Agroinfiltration Mediated Scalable Transient Gene Expression in Genome Edited Crop Plants
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, přehledy
Grantová podpora
SR/WOS-A/LS-610/2016
Department of Science and Technology
VT2019-2021
University of Hradec Kralove
UHHK, 00179906
MH CZ-DRO
PubMed
34639221
PubMed Central
PMC8509792
DOI
10.3390/ijms221910882
PII: ijms221910882
Knihovny.cz E-zdroje
- Klíčová slova
- Agrobacterium, CRISPR/Cas9, genome editing, targeted site modification, transfer-DNA, transgene-free,
- MeSH
- Agrobacterium genetika MeSH
- CRISPR-Cas systémy * MeSH
- editace genu metody MeSH
- genom rostlinný * MeSH
- mutageneze MeSH
- regulace genové exprese u rostlin MeSH
- rostlinné proteiny genetika MeSH
- rostliny genetika metabolismus MeSH
- transformace genetická MeSH
- zemědělské plodiny genetika metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
- Názvy látek
- rostlinné proteiny MeSH
Agrobacterium-mediated transformation is one of the most commonly used genetic transformation method that involves transfer of foreign genes into target plants. Agroinfiltration, an Agrobacterium-based transient approach and the breakthrough discovery of CRISPR/Cas9 holds trending stature to perform targeted and efficient genome editing (GE). The predominant feature of agroinfiltration is the abolishment of Transfer-DNA (T-DNA) integration event to ensure fewer biosafety and regulatory issues besides showcasing the capability to perform transcription and translation efficiently, hence providing a large picture through pilot-scale experiment via transient approach. The direct delivery of recombinant agrobacteria through this approach carrying CRISPR/Cas cassette to knockout the expression of the target gene in the intercellular tissue spaces by physical or vacuum infiltration can simplify the targeted site modification. This review aims to provide information on Agrobacterium-mediated transformation and implementation of agroinfiltration with GE to widen the horizon of targeted genome editing before a stable genome editing approach. This will ease the screening of numerous functions of genes in different plant species with wider applicability in future.
Biomedical Research Center University Hospital Hradec Kralove 50005 Hradec Kralove Czech Republic
Biotechnology English Program Faculty of Agriculture Cairo University Giza 12613 Egypt
Plant Pathology Research Institute Agricultural Research Center 9 Gamaa St Giza 12619 Egypt
Zobrazit více v PubMed
Adli M. The CRISPR tool kit for genome editing and beyond. Nat. Commun. 2018;9:1911. doi: 10.1038/s41467-018-04252-2. PubMed DOI PMC
Gaj T., Gersbach C.A., Barbas C.F. ZFN, TALEN, and CRISPR/Cas-based methods for genome engineering. Trends Biotechnol. 2013;31:397–405. doi: 10.1016/j.tibtech.2013.04.004. PubMed DOI PMC
Hsu P.D., Lander E.S., Zhang F. Development and applications of CRISPR-Cas9 for genome engineering. Cell. 2014;157:1262–1278. doi: 10.1016/j.cell.2014.05.010. PubMed DOI PMC
Zlobin N.E., Lebedeva M.V., Taranov V.V. CRISPR/Cas9 genome editing through in planta transformation. Crit. Rev. Biotechnol. 2020;40:153–168. doi: 10.1080/07388551.2019.1709795. PubMed DOI
Anami S., Njuguna E., Coussens G., Aesaert S., Van Lijsebettens M. Higher plant transformation: Principles and molecular tools. Int. J. Dev. Biol. 2013;57:483–494. doi: 10.1387/ijdb.130232mv. PubMed DOI
Tzfira T., Citovsky V. Agrobacterium-mediated genetic transformation of plants: Biology and biotechnology. Curr. Opin. Biotechnol. 2006;17:147–154. doi: 10.1016/j.copbio.2006.01.009. PubMed DOI
Kapila J., De Rycke R., van Montagu M., Angenon G. An Agrobacterium-mediated transient gene expression system for intact leaves. Plant Sci. 1997;122:101–108. doi: 10.1016/S0168-9452(96)04541-4. DOI
Klein T.M., Wolf E.D., Sanford J.C. High-velocity microprojectiles for delivering nucleic acids into living cells. Nature. 1987;327:70–73. doi: 10.1038/327070a0. PubMed DOI
