA-free genome editing of bread wheat using CRISPR/Cas9 ribonucleoprotein complexes. Nat. Commun. 2017;8:14261. doi: 10.1038/ncomms14261. PubMed DOI PMC

Sheludko Y.V. Agrobacterium-mediated transient expression as an approach to production of recombinant proteins in plants. Recent Pat. Biotechnol. 2008;2:198–208. doi: 10.2174/187220808786241033. PubMed DOI

Krenek P., Samajova O., Luptovciak I., Doskocilova A., Komis G., Samaj J. Transient plant transformation mediated by Agrobacterium tumefaciens: Principles, methods and applications. Biotechnol. Adv. 2015;33:1024–1042. doi: 10.1016/j.biotechadv.2015.03.012. PubMed DOI

Lacroix B., Citovsky V. The roles of bacterial and host plant factors in Agrobacterium mediated genetic transformation. Int. J. Dev. Biol. 2013;57:467–481. doi: 10.1387/ijdb.130199bl. PubMed DOI PMC

Chen Q., Lai H., Hurtado J., Stahnke J., Leuzinger K., Dent M. Agroinfiltration as an effective and scalable strategy of gene delivery for production of pharmaceutical proteins. Adv. Tech. Biol. Med. 2013;1:103. doi: 10.4172/2379-1764.1000103. PubMed DOI PMC

Tyurin A.A., Suhorukova A.V., Kabardaeva K.V., Goldenkova-Pavlova I.V. Transient gene expression is an effective experimental tool for the research into the fine mechanisms of plant gene function: Advantages, limitations, and solutions. Plants. 2020;9:1187. doi: 10.3390/plants9091187. PubMed DOI PMC

Ramkumar T.R., Lenka S.K., Arya S., Bansal K.C. A Short History and Perspectives on Plant Genetic Transformation. In: Rustgi S., Luo H., editors. Biolistic DNA Delivery in Plants. Humana; New York, NY, USA: 2020. p. 2124. Methods in Molecular Biology. PubMed DOI

Low L.Y., Yang S.K., Andrew K.D.X., Ong-Abdullah J., Tan N.P., Lai K.S. Transgenic plants: Gene constructs, vector and transformation method. In: Çelik Ö., editor. New Visions in Plant Science. Intech Open; London, UK: 2018. pp. 41–61.

Zambryski P. Basic processes underlying Agrobacterium-mediated DNA transfer to plant cells. Annu. Rev. Genet. 1988;22:1–30. doi: 10.1146/annurev.ge.22.120188.000245. PubMed DOI

Christou P., Ford T.L., Kofron M. Rice genetic engineering: A review. Trends Biotechnol. 1992;10:239–246. doi: 10.1016/0167-7799(92)90232-K. DOI

Crossway A., Oakes J.V., Irvine J.M., Ward B., Knauf V.C., Shewmaker C.K. Integration of foreign DNA following microinjection of tobacco mesophyll protoplasts. Mol. Gen. Genet. 1986;202:179–185. doi: 10.1007/BF00331634. DOI

Negrutiu I., Shillito R.D., Potrykus I., Biasini G., Sala F. Hybrid genes in the analysis of transformation conditions. I. Setting up a simple method for direct gene transfer in plant protoplasts. Plant Mol. Biol. 1987;8:363–373. doi: 10.1007/BF00015814. PubMed DOI

Datta S.K., Peterhans A., Datta K., Potrykus I. Genetically engineered fertile Indica-rice plants recovered from protoplasts. Nat. Biotechnol. 1990;8:736–740. doi: 10.1038/nbt0890-736. DOI

Shillito R.D., Saul M.W., Paszkowski J., Muller M., Potrykus I. High efficiency direct gene transfer to plants. Nat. Biotechnol. 1985;3:1099–1103. doi: 10.1038/nbt1285-1099. DOI

Fromm M.E., Taylor L.P., Walbot V. Stable transformation of maize after gene-transfer by electroporation. Nature. 1986;319:791–793. doi: 10.1038/319791a0. PubMed DOI

Frame B.R., Drayton P.R., Bagnall S.V., Lewnau C.J., Bullock W.P., Wilson H.M., Dunwell J.M., Thompson J.A., Wang K. Production of fertile transgenic maize plants by silicon-carbide whisker-mediated transformation. Plant J. 1994;6:941–948. doi: 10.1046/j.1365-313X.1994.6060941.x. DOI

Koncz C., Németh K., Rédei G.P., Schell J. Homology Recognition during T-DNA Integration into the Plant Genome. Springer; Berlin/Heidelberg, Germany: 1994. Homologous recombination and gene silencing in plants; pp. 167–189.

Pawlowski W.P., Somers D.A. Transgene inheritance in plants genetically engineered by microprojectile bombardment. Mol. Biotechnol. 1996;6:17–30. doi: 10.1007/BF02762320. PubMed DOI

Hansen G., Shillito R.D., Chilton M.D. T-strand integration in maize protoplasts after codelivery of a T-DNA substrate and virulence genes. Proc. Natl. Acad. Sci. USA. 1997;94:11726–11730. doi: 10.1073/pnas.94.21.11726. PubMed DOI PMC

Enríquez-Obregón G.A., Vázquez-Padrón R.I., Prieto-Samsonov D.L., De la Riva G.A., Selman-Housein G. Herbicide-resistant sugarcane (Saccharum officinarum L.) plants by Agrobacterium mediated transformation. Planta. 1998;206:20–27. doi: 10.1007/s004250050369. DOI

Shou H., Frame B.R., Whitham S.A., Wang K. Assessment of transgenic maize events produced by particle bombardment or Agrobacterium mediated transformation. Mol. Breed. 2004;13:201–208. doi: 10.1023/B:MOLB.0000018767.64586.53. DOI

Travella S., Ross S.M., Harden J., Everett C., Snape J.W., Harwood W.A. A comparison of transgenic barley lines produced by particle bombardment and Agrobacterium mediated techniques. Plant Cell Rep. 2005;23:780–789. doi: 10.1007/s00299-004-0892-x. PubMed DOI

Zhang Y., Yin X., Yang A., Li G., Zhang J. Stability of inheritance of transgenes in maize (Zea mays L.) lines produced using different transformation methods. Euphytica. 2005;144:11–22. doi: 10.1007/s10681-005-4560-1. DOI

Gao C., Long D., Lenk I., Nielsen K.K. Comparative analysis of transgenic tall fescue (Festuca arundinacea Schreb.) plants obtained by Agrobacterium mediated transformation and particle bombardment. Plant Cell Rep. 2008;27:1601–1609. doi: 10.1007/s00299-008-0578-x. PubMed DOI

Hwang H.H., Yu M., Lai E.M. Agrobacterium-mediated plant transformation: Biology and applications. Arab. Book. 2017;15:e0186. doi: 10.1199/tab.0186. PubMed DOI PMC

McIntosh K.B., Hulm J.L., Young L.W., Bonham-Smith P.C. A rapid Agrobacterium-mediated Arabidopsis thaliana transient assay system. Plant Mol. Biol. Rep. 2004;22:53–61. doi: 10.1007/BF02773349. DOI

Sheng J., Citovsky V. Agrobacterium-plant cell interaction: Have virulence proteins, will travel. Plant Cell. 1996;8:1699–1710. PubMed PMC

Horsch R.B., Fry J.E., Hoffmann N.L., Eïchholtz D., Rogers S.G., Fraley R.T. A simple and general method for transferring genes into plants. Science. 1985;227:1229–1231. PubMed

Chilton M.D., Drummond M.H., Merlo D.J., Sciaky D., Montoya A.L., Gordon M.P., Nester E.W. Stable incorporation of plasmid DNA into higher plant cells: The molecular basis of crown gall tumorigenesis. Cell. 1977;11:263–271. doi: 10.1016/0092-8674(77)90043-5. PubMed DOI

De Cleene M., De Ley J. The host range of crown gall. Bot. Rev. 1976;42:389–466. doi: 10.1007/BF02860827. DOI