Paszkowski J., Shillito R.D., Saul M., Mandák V., Hohn T., Hohn B., Potrykus I. Direct gene transfer to plants. EMBO J. 1984;3:2717–2722. doi: 10.1002/j.1460-2075.1984.tb02201.x. PubMed DOI PMC
D’Halluin K., Bonne E., Bossut M., De Beuckeleer M., Leemans J. Transgenic maize plants by tissue electroporation. Plant Cell. 1992;4:1495–1505. PubMed PMC
De la Peña A., Lörz H., Schell J. Transgenic rye plants obtained by injecting DNA into young floral tillers. Nature. 1987;325:274–276. doi: 10.1038/325274a0. DOI
Krens F.A., Molendijk L., Wullems G.J., Schilperoort R.A. In vitro transformation of plant protoplasts with Ti-plasmid DNA. Nature. 1982;296:72–74. doi: 10.1038/296072a0. DOI
Clough S.J., Bent A.F. Floral dip: A simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J. 1998;16:735–743. doi: 10.1046/j.1365-313x.1998.00343.x. PubMed DOI
Sandhya D., Jogam P., Allini V.R., Abbagani S., Alok A. The present and potential future methods for delivering CRISPR/Cas9 components in plants. J. Genet. Eng. Biotechnol. 2020;18:1–11. doi: 10.1186/s43141-020-00036-8. PubMed DOI PMC
Guidarelli M., Baraldi E. Transient transformation meets gene function discovery: The strawberry fruit case. Front. Plant Sci. 2015;6:444. doi: 10.3389/fpls.2015.00444. PubMed DOI PMC
Twyman R.M., Kohli A., Stoger E., Christou P. Foreign DNA: Integration and Expression in Transgenic Plants. In: Setlow J.K., editor. Genetic Engineering: Principles and Methods. Volume 24. Springer; Boston, MA, USA: 2002. pp. 107–136. PubMed
Chhikara S., Chaudhary D., Yadav M., Sainger M., Jaiwal P.K. A non-tissue culture approach for developing transgenic Brassica juncea L. plants with Agrobacterium tumefaciens. In Vitro Cell Dev. Biol. Plant. 2012;48:7–14. doi: 10.1007/s11627-011-9408-x. DOI
Jones H.D. Future of breeding by genome editing is in the hands of regulators. GM Crops Food. 2015;6:223–232. doi: 10.1080/21645698.2015.1134405. PubMed DOI PMC
Ashraf A., Rahman A. Conference: Workshop Hand Book for 1st National Conference on CRISPR-Cas9 Genome Editing Technology. 2017. [(accessed on 10 September 2021)]. CRISPR/Cas9 and Biosafety Issues; pp. 1–10. Available online: https://www.researchgate.net/publication/333557456_CRISPRCas9_and_Biosafety_Issues.
Lee M.W., Yang Y. Transient Expression Assay by Agroinfiltration of Leaves. Methods Mol. Biol. 2006;323:225–229. doi: 10.1385/1-59745-003-0:225. PubMed DOI
González M.N., Massa G.A., Andersson M., Andrea C., Oneto D., Turesson H., Storani L., Olsson N., Fält A.S., Hofvander P., et al. Comparative potato genome editing: Agrobacterium tumefaciens-mediated transformation and protoplasts transfection delivery of CRISPR/Cas9 components directed to StPPO2 gene. Plant Cell Tiss. Organ Cult. 2021;145:291–305. doi: 10.1007/s11240-020-02008-9. DOI
Zhang Z., Mao Y., Ha S., Liu W., Botella J.R., Zhu J.K. A multiplex CRISPR/Cas9 platform for fast and efficient editing of multiple genes in Arabidopsis. Plant Cell Rep. 2016;35:1519–1533. doi: 10.1007/s00299-015-1900-z. PubMed DOI PMC
Kim H., Choi J., Won K.H. A stable DNA-free screening system for CRISPR/RNPs-mediated gene editing in hot and sweet cultivars of Capsicum annuum. BMC Plant Biol. 2020;20:449. doi: 10.1186/s12870-020-02665-0. PubMed DOI PMC
Malzahn A., Lowder L., Qi Y. Plant genome editing with TALEN and CRISPR. Cell Biosci. 2017;7:21. doi: 10.1186/s13578-017-0148-4. PubMed DOI PMC
Donini M., Marusic C. Current state-of-the-art in plant-based antibody production systems. Biotechnol. Lett. 2019;41:335–346. doi: 10.1007/s10529-019-02651-z. PubMed DOI
Jinek M., Chylinski K., Fonfara I., Hauer M., Doudna J.A., Charpentier E. A programmable dual-RNA–guided DNA endonuclease in adaptive bacterial immunity. Science. 2012;337:816–821. doi: 10.1126/science.1225829. PubMed DOI PMC
Zhang Y., Liang Z., Zong Y., Wang Y., Liu J., Chen K., Qiu J.-L., Gao C. Efficient and transgene-free genome editing in wheat through transient expression of CRISPR/Cas9 DNA or RNA. Nat. Commun. 2016;7:12617. doi: 10.1038/ncomms12617. PubMed DOI PMC
Liang Z., Chen K., Li T., Zhang Y., Wang Y., Zhao Q., Liu J., Zhang H., Liu C., Ran Y., et al. Efficient DNA-free genome editing of bread wheat using CRISPR/Cas9 ribonucleoprotein complexes. Nat. Commun. 2017;8:14261. doi: 10.1038/ncomms14261. PubMed DOI PMC
Sheludko Y.V. Agrobacterium-mediated transient expression as an approach to production of recombinant proteins in plants. Recent Pat. Biotechnol. 2008;2:198–208. doi: 10.2174/187220808786241033. PubMed DOI
Krenek P., Samajova O., Luptovciak I., Doskocilova A., Komis G., Samaj J. Transient plant transformation mediated by Agrobacterium tumefaciens: Principles, methods and applications. Biotechnol. Adv. 2015;33:1024–1042. doi: 10.1016/j.biotechadv.2015.03.012. PubMed DOI
Lacroix B., Citovsky V. The roles of bacterial and host plant factors in Agrobacterium mediated genetic transformation. Int. J. Dev. Biol. 2013;57:467–481. doi: 10.1387/ijdb.130199bl. PubMed DOI PMC
Chen Q., Lai H., Hurtado J., Stahnke J., Leuzinger K., Dent M. Agroinfiltration as an effective and scalable strategy of gene delivery for production of pharmaceutical proteins. Adv. Tech. Biol. Med. 2013;1:103. doi: 10.4172/2379-1764.1000103. PubMed DOI PMC
Tyurin A.A., Suhorukova A.V., Kabardaeva K.V., Goldenkova-Pavlova I.V. Transient gene expression is an effective experimental tool for the research into the fine mechanisms of plant gene function: Advantages, limitations, and solutions. Plants. 2020;9:1187. doi: 10.3390/plants9091187. PubMed DOI PMC
Ramkumar T.R., Lenka S.K., Arya S., Bansal K.C. A Short History and Perspectives on Plant Genetic Transformation. In: Rustgi S., Luo H., editors. Biolistic DNA Delivery in Plants. Humana; New York, NY, USA: 2020. p. 2124. Methods in Molecular Biology. PubMed DOI
Low L.Y., Yang S.K., Andrew K.D.X., Ong-Abdullah J., Tan N.P., Lai K.S. Transgenic plants: Gene constructs, vector and transformation method. In: Çelik Ö., editor. New Visions in Plant Science. Intech Open; London, UK: 2018. pp. 41–61.
Zambryski P. Basic processes underlying Agrobacterium-mediated DNA transfer to plant cells. Annu. Rev. Genet. 1988;22:1–30. doi: 10.1146/annurev.ge.22.120188.000245. PubMed DOI
Christou P., Ford T.L., Kofron M. Rice genetic engineering: A review. Trends Biotechnol. 1992;10:239–246. doi: 10.1016/0167-7799(92)90232-K. DOI
Crossway A., Oakes J.V., Irvine J.M., Ward B., Knauf V.C., Shewmaker C.K. Integration of foreign DNA following microinjection of tobacco mesophyll protoplasts. Mol. Gen. Genet. 1986;202:179–185. doi: 10.1007/BF00331634. DOI
Negrutiu I., Shillito R.D., Potrykus I., Biasini G., Sala F. Hybrid genes in the analysis of transformation conditions. I. Setting up a simple method for direct gene transfer in plant protoplasts. Plant Mol. Biol. 1987;8:363–373. doi: 10.1007/BF00015814. PubMed DOI
Datta S.K., Peterhans A., Datta K., Potrykus I. Genetically engineered fertile Indica-rice plants recovered from protoplasts. Nat. Biotechnol. 1990;8:736–740. doi: 10.1038/nbt0890-736. DOI
Shillito R.D., Saul M.W., Paszkowski J., Muller M., Potrykus I. High efficiency direct gene transfer to plants. Nat. Biotechnol. 1985;3:1099–1103. doi: 10.1038/nbt1285-1099. DOI
Fromm M.E., Taylor L.P., Walbot V. Stable transformation of maize after gene-transfer by electroporation. Nature. 1986;319:791–793. doi: 10.1038/319791a0. PubMed DOI
Frame B.R., Drayton P.R., Bagnall S.V., Lewnau C.J., Bullock W.P., Wilson H.M., Dunwell J.M., Thompson J.A., Wang K. Production of fertile transgenic maize plants by silicon-carbide whisker-mediated transformation. Plant J. 1994;6:941–948. doi: 10.1046/j.1365-313X.1994.6060941.x. DOI
Koncz C., Németh K., Rédei G.P., Schell J. Homology Recognition during T-DNA Integration into the Plant Genome. Springer; Berlin/Heidelberg, Germany: 1994. Homologous recombination and gene silencing in plants; pp. 167–189.