Li W., Guo G., Zheng G. Agrobacterium-mediated transformation: State of the art and future prospect. Chin. Sci. Bull. 2000;45:1537–1546. doi: 10.1007/BF02886209. DOI

Bundock P., den Dulk-Ras A., Beijersbergen A., Hooykaas P.J. Trans-kingdom T-DNA transfer from Agrobacterium tumefaciens to Saccharomyces cerevisiae. EMBO J. 1995;14:3206–3214. doi: 10.1002/j.1460-2075.1995.tb07323.x. PubMed DOI PMC

Bundock P., Mroczek K., Winkler A.A., Steensma H.Y., Hooykaas P.J.J. T-DNA from Agrobacterium tumefaciens as an efficient tool for gene targeting in Kluyveromyces lactis. Mol. Gen. Genet. 1999;261:115–121. doi: 10.1007/s004380050948. PubMed DOI

Piers K.L., Heath J.D., Liang X., Stephens K.M., Nester E.W. Agrobacterium tumefaciens mediated transformation of yeast. Proc. Natl. Acad. Sci. USA. 1996;93:1613–1618. doi: 10.1073/pnas.93.4.1613. PubMed DOI PMC

De Groot M.J.A., Bundock P., Hooykaas P.J.J., Beijersbergen A.G.M. Agrobacterium tumefaciens mediated transformation of filamentous fungi. Nat. Biotechnol. 1998;16:839–842. doi: 10.1038/nbt0998-839. PubMed DOI

Kunik T., Tzfira T., Kapulnik Y., Gafni Y., Dingwall C., Citovsky V. Genetic transformation of HeLa cells by Agrobacterium. Proc. Natl. Acad. Sci. USA. 2001;98:1871–1876. doi: 10.1073/pnas.98.4.1871. PubMed DOI PMC

Kelly B.A., Kado C.I. Agrobacterium mediated T-DNA transfer and integration into the chromosome of Streptomyces lividans. Mol. Plant Pathol. 2002;3:125–134. doi: 10.1046/j.1364-3703.2002.00104.x. PubMed DOI

Hooykaas P.J.J. Transformation mediated by Agrobacterium tumefaciens. In: Tkacz J.S., Lange L., editors. Advances in Fungal Biotechnology for Industry, Agriculture, and Medicine. Springer; Boston, MA, USA: 2004. pp. 41–65.

Kumar S.V., Misquitta R.W., Reddy V.S., Rao B.J., Rajam M.V. Genetic transformation of the green alga—Chlamydomonas reinhardtii by Agrobacterium tumefaciens. Plant Sci. 2004;166:731–738. doi: 10.1016/j.plantsci.2003.11.012. DOI

Pelczar P., Kalck V., Gomez D., Hohn B. Agrobacterium proteins VirD2 and VirE2 mediate precise integration of synthetic TDNA complexes in mammalian cells. EMBO Rep. 2004;5:632–637. doi: 10.1038/sj.embor.7400165. PubMed DOI PMC

Michielse C.B., Hooykaas P.J.J., van den Hondel C.A., Ram A.F. Agrobacterium mediated transformation as a tool for functional genomics in fungi. Curr. Genet. 2005;48:1–17. doi: 10.1007/s00294-005-0578-0. PubMed DOI

Bulgakov V.P., Kiselev K.V., Yakovlev K.V., Zhuravlev Y.N., Gontcharov A.A., Odintsova N.A. Agrobacterium mediated transformation of sea urchin embryos. Biotechnol. J. 2006;1:454–461. doi: 10.1002/biot.200500045. PubMed DOI

Lacroix B., Li J., Tzfira T., Citovsky V. Will you let me use your nucleus? How Agrobacterium gets its T-DNA expressed in the host plant cell. Can. J. Physiol. Pharmacol. 2006;84:333–345. doi: 10.1139/y05-108. PubMed DOI

Thomashow M., Panagopoulos C., Gordon M., Nester E.W. Host range of Agrobacterium tumefaciens is determined by the Ti plasmid. Nature. 1980;283:794–796. doi: 10.1038/283794a0. DOI

Herrera-Estrella L., Simpson J., Martinez-Trujillo M. Transgenic plants: An historical perspective. Methods Mol. Biol. 2005;286:3–32. PubMed

Draper J., Scott R., Hamill J. Transformation of dicotyledonous plant cells using the Ti plasmid of Agrobacterium tumefaciens and the Ri plasmid of A. rhizogenes. In: Draper J., Scott R., Armitage P., Walden R., editors. Plant Genetic Transformation and Gene Expression: A Laboratory Manual. Blackwell Scientific Publishers; Oxford, UK: 1988. pp. 69–160.

Tinland B. The integration of T-DNA into plant genomes. Trends Plant Sci. 1996;1:178–184. doi: 10.1016/1360-1385(96)10020-0. DOI

Bhattacharya A., Sood P., Citovsky V. The roles of plant phenolics in defence and communication during Agrobacterium and Rhizobium infection. Mol. Plant Pathol. 2010;11:705–719. doi: 10.1111/j.1364-3703.2010.00625.x. PubMed DOI PMC

Gelvin S.B. Plant proteins involved in Agrobacterium mediated genetic transformation. Annu. Rev. Phytopathol. 2010;48:45–68. doi: 10.1146/annurev-phyto-080508-081852. PubMed DOI

Gelvin S.B. Traversing the cell: Agrobacterium T-DNA’s journey to the host genome. Front. Plant Sci. 2012;3:52. doi: 10.3389/fpls.2012.00052. PubMed DOI PMC

Pitzschke A. Agrobacterium infection and plant defense-transformation success hangs by a thread. Front. Plant Sci. 2013;4:519. doi: 10.3389/fpls.2013.00519. PubMed DOI PMC

Christie P.J., Whitaker N., González-Rivera C. Mechanism and structure of the bacterial type IV secretion systems. Biochim. Biophys. Acta Mol. Cell Res. 2014;1843:1578–1591. doi: 10.1016/j.bbamcr.2013.12.019. PubMed DOI PMC

Hwang H.H., Liu Y.T., Huang S.C., Tung C.Y., Huang F.C., Tsai Y.L., Cheng T.F., Lai E.M. Overexpression of the HspL promotes Agrobacterium tumefaciens virulence in Arabidopsis under heat shock conditions. Phytopathology. 2015;105:160–168. doi: 10.1094/PHYTO-05-14-0133-R. PubMed DOI

Nonaka S., Someya T., Kadota Y., Nakamura K., Ezura H. Super-Agrobacterium ver. 4: Improving the transformation frequencies and genetic engineering possibilities for crop plants. Front. Plant Sci. 2019;10:1204. doi: 10.3389/fpls.2019.01204. PubMed DOI PMC

Hoshikawa K., Fujita S., Renhu N., Ezura K., Yamamoto T., Nonaka S., Ezura H., Miura K. Efficient transient protein expression in tomato cultivars and wild species using agroinfiltration-mediated high expression system. Plant Cell Rep. 2019;38:75–84. doi: 10.1007/s00299-018-2350-1. PubMed DOI

Knoch E., Sugawara S., Mori T., Poulsen C., Fukushima A., Harholt J., Fujimoto Y., Umemoto N., Saito K. Third DWF1 paralog in Solanaceae, sterol ∆24-isomerase, branches withanolide biosynthesis from the general phytosterol pathway. Proc. Natl. Acad. Sci. USA. 2019;115:E8096–E8103. doi: 10.1073/pnas.1807482115. PubMed DOI PMC

Bent A. Arabidopsis thaliana Floral Dip Transformation Method. In: Wang K., editor. Agrobacterium Protocols. Volume 343 Humana Press; New York, NY, USA: 2006. Methods in Molecular, Biology. PubMed

Gelvin S.B. Agrobacterium Transformation of Arabidopsis thaliana Roots. In: Wang K., editor. Agrobacterium Protocols. Volume 343 Humana Press; New York, NY, USA: 2006. Methods in Molecular, Biology. PubMed