Pawlowski W.P., Somers D.A. Transgene inheritance in plants genetically engineered by microprojectile bombardment. Mol. Biotechnol. 1996;6:17–30. doi: 10.1007/BF02762320. PubMed DOI
Hansen G., Shillito R.D., Chilton M.D. T-strand integration in maize protoplasts after codelivery of a T-DNA substrate and virulence genes. Proc. Natl. Acad. Sci. USA. 1997;94:11726–11730. doi: 10.1073/pnas.94.21.11726. PubMed DOI PMC
Enríquez-Obregón G.A., Vázquez-Padrón R.I., Prieto-Samsonov D.L., De la Riva G.A., Selman-Housein G. Herbicide-resistant sugarcane (Saccharum officinarum L.) plants by Agrobacterium mediated transformation. Planta. 1998;206:20–27. doi: 10.1007/s004250050369. DOI
Shou H., Frame B.R., Whitham S.A., Wang K. Assessment of transgenic maize events produced by particle bombardment or Agrobacterium mediated transformation. Mol. Breed. 2004;13:201–208. doi: 10.1023/B:MOLB.0000018767.64586.53. DOI
Travella S., Ross S.M., Harden J., Everett C., Snape J.W., Harwood W.A. A comparison of transgenic barley lines produced by particle bombardment and Agrobacterium mediated techniques. Plant Cell Rep. 2005;23:780–789. doi: 10.1007/s00299-004-0892-x. PubMed DOI
Zhang Y., Yin X., Yang A., Li G., Zhang J. Stability of inheritance of transgenes in maize (Zea mays L.) lines produced using different transformation methods. Euphytica. 2005;144:11–22. doi: 10.1007/s10681-005-4560-1. DOI
Gao C., Long D., Lenk I., Nielsen K.K. Comparative analysis of transgenic tall fescue (Festuca arundinacea Schreb.) plants obtained by Agrobacterium mediated transformation and particle bombardment. Plant Cell Rep. 2008;27:1601–1609. doi: 10.1007/s00299-008-0578-x. PubMed DOI
Hwang H.H., Yu M., Lai E.M. Agrobacterium-mediated plant transformation: Biology and applications. Arab. Book. 2017;15:e0186. doi: 10.1199/tab.0186. PubMed DOI PMC
McIntosh K.B., Hulm J.L., Young L.W., Bonham-Smith P.C. A rapid Agrobacterium-mediated Arabidopsis thaliana transient assay system. Plant Mol. Biol. Rep. 2004;22:53–61. doi: 10.1007/BF02773349. DOI
Sheng J., Citovsky V. Agrobacterium-plant cell interaction: Have virulence proteins, will travel. Plant Cell. 1996;8:1699–1710. PubMed PMC
Horsch R.B., Fry J.E., Hoffmann N.L., Eïchholtz D., Rogers S.G., Fraley R.T. A simple and general method for transferring genes into plants. Science. 1985;227:1229–1231. PubMed
Chilton M.D., Drummond M.H., Merlo D.J., Sciaky D., Montoya A.L., Gordon M.P., Nester E.W. Stable incorporation of plasmid DNA into higher plant cells: The molecular basis of crown gall tumorigenesis. Cell. 1977;11:263–271. doi: 10.1016/0092-8674(77)90043-5. PubMed DOI
De Cleene M., De Ley J. The host range of crown gall. Bot. Rev. 1976;42:389–466. doi: 10.1007/BF02860827. DOI
Li W., Guo G., Zheng G. Agrobacterium-mediated transformation: State of the art and future prospect. Chin. Sci. Bull. 2000;45:1537–1546. doi: 10.1007/BF02886209. DOI
Bundock P., den Dulk-Ras A., Beijersbergen A., Hooykaas P.J. Trans-kingdom T-DNA transfer from Agrobacterium tumefaciens to Saccharomyces cerevisiae. EMBO J. 1995;14:3206–3214. doi: 10.1002/j.1460-2075.1995.tb07323.x. PubMed DOI PMC
Bundock P., Mroczek K., Winkler A.A., Steensma H.Y., Hooykaas P.J.J. T-DNA from Agrobacterium tumefaciens as an efficient tool for gene targeting in Kluyveromyces lactis. Mol. Gen. Genet. 1999;261:115–121. doi: 10.1007/s004380050948. PubMed DOI
Piers K.L., Heath J.D., Liang X., Stephens K.M., Nester E.W. Agrobacterium tumefaciens mediated transformation of yeast. Proc. Natl. Acad. Sci. USA. 1996;93:1613–1618. doi: 10.1073/pnas.93.4.1613. PubMed DOI PMC
De Groot M.J.A., Bundock P., Hooykaas P.J.J., Beijersbergen A.G.M. Agrobacterium tumefaciens mediated transformation of filamentous fungi. Nat. Biotechnol. 1998;16:839–842. doi: 10.1038/nbt0998-839. PubMed DOI
Kunik T., Tzfira T., Kapulnik Y., Gafni Y., Dingwall C., Citovsky V. Genetic transformation of HeLa cells by Agrobacterium. Proc. Natl. Acad. Sci. USA. 2001;98:1871–1876. doi: 10.1073/pnas.98.4.1871. PubMed DOI PMC
Kelly B.A., Kado C.I. Agrobacterium mediated T-DNA transfer and integration into the chromosome of Streptomyces lividans. Mol. Plant Pathol. 2002;3:125–134. doi: 10.1046/j.1364-3703.2002.00104.x. PubMed DOI
Hooykaas P.J.J. Transformation mediated by Agrobacterium tumefaciens. In: Tkacz J.S., Lange L., editors. Advances in Fungal Biotechnology for Industry, Agriculture, and Medicine. Springer; Boston, MA, USA: 2004. pp. 41–65.
Kumar S.V., Misquitta R.W., Reddy V.S., Rao B.J., Rajam M.V. Genetic transformation of the green alga—Chlamydomonas reinhardtii by Agrobacterium tumefaciens. Plant Sci. 2004;166:731–738. doi: 10.1016/j.plantsci.2003.11.012. DOI
Pelczar P., Kalck V., Gomez D., Hohn B. Agrobacterium proteins VirD2 and VirE2 mediate precise integration of synthetic TDNA complexes in mammalian cells. EMBO Rep. 2004;5:632–637. doi: 10.1038/sj.embor.7400165. PubMed DOI PMC
Michielse C.B., Hooykaas P.J.J., van den Hondel C.A., Ram A.F. Agrobacterium mediated transformation as a tool for functional genomics in fungi. Curr. Genet. 2005;48:1–17. doi: 10.1007/s00294-005-0578-0. PubMed DOI
Bulgakov V.P., Kiselev K.V., Yakovlev K.V., Zhuravlev Y.N., Gontcharov A.A., Odintsova N.A. Agrobacterium mediated transformation of sea urchin embryos. Biotechnol. J. 2006;1:454–461. doi: 10.1002/biot.200500045. PubMed DOI
Lacroix B., Li J., Tzfira T., Citovsky V. Will you let me use your nucleus? How Agrobacterium gets its T-DNA expressed in the host plant cell. Can. J. Physiol. Pharmacol. 2006;84:333–345. doi: 10.1139/y05-108. PubMed DOI
Thomashow M., Panagopoulos C., Gordon M., Nester E.W. Host range of Agrobacterium tumefaciens is determined by the Ti plasmid. Nature. 1980;283:794–796. doi: 10.1038/283794a0. DOI
Herrera-Estrella L., Simpson J., Martinez-Trujillo M. Transgenic plants: An historical perspective. Methods Mol. Biol. 2005;286:3–32. PubMed
Draper J., Scott R., Hamill J. Transformation of dicotyledonous plant cells using the Ti plasmid of Agrobacterium tumefaciens and the Ri plasmid of A. rhizogenes. In: Draper J., Scott R., Armitage P., Walden R., editors. Plant Genetic Transformation and Gene Expression: A Laboratory Manual. Blackwell Scientific Publishers; Oxford, UK: 1988. pp. 69–160.