Tague B.W., Mantis J. In Planta Agrobacterium-Mediated transformation by vacuum infiltration. In: Salinas J., Sanchez-Serrano J.J., editors. Arabidopsis Protocols. Volume 323 Humana Press; New York, NY, USA: 2006. Methods in Molecular, Biology™. PubMed

Rivero L., Scholl R., Holomuzki N., Crist D., Grotewold E., Brkljacic J. Handling Arabidopsis Plants: Growth, Preservation of Seeds, Transformation, and Genetic Crosses. In: Sanchez-Serrano J., Salinas J., editors. Arabidopsis Protocols. Humana Press; Totowa, NJ, USA: 2014. Methods in Molecular Biology (Methods and, Protocols) PubMed

Wroblewski T., Tomczak A., Michelmore R. Optimization of Agrobacterium mediated transient assays of gene expression in lettuce, tomato and Arabidopsis. Plant Biotechnol. J. 2005;3:259–273. doi: 10.1111/j.1467-7652.2005.00123.x. PubMed DOI

Marion J., Bach L., Bellec Y., Meyer C., Gissot L., Faure J.D. Systematic analysis of protein subcellular localization and interaction using high-throughput transient transformation of Arabidopsis seedlings. Plant J. 2008;56:169–179. doi: 10.1111/j.1365-313X.2008.03596.x. PubMed DOI

Jones H.D., Doherty A., Sparks C.A. Transient transformation of plants. Methods Mol. Biol. 2009;513:131–152. PubMed

Kim M.J., Baek K., Park C.M. Optimization of conditions for transient Agrobacterium mediated gene expression assays in Arabidopsis. Plant Cell Rep. 2009;28:1159–1167. doi: 10.1007/s00299-009-0717-z. PubMed DOI

Li J.F., Park E., von Arnim A.G., Nebenfuhr A. The FAST technique: A simplified Agrobacterium-based transformation method for transient gene expression analysis in seedlings of Arabidopsis and other plant species. Plant Methods. 2009;5:6. doi: 10.1186/1746-4811-5-6. PubMed DOI PMC

Tsuda K., Qi Y., Nguyen L.V., Bethke G., Tsuda Y., Glazebrook J., Katagiri F. An efficient Agrobacterium-mediated transient transformation of Arabidopsis. Plant J. 2012;69:713–719. doi: 10.1111/j.1365-313X.2011.04819.x. PubMed DOI

Wu H.Y., Liu K.H., Wang Y.C., Wu J.F., Chiu W.L., Chen C.Y., Wu S.H., Sheen J., Lai E.M. AGROBEST: An efficient Agrobacterium mediated transient expression method for versatile gene function analyses in Arabidopsis seedlings. Plant Methods. 2014;10:19. doi: 10.1186/1746-4811-10-19. PubMed DOI PMC

Janssen B.J., Gardner R.C. Localized transient expression of GUS in leaf discs following cocultivation with Agrobacterium. Plant Mol. Biol. 1989;14:61–72. doi: 10.1007/BF00015655. PubMed DOI

Zhang N., Roberts H.M., Eck J.V., Martin G.B. Generation and molecular characterization of CRISPR/Cas9-induced mutations in 63 immunity-associated genes in tomato reveals specificity and a range of gene modifications. Front. Plant Sci. 2020;11:10. doi: 10.3389/fpls.2020.00010. PubMed DOI PMC

Cao D.V., Pamplona R.S., Kim J., Oh Y.K., Cho S.K., Ahn J., Yang S.W., Riu K.Z., Boo K.H. Optimization of Agrobacterium-mediated transient expression of heterologous genes in spinach. Plant Biotechnol. Rep. 2017;11:397–405. doi: 10.1007/s11816-017-0457-4. DOI

Zhao H., Tan Z., Wen X., Wang Y. An improved syringe agroinfiltration protocol to enhance transformation efficiency by combinative use of 5-azacytidine, ascorbate acid and tween-20. Plants. 2017;6:9. doi: 10.3390/plants6010009. PubMed DOI PMC

Heenatigala P.P.M., Yang J.J., Bishopp A., Sun Z.L., Li G.J., Kumar S., Hu S., Wu Z., Lin W., Yao L., et al. Development of efficient protocols for stable and transient gene transformation for Wolffia globosa using Agrobacterium. Front. Chem. 2018;6:227. doi: 10.3389/fchem.2018.00227. PubMed DOI PMC

Ma T., Li Z., Wang S. Production of bioactive recombinant reteplase by virus-based transient expression system in Nicotiana benthamiana. Front. Plant Sci. 2019;10:1225. doi: 10.3389/fpls.2019.01225. PubMed DOI PMC

Garabagi F., McLean M.D., Hall J.C. Transient and stable expression of antibodies in Nicotiana species. Methods Mol. Biol. 2012;907:389–408. PubMed

Sánchez-Álvarez A., Ruíz-López N., Moreno-Pérez A.J., Martínez-Force E., Garcés R., Salas J.J. Agrobacterium-mediated transient gene expression in developing Ricinus communis seeds: A first step in making the castor oil plant a chemical biofactory. Front. Plant Sci. 2019;10:1410. doi: 10.3389/fpls.2019.01410. PubMed DOI PMC

Sainsbury F., Lomonossoff G.P. Transient expressions of synthetic biology in plants. Curr. Opin. Plant Biol. 2014;19:1–7. doi: 10.1016/j.pbi.2014.02.003. PubMed DOI PMC

Osakabe Y., Osakabe K. Genome editing to improve abiotic stress responses in plants. Prog. Mol. Biol. Transl. Sci. 2017;149:99–109. PubMed

Gleba Y., Klimyu V., Marillonnet S. Magnifection—A new platform for expressing recombinant vaccines in plants. Vaccine. 2005;23:2047–2048. doi: 10.1016/j.vaccine.2005.01.006. PubMed DOI

Gleba Y., Klimyuk V., Marillonnet S. Viral vectors for the expression of proteins in plants. Curr. Opin. Biotechnol. 2007;18:134–141. doi: 10.1016/j.copbio.2007.03.002. PubMed DOI

Potrykus I. Gene transfer to plants: Assessment of published approaches and results. Annu. Rev. Plant Biol. 1991;42:205–225. doi: 10.1146/annurev.pp.42.060191.001225. DOI

Dai S., Zheng P., Marmey P., Zhang S., Tian W., Chen S., Beachy R.N., Fauquet C. Comparative analysis of transgenic rice plants obtained by Agrobacterium mediated transformation and particle bombardment. Mol. Breed. 2001;7:25–33. doi: 10.1023/A:1009687511633. DOI

Zheng L., Liu G., Meng X., Li Y., Wang Y. A versatile Agrobacterium-mediated transient gene expression system for herbaceous plants and trees. Biochem. Genet. 2012;50:761–769. doi: 10.1007/s10528-012-9518-0. PubMed DOI

Burman N., Chandran D., Khurana J.P. A rapid and highly efficient method for transient gene expression in rice plants. Front. Plant Sci. 2020;11:584011. doi: 10.3389/fpls.2020.584011. PubMed DOI PMC

Fischer R., Vaquero-Martin C., Sack M., Drossard J., Emans N., Commandeur U. Towards molecular farming in the future: Transient protein expression in plants. Biotechnol. Appl. Biochem. 1999;30:113–116. PubMed

Sparkes I.A., Runions J., Kearns A., Hawes C. Rapid, transient expression of fluorescent fusion proteins in tobacco plants and generation of stably transformed plants. Nat. Protoc. 2006;1:2019–2025. doi: 10.1038/nprot.2006.286. PubMed DOI

Zhou D.D., Yu J.N. The progress of establishing transient expression system in plant cell. Chin. Agric. Sci. Bull. 2013;29:151–156.