Tinland B. The integration of T-DNA into plant genomes. Trends Plant Sci. 1996;1:178–184. doi: 10.1016/1360-1385(96)10020-0. DOI
Bhattacharya A., Sood P., Citovsky V. The roles of plant phenolics in defence and communication during Agrobacterium and Rhizobium infection. Mol. Plant Pathol. 2010;11:705–719. doi: 10.1111/j.1364-3703.2010.00625.x. PubMed DOI PMC
Gelvin S.B. Plant proteins involved in Agrobacterium mediated genetic transformation. Annu. Rev. Phytopathol. 2010;48:45–68. doi: 10.1146/annurev-phyto-080508-081852. PubMed DOI
Gelvin S.B. Traversing the cell: Agrobacterium T-DNA’s journey to the host genome. Front. Plant Sci. 2012;3:52. doi: 10.3389/fpls.2012.00052. PubMed DOI PMC
Pitzschke A. Agrobacterium infection and plant defense-transformation success hangs by a thread. Front. Plant Sci. 2013;4:519. doi: 10.3389/fpls.2013.00519. PubMed DOI PMC
Christie P.J., Whitaker N., González-Rivera C. Mechanism and structure of the bacterial type IV secretion systems. Biochim. Biophys. Acta Mol. Cell Res. 2014;1843:1578–1591. doi: 10.1016/j.bbamcr.2013.12.019. PubMed DOI PMC
Hwang H.H., Liu Y.T., Huang S.C., Tung C.Y., Huang F.C., Tsai Y.L., Cheng T.F., Lai E.M. Overexpression of the HspL promotes Agrobacterium tumefaciens virulence in Arabidopsis under heat shock conditions. Phytopathology. 2015;105:160–168. doi: 10.1094/PHYTO-05-14-0133-R. PubMed DOI
Nonaka S., Someya T., Kadota Y., Nakamura K., Ezura H. Super-Agrobacterium ver. 4: Improving the transformation frequencies and genetic engineering possibilities for crop plants. Front. Plant Sci. 2019;10:1204. doi: 10.3389/fpls.2019.01204. PubMed DOI PMC
Hoshikawa K., Fujita S., Renhu N., Ezura K., Yamamoto T., Nonaka S., Ezura H., Miura K. Efficient transient protein expression in tomato cultivars and wild species using agroinfiltration-mediated high expression system. Plant Cell Rep. 2019;38:75–84. doi: 10.1007/s00299-018-2350-1. PubMed DOI
Knoch E., Sugawara S., Mori T., Poulsen C., Fukushima A., Harholt J., Fujimoto Y., Umemoto N., Saito K. Third DWF1 paralog in Solanaceae, sterol ∆24-isomerase, branches withanolide biosynthesis from the general phytosterol pathway. Proc. Natl. Acad. Sci. USA. 2019;115:E8096–E8103. doi: 10.1073/pnas.1807482115. PubMed DOI PMC
Bent A. Arabidopsis thaliana Floral Dip Transformation Method. In: Wang K., editor. Agrobacterium Protocols. Volume 343 Humana Press; New York, NY, USA: 2006. Methods in Molecular, Biology. PubMed
Gelvin S.B. Agrobacterium Transformation of Arabidopsis thaliana Roots. In: Wang K., editor. Agrobacterium Protocols. Volume 343 Humana Press; New York, NY, USA: 2006. Methods in Molecular, Biology. PubMed
Tague B.W., Mantis J. In Planta Agrobacterium-Mediated transformation by vacuum infiltration. In: Salinas J., Sanchez-Serrano J.J., editors. Arabidopsis Protocols. Volume 323 Humana Press; New York, NY, USA: 2006. Methods in Molecular, Biology™. PubMed
Rivero L., Scholl R., Holomuzki N., Crist D., Grotewold E., Brkljacic J. Handling Arabidopsis Plants: Growth, Preservation of Seeds, Transformation, and Genetic Crosses. In: Sanchez-Serrano J., Salinas J., editors. Arabidopsis Protocols. Humana Press; Totowa, NJ, USA: 2014. Methods in Molecular Biology (Methods and, Protocols) PubMed
Wroblewski T., Tomczak A., Michelmore R. Optimization of Agrobacterium mediated transient assays of gene expression in lettuce, tomato and Arabidopsis. Plant Biotechnol. J. 2005;3:259–273. doi: 10.1111/j.1467-7652.2005.00123.x. PubMed DOI