Liu S., Ma J., Liu H., Guo Y., Li W., Niu S. An efficient system for Agrobacterium-mediated transient transformation in Pinus tabuliformis. Plant Methods. 2020;16:52. doi: 10.1186/s13007-020-00594-5. PubMed DOI PMC

Xia P., Hu W., Liang T., Yang D., Liang Z. An attempt to establish an Agrobacterium-mediated transient expression system in medicinal plants. Protoplasma. 2020;257:1497–1505. doi: 10.1007/s00709-020-01524-x. PubMed DOI

Kusnadi A.R., Nikolov Z.L., Howard J.A. Production of recombinant proteins in transgenic plants: Practical considerations. Biotechnol. Bioeng. 1997;56:473–484. doi: 10.1002/(SICI)1097-0290(19971205)56:5<473::AID-BIT1>3.0.CO;2-F. PubMed DOI

Marsian J., Lomonossoff G.P. Molecular pharming-VLPs made in plants. Curr. Opin. Biotechnol. 2016;37:201–206. doi: 10.1016/j.copbio.2015.12.007. PubMed DOI

Norkunas K., Harding R., Dale J., Dugdale B. Improving agroinfiltration-based transient gene expression in Nicotiana benthamiana. Plant Methods. 2018;14:71. doi: 10.1186/s13007-018-0343-2. PubMed DOI PMC

Yuasa T., Sugiki M., Watanabe Y. Activation of SIPK in response to UV-C irradiation, utility of a glutathione-S transferase-tagged plant MAP kinase by transient expression with agroinfiltration. Plant Biotechnol. 2005;22:7–12. doi: 10.5511/plantbiotechnology.22.7. DOI

Joh L.D., Wroblewski T., Ewing N.N., VanderGheynst J.S. High-level transient expression of recombinant protein in lettuce. Biotechnol. Bioeng. 2005;91:861–871. doi: 10.1002/bit.20557. PubMed DOI

Rico A., Bennett M.H., Forcat S., Huang W.E., Preston G.M. Agroinfiltration reduces ABA levels and suppresses Pseudomonas syringae-elicited salicylic acid production in Nicotiana tabacum. PLoS ONE. 2010;5:e8977. doi: 10.1371/journal.pone.0008977. PubMed DOI PMC

Hoffmann T., Kalinowski G., Schwab W. RNAi-induced silencing of gene expression in strawberry fruit (Fragaria × ananassa) by agroinfiltration: A rapid assay for gene function analysis. Plant J. 2006;48:818–826. doi: 10.1111/j.1365-313X.2006.02913.x. PubMed DOI

Menassa R., Ahmad A., Joensuu J.J. Transient expression using agroinfiltration and its applications in molecular farming. In: Wang A., Ma S., editors. Molecular Farming in Plants: Recent Advances and Future Prospects. Springer; Berlin/Heidelberg, Germany: 2012. DOI

Tan L.W., Rahman Z.A., Goh H.H., Hwang D., Ismanizan I., Zamri Z. Production of transgenic rice (indica cv. MR219) overexpressing Abp57 gene through Agrobacterium-mediated transformation. Sains. Malays. 2017;46:703–711. doi: 10.17576/jsm-2017-4605-04. DOI

Wang H., Jiang L. Transient expression and analysis of fluorescent reporter proteins in plant pollen tubes. Nat. Protoc. 2011;6:419–426. doi: 10.1038/nprot.2011.309. PubMed DOI

Del Toro F., Tenllado F., Chung B.N., Canto T.A. Procedure for the transient expression of genes by agroinfiltration above the permissive threshold to study temperature-sensitive processes in plant–pathogen interactions. Mol. Plant Pathol. 2014;15:848–857. doi: 10.1111/mpp.12136. PubMed DOI PMC

Voinnet O., Rivas S., Mestre P., Baulcombe D. An enhanced transient expression system in plants based on suppression of gene silencing by the p19 protein of tomato bushy stunt virus. Plant J. 2003;33:949–956. doi: 10.1046/j.1365-313X.2003.01676.x. PubMed DOI

Liu K., Yang Q., Yang T., Wu Y., Wang G., Yang F., Wang R., Lin X., Li G. Development of Agrobacterium-mediated transient expression system in Caragana intermedia and characterization of CiDREB1C in stress response. BMC Plant Biol. 2019;19:237. doi: 10.1186/s12870-019-1800-4. PubMed DOI PMC

Chen Q., Lai H. Gene delivery into plant cells for recombinant protein production. BioMed Res. Int. 2015;2015:932161. doi: 10.1155/2015/932161. PubMed DOI PMC

Shoji Y., Chichester J.A., Bi H., Musiychuk K., de la Rosa P., Goldschmidt L., Horsey A., Ugulava N., Palmer G.A., Mett V., et al. Plant-expressed HA as a seasonal influenza vaccine candidate. Vaccine. 2008;26:2930–2934. doi: 10.1016/j.vaccine.2008.03.045. PubMed DOI

Ma J., Xiang H., Donnelly D.J., Meng F.-R., Xu H., Durnford D., Li X.-Q. Genome editing in potato plants by agrobacterium-mediated transient expression of transcription activator-like effector nucleases. Plant Biotechnol. Rep. 2017;11:249–258. doi: 10.1007/s11816-017-0448-5. DOI

Krishnan V., Jose J., Jolly M., Vinutha T., Kumar R., Manickavasagam M., Praveen S., Sachdev A. ‘AGRODATE’: A rapid Agrobacterium-mediated transient expression tool for gene function analysis in leaf discs. J. Plant Biochem. Biotechnol. 2019;29:294–304. doi: 10.1007/s13562-019-00536-w. DOI

Fraley R., Horsch R., Matzke A., Chilton M.D., Chilton W.S., Sanders P.R. In vitro transformation of petunia cells by an improved method of co-cultivation with A. tumefaciens strains. Plant Mol. Biol. 1984;3:371–378. doi: 10.1007/BF00033384. PubMed DOI

Horsch R.B., Klee H.J. Rapid assay of foreign gene expression in leaf disc transformed by Agrobacterium tumefaciens: Role of T-DNA borders in the transfer process. Proc. Natl. Acad. Sci. USA. 1986;83:4428–4432. doi: 10.1073/pnas.83.12.4428. PubMed DOI PMC

Vaghchhipawala Z., Rojas C.M., Senthil-Kumar M., Mysore K.S. Agroinoculation and Agroinfiltration: Simple Tools for Complex Gene Function Analyses. In: Pereira A., editor. Plant Reverse Genetics. Volume 678 Humana Press; Totowa, NJ, USA: 2011. Methods in Molecular Biology (Methods and, Protocols) PubMed

Jia H., Liao M., Verbelen J.P., Vissenberg K. Direct creation of marker-free tobacco plants from agroinfiltrated leaf discs. Plant Cell Rep. 2007;26:1961–1965. doi: 10.1007/s00299-007-0403-y. PubMed DOI

Orzaez D., Mirabel S., Wieland W.H., Granell A. Agroinjection of tomato fruits. A tool for rapid functional analysis of transgenes directly in fruit. Plant Physiol. 2006;140:3–11. doi: 10.1104/pp.105.068221. PubMed DOI PMC

Qian W., Yu C., Qin H., Liu X., Zhang A., Johansen I.E., Wang D. Molecular and functional analysis of phosphomannomutase (PMM) from higher plants and genetic evidence for the involvement of PMM in ascorbic acid biosynthesis in Arabidopsis and Nicotiana benthamiana. Plant J. 2007;49:399–413. doi: 10.1111/j.1365-313X.2006.02967.x. PubMed DOI

Zottini M., Barizza E., Costa A., Formentin E., Ruberti C., Carimi F., Schiavo F.L. Agroinfiltration of grapevine leaves for fast transient assays of gene expression and for long-term production of stable transformed cells. Plant Cell Rep. 2008;27:845–853. doi: 10.1007/s00299-008-0510-4. PubMed DOI

Matsuo K., Fukuzawa N., Matsumura T. A simple agroinfiltration method for transient gene expression in plant leaf discs. J. Biosci. Bioeng. 2016;122:351–356. doi: 10.1016/j.jbiosc.2016.02.001. PubMed DOI

Xu K., Huang X., Wu M., Wang Y., Chang Y., Liu K., Zhang J., Zhang Y., Zhang F., Yi L., et al. A rapid, highly efficient and economical method of Agrobacterium-mediated In Planta transient transformation in living onion epidermis. PLoS ONE. 2014;9:e83556. doi: 10.1371/journal.pone.0083556. PubMed DOI PMC

Shin D.I., Park H.S. Transient expression in chinese cabbage by hydrogen peroxide-aided agroinfiltration. Agric. Chem. Biotechnol. 2005;48:229–230.

Naji-Talakar S. Plant-derived biopharmaceuticals: Overview and success of agroinfiltration. Trends Capstone. 2017;2:1–12.

Juranić M., Nagahatenna D.S.K., Salinas-Gamboa R., Hand M.L., Sánchez-León N., Leong W.H., How T., Bazanova N., Spriggs A., Vielle-Calzada J.-P., et al. A detached leaf assay for testing transient gene expression and gene editing in cowpea (Vigna unguiculata [L.] Walp.) Plant Methods. 2020;16:88. doi: 10.1186/s13007-020-00630-4. PubMed DOI PMC

Amoah B.K., Wu H., Sparks C., Jones H.D. Factors influencing Agrobacterium-mediated transient expression of uidA in wheat inflorescence tissue. J. Exp. Bot. 2001;52:1135–1142. doi: 10.1093/jexbot/52.358.1135. PubMed DOI

Mondal T., Bhattacharya A., Ahuja P., Chand P. Transgenic tea [Camellia sinensis (L.) O. Kuntze cv. Kangra Jat] plants obtained by Agrobacterium-mediated transformation of somatic embryos. Plant Cell Rep. 2001;20:712–720. doi: 10.1007/s002990100382. DOI

Dong J.Z., McHughen A. An improved procedure for production of transgenic flax plants using Agrobacterium tumefaciens. Plant Sci. 1993;88:61–71. doi: 10.1016/0168-9452(93)90110-L. DOI

Matsuda D., Dreher T.W. The tRNA-like structure of Turnip yellow mosaic virus RNA is a 3′-translational enhancer. Virology. 2004;321:36–46. doi: 10.1016/j.virol.2003.10.023. PubMed DOI

Sepahdoost S., Haghighi H., Sohi H.H., Jourabchi E., Ghorbanli M. Agroinfiltration of Human Growth Hormone in Medicago sativa and Trifolium Alexanderium Leaves. Volume 4 Iranian Biotechnology Association; Trieste, Italy: 2005. National Congress of Biotechnology of Iran.

Vargas-Guevara C., Vargas-Segura C., Villalta-Villalobos J., Pereira L.F.P., Gatica-Arias A. A simple and efficient agroinfiltration method in coffee leaves (Coffea arabica L.): Assessment of factors affecting transgene expression. 3 Biotech. 2018;8:471. doi: 10.1007/s13205-018-1495-5. PubMed DOI PMC

Ahlquist P. RNA-dependent RNA polymerases, viruses, and RNA silencing. Science. 2002;296:1270–1273. doi: 10.1126/science.1069132. PubMed DOI

Fischer R., Stoger E., Schillberg S., Christou P., Twyman R.M. Plant-based production of biopharmaceuticals. Curr. Opin. Plant Biol. 2004;7:152–158. doi: 10.1016/j.pbi.2004.01.007. PubMed DOI

Delgadillo M.O., Saenz P., Salvador B., García J.A., Simón-Mateo C. Human influenza virus NS1 protein enhances viral pathogenicity and acts as an RNA silencing suppressor in plants. J. Gen. Virol. 2004;85:993–999. doi: 10.1099/vir.0.19735-0. PubMed DOI

Han L., Zhang L., Liu J., Li H., Wang Y., Hasi A. Transient expression of optimized and synthesized nattokinase gene in melon (Cucumis melo L.) fruit by agroinfiltration. Plant Biotechnol. 2015;15:0430a. doi: 10.5511/plantbiotechnology.15.0430a. DOI

King J.L., Finer J.J., McHale L.K. Development and optimization of agroinfiltration for soybean. Plant Cell Rep. 2015;34:133–140. doi: 10.1007/s00299-014-1694-4. PubMed DOI

Wydro M., Kozubek E., Lehmann P. Optimization of transient Agrobacterium-mediated gene expression system in leaves of Nicotiana benthamiana. Acta Biochim Pol. 2006;53:289–298. doi: 10.18388/abp.2006_3341. PubMed DOI

Arzola L., Chen J., Rattanaporn K., Maclean J.M., McDonald K.A. Transient co-expression of post-transcriptional gene silencing suppressors for increased In Planta expression of a recombinant anthrax receptor fusion protein. Int. J. Mol. Sci. 2011;12:4975–4990. doi: 10.3390/ijms12084975. PubMed DOI PMC

Zhang Z., Fradin E., de Jonge R., van Esse H.P., Smit P., Liu C.-M., Thomma B.P.H.J. Optimized agroinfiltration and virus-induced gene silencing to study Ve1-mediated Verticillium resistance in tobacco. Mol. Plant Microbe Interact. 2013;26:182–190. doi: 10.1094/MPMI-06-12-0161-R. PubMed DOI

Bashandy H., Jalkanen S., Teeri T.H. Within leaf variation is the largest source of variation in agroinfiltration of Nicotiana benthamiana. Plant Methods. 2015;11:1. doi: 10.1186/s13007-015-0091-5. PubMed DOI PMC

Patil B.L., Fauquet C.M. Light intensity and temperature affect systemic spread of silencing signal in transient agroinfiltration studies. Mol. Plant Pathol. 2015;16:484–494. doi: 10.1111/mpp.12205. PubMed DOI PMC

Fujiuchi N., Matsuda R., Matoba N., Fujiwara K. Removal of bacterial suspension water occupying the intercellular space of detached leaves after agroinfiltration improves the yield of recombinant hemagglutinin in a Nicotiana benthamiana transient gene expression system. Biotechnol Bioeng. 2016;113:901–906. doi: 10.1002/bit.25854. PubMed DOI

Hanittinan O., Oo Y., Chaotham C., Rattanapisit K., Shanmugaraj B., Phoolcharoen W. Expression optimization, purification and in vitro characterization of human epidermal growth factor produced in Nicotiana benthamiana. Biotechnol. Rep. 2020;28:e00524. doi: 10.1016/j.btre.2020.e00524. PubMed DOI PMC

Diamos A.G., Hunter J.G.L., Pardhe M.D., Rosenthal S.H., Sun H., Foster B.C., DiPalma M.P., Chen Q., Mason H.S. High level production of monoclonal antibodies using an optimized plant expression system. Front. Bioeng. Biotechnol. 2020;7:472. doi: 10.3389/fbioe.2019.00472. PubMed DOI PMC

Heidari-Japelaghi R., Valizadeh M., Haddad R., Dorani-Uliaiea E., Jalali-Javaran M. Production of bioactive human IFN-γ protein by agroinfiltration in tobacco. Protein Expr. Purif. 2020;173:105616. doi: 10.1016/j.pep.2020.105616. PubMed DOI

Guy E., Boulain H., Aigu Y., Pennec C.L., Chawki K., Morlière S., Schädel K., Kunert G., Simon J.-C., Sugio A. Optimization of agroinfiltration in Pisum sativum provides a new tool for studying the salivary protein functions in the pea aphid complex. Front Plant Sci. 2016;7:1171. doi: 10.3389/fpls.2016.01171. PubMed DOI PMC

Kokkirala V.R., Peng Y., Abbagani S., Zhu Z., Umate P. Subcellular localization of proteins of Oryza sativa L. in the model tobacco and tomato plants. Plant Signal Behav. 2010;5:1336–1341. doi: 10.4161/psb.5.11.13318. PubMed DOI PMC

Deguchi M., Bogush D., Weeden H., Spuhler Z., Potlakayala S., Kondo T., Zhang Z.J., Rudrabhatla S. Establishment and optimization of a hemp (Cannabis sativa L.) agroinfiltration system for gene expression and silencing studies. Sci. Rep. 2020;10:3504. doi: 10.1038/s41598-020-60323-9. PubMed DOI PMC

Sung H.P. In Vitro culture and transformation by agroinfiltration of lisianthus (Eustoma russellianus) pollen. J. Life Sci. 2004;14:1018–1022.