Marion J., Bach L., Bellec Y., Meyer C., Gissot L., Faure J.D. Systematic analysis of protein subcellular localization and interaction using high-throughput transient transformation of Arabidopsis seedlings. Plant J. 2008;56:169–179. doi: 10.1111/j.1365-313X.2008.03596.x. PubMed DOI
Jones H.D., Doherty A., Sparks C.A. Transient transformation of plants. Methods Mol. Biol. 2009;513:131–152. PubMed
Kim M.J., Baek K., Park C.M. Optimization of conditions for transient Agrobacterium mediated gene expression assays in Arabidopsis. Plant Cell Rep. 2009;28:1159–1167. doi: 10.1007/s00299-009-0717-z. PubMed DOI
Li J.F., Park E., von Arnim A.G., Nebenfuhr A. The FAST technique: A simplified Agrobacterium-based transformation method for transient gene expression analysis in seedlings of Arabidopsis and other plant species. Plant Methods. 2009;5:6. doi: 10.1186/1746-4811-5-6. PubMed DOI PMC
Tsuda K., Qi Y., Nguyen L.V., Bethke G., Tsuda Y., Glazebrook J., Katagiri F. An efficient Agrobacterium-mediated transient transformation of Arabidopsis. Plant J. 2012;69:713–719. doi: 10.1111/j.1365-313X.2011.04819.x. PubMed DOI
Wu H.Y., Liu K.H., Wang Y.C., Wu J.F., Chiu W.L., Chen C.Y., Wu S.H., Sheen J., Lai E.M. AGROBEST: An efficient Agrobacterium mediated transient expression method for versatile gene function analyses in Arabidopsis seedlings. Plant Methods. 2014;10:19. doi: 10.1186/1746-4811-10-19. PubMed DOI PMC
Janssen B.J., Gardner R.C. Localized transient expression of GUS in leaf discs following cocultivation with Agrobacterium. Plant Mol. Biol. 1989;14:61–72. doi: 10.1007/BF00015655. PubMed DOI
Zhang N., Roberts H.M., Eck J.V., Martin G.B. Generation and molecular characterization of CRISPR/Cas9-induced mutations in 63 immunity-associated genes in tomato reveals specificity and a range of gene modifications. Front. Plant Sci. 2020;11:10. doi: 10.3389/fpls.2020.00010. PubMed DOI PMC
Cao D.V., Pamplona R.S., Kim J., Oh Y.K., Cho S.K., Ahn J., Yang S.W., Riu K.Z., Boo K.H. Optimization of Agrobacterium-mediated transient expression of heterologous genes in spinach. Plant Biotechnol. Rep. 2017;11:397–405. doi: 10.1007/s11816-017-0457-4. DOI
Zhao H., Tan Z., Wen X., Wang Y. An improved syringe agroinfiltration protocol to enhance transformation efficiency by combinative use of 5-azacytidine, ascorbate acid and tween-20. Plants. 2017;6:9. doi: 10.3390/plants6010009. PubMed DOI PMC
Heenatigala P.P.M., Yang J.J., Bishopp A., Sun Z.L., Li G.J., Kumar S., Hu S., Wu Z., Lin W., Yao L., et al. Development of efficient protocols for stable and transient gene transformation for Wolffia globosa using Agrobacterium. Front. Chem. 2018;6:227. doi: 10.3389/fchem.2018.00227. PubMed DOI PMC
Ma T., Li Z., Wang S. Production of bioactive recombinant reteplase by virus-based transient expression system in Nicotiana benthamiana. Front. Plant Sci. 2019;10:1225. doi: 10.3389/fpls.2019.01225. PubMed DOI PMC
Garabagi F., McLean M.D., Hall J.C. Transient and stable expression of antibodies in Nicotiana species. Methods Mol. Biol. 2012;907:389–408. PubMed
Sánchez-Álvarez A., Ruíz-López N., Moreno-Pérez A.J., Martínez-Force E., Garcés R., Salas J.J. Agrobacterium-mediated transient gene expression in developing Ricinus communis seeds: A first step in making the castor oil plant a chemical biofactory. Front. Plant Sci. 2019;10:1410. doi: 10.3389/fpls.2019.01410. PubMed DOI PMC
Sainsbury F., Lomonossoff G.P. Transient expressions of synthetic biology in plants. Curr. Opin. Plant Biol. 2014;19:1–7. doi: 10.1016/j.pbi.2014.02.003. PubMed DOI PMC
Osakabe Y., Osakabe K. Genome editing to improve abiotic stress responses in plants. Prog. Mol. Biol. Transl. Sci. 2017;149:99–109. PubMed