Hussein G.M., Abu El-Heba G.A., Abdou S.M., Abdallah N.A. Optimization of transient gene expression system in Gerbera jamesonii petals. GM Crops Food. 2013;4:50–57. doi: 10.4161/gmcr.23925. PubMed DOI

Mani T., Manjula S. Optimization of Agrobacterium-mediated transient gene expression and endogenous gene silencing in Piper colubrinum Link. by vacuum infiltration. Plant Cell Tiss. Organ Cult. 2011;105:113–119. doi: 10.1007/s11240-010-9836-z. DOI

Santos-Rosa M., Poutaraud A., Merdinoglu D., Mestre P. Development of a transient expression system in grapevine via agro-infiltration. Plant Cell Rep. 2008;27:1053–1063. doi: 10.1007/s00299-008-0531-z. PubMed DOI

Faizal A., Geelen D. Agroinfiltration of intact leaves as a method for the transient and stable transformation of saponin producing Maesa lanceolata. Plant Cell Rep. 2012;31:1517–1526. doi: 10.1007/s00299-012-1266-4. PubMed DOI

Chevreau E., Dousset N., Joffrion C., Richer A., Charrier A., Vergne E. Agroinfiltration is a key factor to improve the efficiency of apple and pear transformation. Sci. Hortic. 2019;251:150–154. doi: 10.1016/j.scienta.2019.03.003. DOI

Abd-Aziz N., Tan B.C., Rejab N.A., Othman R.Y., Khalid N. A new plant expression system for producing pharmaceutical proteins. Mol. Biotechnol. 2020;62:240–251. doi: 10.1007/s12033-020-00242-2. PubMed DOI

Sohi H.H., Jourabchi E., Khodabandeh M. Transient expression of human growth hormone in potato (Solanum tuberosum), tobacco (Nicotiana tobacum) and lettuce (Lactuca sativa) leaves by agroinfiltration. Iranian J. Biotechnol. 2005;3:109–113.

Koscianska E., Kalantidis K., Wypijewski K., Sadowski J., Tabler M. Analysis of RNA silencing in agroinfiltrated leaves of Nicotiana benthamiana and Nicotiana tabacum. Plant Mol. Biol. 2005;59:647–661. doi: 10.1007/s11103-005-0668-x. PubMed DOI

Yamamoto T., Hoshikawa K., Ezura K., Okazawa R., Fujita S., Takaoka M., Mason H.S., Ezura H., Miura K. Improvement of the transient expression system for production of recombinant proteins in plants. Sci. Rep. 2018;8:4755. doi: 10.1038/s41598-018-23024-y. PubMed DOI PMC

Affandi N.D., Mostaffa N.H., Al-Idrus A. Interactomics: Development of an efficient and improved Agrobacterium tumefaciens-mediated transformation method for transient expression of heterologous protein in recalcitrant plant tissues in planta. Res. Square. 2020 doi: 10.21203/rs.2.22256/v1. DOI

Belhaj K., Chaparro-Garcia A., Kamoun S., Nekrasov V. Plant genome editing made easy: Targeted mutagenesis in model and crop plants using the CRISPR/Cas system. Plant Methods. 2013;9:39. doi: 10.1186/1746-4811-9-39. PubMed DOI PMC

Fischer R., Emans N. Molecular farming of pharmaceutical proteins. Transgenic Res. 2000;9:279–299. doi: 10.1023/A:1008975123362. PubMed DOI

Song G., Yamaguchi K. Efficient agroinfiltration-mediated transient GUS expression for assaying different promoters in rice. Plant Biotechnol. 2003;20:235–239. doi: 10.5511/plantbiotechnology.20.235. DOI

Coura R., Nardi N. A role for adeno-associated viral vectors in gene therapy. Genet. Mol. Biol. 2008;31:1–11. doi: 10.1590/S1415-47572008000100001. DOI

Soyars C.L., Peterson B.A., Burr C.A., Nimchuk Z.L. Cutting edge genetics: CRISPR/Cas9 editing of plant genomes. Plant Cell Physiol. 2018;59:1608–1620. doi: 10.1093/pcp/pcy079. PubMed DOI

Sharma R., Liang Y., Lee M.Y., Pidatala V.R., Mortimer J.C., Scheller H.V. Agrobacterium-mediated transient transformation of sorghum leaves for accelerating functional genomics and genome editing studies. BMC Res. Notes. 2020;13:116. doi: 10.1186/s13104-020-04968-9. PubMed DOI PMC

Li J.F., Norville J., Aach J., McCormack M., Zhang D., Bush J., Church G.M., Sheen J. Multiplex and homologous recombination–mediated genome editing in Arabidopsis and Nicotiana benthamiana using guide RNA and Cas9. Nat. Biotechnol. 2013;31:688–691. doi: 10.1038/nbt.2654. PubMed DOI PMC

Jiang W., Zhou H., Bi H., Fromm M., Yang B., Weeks D.P. Demonstration of CRISPR/Cas9/sgRNA-mediated targeted gene modification in Arabidopsis, tobacco, sorghum and rice. Nucleic Acids Res. 2013;41:e188. doi: 10.1093/nar/gkt780. PubMed DOI PMC

Nekrasov V., Staskawicz B., Weigel D., Jones J.D.G., Kamoun S. Targeted mutagenesis in the model plant Nicotiana benthamiana using Cas9 RNA-guided endonuclease. Nat. Biotechnol. 2013;31:691–693. doi: 10.1038/nbt.2655. PubMed DOI

Upadhyay S.K., Kumar J., Alok A., Tuli R. RNA-guided genome editing for target gene mutations in wheat. G3. 2013;3:2233–2238. doi: 10.1534/g3.113.008847. PubMed DOI PMC

Piatek A., Ali Z., Baazim H., Li L., Abulfaraj A., Al-Shareef S., Aouida M., Mahfouz M.M. RNA-guided transcriptional regulation in planta via synthetic dCas9-based transcription factors. Plant Biotechnol. J. 2015;13:578–589. doi: 10.1111/pbi.12284. PubMed DOI

Yin K., Han T., Liu G., Chen T., Wang Y., Yu A.Y.L., Liu Y. A geminivirus-based guide RNA delivery system for CRISPR/Cas9 mediated plant genome editing. Sci. Rep. 2015;5:14926. doi: 10.1038/srep14926. PubMed DOI PMC

Schmitz D.J., Ali Z., Wang C., Aljedaani F., Hooykaas P.J.J., Mahfouz M., de Pater S. CRISPR/Cas9 Mutagenesis by translocation of Cas9 protein into plant cells via the Agrobacterium Type IV secretion system. Front. Genome Ed. 2020;2:6. doi: 10.3389/fgeed.2020.00006. PubMed DOI PMC

Baltes N.J., Hummel A.W., Konecna E., Cegan R., Bruns A.N., Bisaro D.M., Voytas D.F. Conferring resistance to geminiviruses with the CRISPR–Cas prokaryotic immune system. Nat. Plants. 2015;1:1–4. doi: 10.1038/nplants.2015.145. PubMed DOI PMC

Vazquez-Vilar M., Bernabé-Orts J.M., Fernandez-del-Carmen A., Ziarsolo P., Blanca J., Granell A., Orzaez D. A modular toolbox for gRNA–Cas9 genome engineering in plants based on the GoldenBraid standard. Plant Methods. 2016;12:10. doi: 10.1186/s13007-016-0101-2. PubMed DOI PMC

Ali Z., Abul-faraj A., Li L., Ghosh N., Piatek M., Mahjoub A., Aouida M., Piatek A., Baltes N.J., Voytas D.F., et al. Efficient virus-mediated genome editing in plants using the CRISPR/Cas9 system. Mol. Plant. 2015;8:1288–1291. doi: 10.1016/j.molp.2015.02.011. PubMed DOI

Alagoz Y., Gurkok T., Zhang B., Unver T. Manipulating the biosynthesis of bioactive compound alkaloids for next-generation metabolic engineering in opium poppy using CRISPR-Cas9 genome editing technology. Sci. Rep. 2016;6:30910. doi: 10.1038/srep30910. PubMed DOI PMC

Mubarik M.S., Khan S.H., Ahmad A., Khan Z., Sajjad M., Khan I.A. Disruption of phytoene desaturase gene using transient expression of Cas9: gRNA Complex. Int. J. Agric. Biol. 2016;18 doi: 10.17957/IJAB/15.0199. DOI

Jia H., Wang N. Targeted genome editing of sweet orange using Cas9/sgRNA. PLoS ONE. 2014;9:e93806. doi: 10.1371/journal.pone.0093806. PubMed DOI PMC

Jia H., Zhang Y., Orbovic V., Xu J., White F., Jones J., Wang N. Genome editing of the disease susceptibility gene CsLOB1 in citrus confers resistance to citrus canker. Plant Biotechnol. J. 2016;15:817–823. doi: 10.1111/pbi.12677. PubMed DOI PMC

Martín-Pizarro C., Triviño J.C., Posé D. Functional analysis of the TM6 MADS-box gene in the octoploid strawberry by CRISPR/Cas9-directed mutagenesis. J. Exp. Bot. 2019;70:885–895. doi: 10.1093/jxb/ery400. PubMed DOI PMC

Stajič E., Kiełkowska A., Murovec J., Bohanec B. Deep sequencing analysis of CRISPR/Cas9 induced mutations by two delivery methods in target model genes and the CENH3 region of red cabbage (Brassica oleracea var. capitata f. rubra) Plant Cell Tissue Organ Cult. 2019;139:227–235. doi: 10.1007/s11240-019-01665-9. DOI

Syombua E.D., Zhang Z., Tripathi J.N. A CRISPR/Cas9-based genome-editing system for yam (Dioscorea spp.) Plant Biotechnol. J. 2020;19:645–647. doi: 10.1111/pbi.13515. PubMed DOI PMC

Chen K., Gao C. Targeted genome modification technologies and their applications in crop improvements. Plant Cell Rep. 2014;33:575–583. doi: 10.1007/s00299-013-1539-6. PubMed DOI

Bortesi L., Fischer R. The CRISPR/Cas9 system for plant genome editing and beyond. Biotechnol. Adv. 2015;33:41–52. doi: 10.1016/j.biotechadv.2014.12.006. PubMed DOI

Goodin M.M., Dietzgen R.G., Schichnes D., Ruzin S., Jackson A.O. pGD vectors: Versatile tools for the expression of green and red fluorescent protein fusions in agroinfiltrated plant leaves. Plant J. 2002;31:375–383. doi: 10.1046/j.1365-313X.2002.01360.x. PubMed DOI

Jia H., Wang N. Xcc-facilitated agroinfiltration of citrus leaves: A tool for rapid functional analysis of transgenes in citrus leaves. Plant Cell Rep. 2014;33:1993–2001. doi: 10.1007/s00299-014-1673-9. PubMed DOI

Poles L., Licciardello C., Distefano G., Nicolosi E., Gentile A., Malfa S.L. Recent advances of in vitro culture for the application of new breeding techniques in citrus. Plants. 2020;9:938. doi: 10.3390/plants9080938. PubMed DOI PMC

Li X., Li H., Zhao Y., Zong P., Zhan Z., Piao Z. Establishment of Agrobacterium-mediated genetic transformation and application of CRISPR/Cas9 gene editing system to Chinese cabbage (Brassica rapa L. ssp. pekinensis) Res. Square. 2020 doi: 10.21203/rs.3.rs-27074/v1. DOI

Grefen C., Donald N., Hashimoto K., Kudla J., Schumacher K., Blatt M.R. A ubiquitin-10 promoter-based vector set for fluorescent protein tagging facilitates temporal stability and native protein distribution in transient and stable expression studies. Plant J. 2010;64:355–365. doi: 10.1111/j.1365-313X.2010.04322.x. PubMed DOI

Picard K., Lee R., Hellens R., Macknight R. Transient gene expression in Medicago truncatula leaves via agroinfiltration. In: Rose J.R., editor. Legume Genomics Methods Protocols. Humana Press; Totowa, NJ, USA: 2013. pp. 215–226. PubMed

Lombardi R., Villani M.E., Di Carli M., Brunetti P., Benvenuto E., Donini M. Optimisation of the purification process of a tumour-targeting antibody produced in N. benthamiana using vacuum-agroinfiltration. Transgenic Res. 2010;19:1083–1097. doi: 10.1007/s11248-010-9382-9. PubMed DOI

D’Aoust M.A., Lavoie P.O., Belles-Isles J., Bechtold N., Martel M., Vézina L.P. Transient expression of antibodies in plants using syringe agroinfiltration. Methods Mol. Biol. 2009;483:41–50. PubMed

Du J., Rietman H., Vleeshouwers V.G.A.A. Agroinfiltration and PVX agroinfection in potato and Nicotiana benthamiana. J. Visual Exp. 2013;83:e50971. doi: 10.3791/50971. PubMed DOI PMC

Schöb H., Kunz C., Meins J.F. Silencing of transgenes introduced into leaves by agroinfiltration: A simple, rapid method for investigating sequence requirements for gene silencing. Mol. Gen. Genet. 1997;256:581–585. doi: 10.1007/s004380050604. PubMed DOI

Voinnet O., Baulcombe D. Systemic signalling in gene silencing. Nature. 1997;389:553. doi: 10.1038/39215. PubMed DOI

Voinnet O., Vain P., Angell S., Baulcombe D.C. Systemic spread of sequence-specific transgene RNA degradation in plants is initiated by localized introduction of ectopic promoterless DNA. Cell. 1998;95:177–187. doi: 10.1016/S0092-8674(00)81749-3. PubMed DOI

Bertazzon N., Raiola A., Castiglioni C., Gardiman M., Angelini E., Borgo M., Ferrari S. Transient silencing of the grapevine gene VvPGIP1 by agroinfiltration with a construct for RNA interference. Plant Cell Rep. 2012;31:133–143. doi: 10.1007/s00299-011-1147-2. PubMed DOI

Dubey V.K., Lee U.G., Kwon D.H., Lee S.H. Agroinfiltration-based expression of hairpin RNA in soybean plants for RNA interference against Tetranychus urticae. Pestic. Biochem. Physiol. 2017;142:53–58. doi: 10.1016/j.pestbp.2017.01.004. PubMed DOI

Abbink T.E.M., Tjernberg P.A., Bol J.F., Linthorst H.J.M. Tobacco mosaic virus helicase domain induces necrosis in N gene-carrying tobacco in the absence of virus replication. Mol. Plant Microbe Interact. 1998;11:1242–1246. doi: 10.1094/MPMI.1998.11.12.1242. DOI

Palanichelvam K., Cole A.B., Shababi M., Schoelz J.E. Agroinfiltration of cauliflower mosaic virus gene vi elicits hypersensitive response in Nicotiana species. Mol. Plant Microbe Interact. 2000;13:1275–1279. doi: 10.1094/MPMI.2000.13.11.1275. PubMed DOI

Van der Hoorn R.A.L., Laurent F., Roth R., De Wit P.J.G.M. Agroinfiltration is a versatile tool that facilitates comparative analyses of Avr9/Cf-9-induced and Avr4/Cf-4-induced necrosis. Mol. Plant-Microbe Interact. 2000;13:439–446. doi: 10.1094/MPMI.2000.13.4.439. PubMed DOI

Bendahmane M., Lynch C., II, Tulsiani D.R. Calmodulin signals capacitation and triggers the agonist-induced acrosome reaction in mouse spermatozoa. Arch. Biochem Biophys. 2001;390:1–8. doi: 10.1006/abbi.2001.2364. PubMed DOI

Peart J.R., Lu R., Sadanandom A., Malcuit I., Moffett P., Brice D.C., Schauser L., Jaggard D.A.W., Xiao S., Coleman M.J., et al. Ubiquitin ligase-associated protein SGT1 is required for host and nonhost disease resistance in plants. Proc. Natl. Acad. Sci. USA. 2002;99:10865–10869. doi: 10.1073/pnas.152330599. PubMed DOI PMC

Leckie B.M., Stewart C.N. Agroinfiltration as a technique for rapid assays for evaluating candidate insect resistance transgenes in plants. Plant Cell Rep. 2011;30:325–334. doi: 10.1007/s00299-010-0961-2. PubMed DOI

Yang Y., Li R., Qi M. In vivo analysis of plant promoters and transcription factors by agroinfiltration of tobacco leaves. Plant J. 2000;22:543–551. doi: 10.1046/j.1365-313x.2000.00760.x. PubMed DOI

Rancé I., Norre F., Gruber V., Theisen M. Combination of viral promoter sequences to generate highly active promoters for heterologous therapeutic protein over-expression in plants. Plant Sci. 2002;162:833–842. doi: 10.1016/S0168-9452(02)00031-6. DOI

Merle C., Perret S., Lacour T., Jonval V., Hudaverdian S., Garrone R., Ruggiero F., Theisen M. Hydroxylated human homotrimeric collagen I in Agrobacterium tumefaciens-mediated transient expression and in transgenic tobacco plant. FEBS Lett. 2002;515:114–118. doi: 10.1016/S0014-5793(02)02452-3. PubMed DOI

Tampakaki A.P., Panopoulos N.J. Elicitation of hypersensitive cell death by extracellularly targeted HrpZPsph produced In Planta. Mol. Plant Microbe Interact. 2000;13:1366–1374. doi: 10.1094/MPMI.2000.13.12.1366. PubMed DOI

Vaquero C., Sack M., Schuster F. A carcinoembryonic antigen-specific diabody produced in tobacco. FASEB J. 2002;16:408–410. doi: 10.1096/fj.01-0363fje. PubMed DOI

Kathuria S., Sriraman R., Nath R., Sack M., Pal R., Artsaenko O., Talwar G.P., Fischer R., Finnern R. Efficacy of plant-produced recombinant antibodies against HCG. Hum. Reprod. 2002;17:2054–2061. doi: 10.1093/humrep/17.8.2054. PubMed DOI

Vézina L.P., Faye L., Lerouge P., D’Aoust M.-A., Marquet-Blouin E., Burel C., Lavoie P.-O., Bardor M., Gomord V. Transient co-expression for fast and high-yield production of antibodies with human-like N-glycans in plants. Plant Biotechnol. J. 2009;7:442–455. doi: 10.1111/j.1467-7652.2009.00414.x. PubMed DOI

Habibi-Pirkoohi M., Malekzadeh-Shafaroudi S., Marashi H., Moshtaghi N., Nassiri M., Zibaee S. Transient expression of foot and mouth disease virus (FMDV) coat protein in tobacco (Nicotiana tabacom) via agroinfiltration. Iranian J. Biotechnol. 2014;12:28–34. doi: 10.15171/ijb.1015. DOI

Liu L., Zhang Y., Tang S., Zhao Q., Zhang Z., Zhang H., Dong L., Guo H., Xie Q. An efficient system to detect protein ubiquitination by agroinfiltration in Nicotiana benthamiana. Plant J. 2010;61:893–903. doi: 10.1111/j.1365-313X.2009.04109.x. PubMed DOI

Pillay P., Kunert K.J., van Wyk S., Makgopa M.E., Cullis C.A., Vorster B.J. Agroinfiltration contributes to VP1 recombinant protein degradation. Bioengineered. 2016;7:459–477. doi: 10.1080/21655979.2016.1208868. PubMed DOI PMC

Liu W., Mazarei M., Rudis M.R., Fethe M.H., Stewart J.C.N. Rapid in vivo analysis of synthetic promoters for plant pathogen phytosensing. BMC Biotechnol. 2011;11:108. doi: 10.1186/1472-6750-11-108. PubMed DOI PMC

D’Aoust M.A., Lavoie P.O., Couture M.M.-J., Trépanier S., Guay J.-M., Dargis M., Mongrand S., Landry N., Ward B.J., Vézina L.-P. Influenza virus-like particles produced by transient expression in Nicotiana benthamiana induce a protective immune response against a lethal viral challenge in mice. Plant Biotechnol. J. 2008;6:930–940. doi: 10.1111/j.1467-7652.2008.00384.x. PubMed DOI

Rajabi A., Fahmideh L., Keikhasaber M., Omran V.G. Evaluation of transient expression of AS1 and 4′CGT genes in African violets petals by agroinfiltration for production new color in the flower. Iranian J. Biol. 2021;2021:2383–2738.

Liu P., Wang Y., Ulrich R.G., Simmons C.W., VanderGheynst J.S., Gallo R.L., Huang C.-M. Leaf-Encapsulated vaccines: Agroinfiltration and transient expression of the antigen staphylococcal endotoxin B in radish leaves. J. Immunol. Res. 2018;2018:3710961. doi: 10.1155/2018/3710961. PubMed DOI PMC

Kaushik P. Standardisation of an agroinfiltration protocol for eggplant fruits and proving its usefulness by over-expressing the SmHQT gene. Preprints. 2019 doi: 10.20944/preprints201908.0129.v1. DOI

Hesami M., Alizadeh M., Naderi R., Tohidfar M. Forecasting and optimizing Agrobacterium-mediated genetic transformation via ensemble model- fruit fly optimization algorithm: A data mining approach using chrysanthemum databases. PLoS ONE. 2020;15:e0239901. doi: 10.1371/journal.pone.0239901. PubMed DOI PMC

Leuzinger K., Dent M., Hurtado J., Stahnke J., Lai H., Zhou X., Chen Q. Efficient agroinfiltration of plants for high-level transient expression of recombinant proteins. J. Vis. Exp. 2013;77:50521. doi: 10.3791/50521. PubMed DOI PMC

Mirakhorli N., Reyhani A.H., Shiran B., Hooshmand S. Optimization of transient expression by Agrobacterium in almond. J. Genet. Eng. Biotechnol. 2014;3:9–18.

Kumar S. Biosafety and Biosecurity Issues in Biotechnology Research. Biosafety. 2015;4:1. doi: 10.4172/2167-0331.1000e153. DOI

Breyer D., Kopertekh L., Reheul D. Alternatives to antibiotic resistance marker genes for in vitro selection of genetically modified plants—Scientific developments, current use, operational access and biosafety considerations. Crit. Rev. Plant Sci. 2014;33:286–330. doi: 10.1080/07352689.2013.870422. DOI

Shanmugaraj B., Ramalingam S. Plant expression platform for the production of recombinant pharmaceutical proteins. Austin J. Biotechnol. Bioeng. 2014;1:4.

Mahesh S. The state of art of new transgenic techniques in plant breeding: A review. J. Adv. Biol. Biotechnol. 2016;9:1–11. doi: 10.9734/JABB/2016/27846. DOI

Grosse-Holz F., Madeira L., Zahid M.A., Songer M., Kourelis J., Fesenko M., Ninck S., Kaschani F., Kaiser M., van der Hoorn R.A.L. Three unrelated protease inhibitors enhance accumulation of pharmaceutical recombinant proteins in Nicotiana benthamiana. Plant Biotechnol. J. 2018;16:1797–1810. doi: 10.1111/pbi.12916. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...