Gleba Y., Klimyu V., Marillonnet S. Magnifection—A new platform for expressing recombinant vaccines in plants. Vaccine. 2005;23:2047–2048. doi: 10.1016/j.vaccine.2005.01.006. PubMed DOI
Gleba Y., Klimyuk V., Marillonnet S. Viral vectors for the expression of proteins in plants. Curr. Opin. Biotechnol. 2007;18:134–141. doi: 10.1016/j.copbio.2007.03.002. PubMed DOI
Potrykus I. Gene transfer to plants: Assessment of published approaches and results. Annu. Rev. Plant Biol. 1991;42:205–225. doi: 10.1146/annurev.pp.42.060191.001225. DOI
Dai S., Zheng P., Marmey P., Zhang S., Tian W., Chen S., Beachy R.N., Fauquet C. Comparative analysis of transgenic rice plants obtained by Agrobacterium mediated transformation and particle bombardment. Mol. Breed. 2001;7:25–33. doi: 10.1023/A:1009687511633. DOI
Zheng L., Liu G., Meng X., Li Y., Wang Y. A versatile Agrobacterium-mediated transient gene expression system for herbaceous plants and trees. Biochem. Genet. 2012;50:761–769. doi: 10.1007/s10528-012-9518-0. PubMed DOI
Burman N., Chandran D., Khurana J.P. A rapid and highly efficient method for transient gene expression in rice plants. Front. Plant Sci. 2020;11:584011. doi: 10.3389/fpls.2020.584011. PubMed DOI PMC
Fischer R., Vaquero-Martin C., Sack M., Drossard J., Emans N., Commandeur U. Towards molecular farming in the future: Transient protein expression in plants. Biotechnol. Appl. Biochem. 1999;30:113–116. PubMed
Sparkes I.A., Runions J., Kearns A., Hawes C. Rapid, transient expression of fluorescent fusion proteins in tobacco plants and generation of stably transformed plants. Nat. Protoc. 2006;1:2019–2025. doi: 10.1038/nprot.2006.286. PubMed DOI
Zhou D.D., Yu J.N. The progress of establishing transient expression system in plant cell. Chin. Agric. Sci. Bull. 2013;29:151–156.
Liu S., Ma J., Liu H., Guo Y., Li W., Niu S. An efficient system for Agrobacterium-mediated transient transformation in Pinus tabuliformis. Plant Methods. 2020;16:52. doi: 10.1186/s13007-020-00594-5. PubMed DOI PMC
Xia P., Hu W., Liang T., Yang D., Liang Z. An attempt to establish an Agrobacterium-mediated transient expression system in medicinal plants. Protoplasma. 2020;257:1497–1505. doi: 10.1007/s00709-020-01524-x. PubMed DOI
Kusnadi A.R., Nikolov Z.L., Howard J.A. Production of recombinant proteins in transgenic plants: Practical considerations. Biotechnol. Bioeng. 1997;56:473–484. doi: 10.1002/(SICI)1097-0290(19971205)56:5<473::AID-BIT1>3.0.CO;2-F. PubMed DOI
Marsian J., Lomonossoff G.P. Molecular pharming-VLPs made in plants. Curr. Opin. Biotechnol. 2016;37:201–206. doi: 10.1016/j.copbio.2015.12.007. PubMed DOI
Norkunas K., Harding R., Dale J., Dugdale B. Improving agroinfiltration-based transient gene expression in Nicotiana benthamiana. Plant Methods. 2018;14:71. doi: 10.1186/s13007-018-0343-2. PubMed DOI PMC
Yuasa T., Sugiki M., Watanabe Y. Activation of SIPK in response to UV-C irradiation, utility of a glutathione-S transferase-tagged plant MAP kinase by transient expression with agroinfiltration. Plant Biotechnol. 2005;22:7–12. doi: 10.5511/plantbiotechnology.22.7. DOI
Joh L.D., Wroblewski T., Ewing N.N., VanderGheynst J.S. High-level transient expression of recombinant protein in lettuce. Biotechnol. Bioeng. 2005;91:861–871. doi: 10.1002/bit.20557. PubMed DOI
Rico A., Bennett M.H., Forcat S., Huang W.E., Preston G.M. Agroinfiltration reduces ABA levels and suppresses Pseudomonas syringae-elicited salicylic acid production in Nicotiana tabacum. PLoS ONE. 2010;5:e8977. doi: 10.1371/journal.pone.0008977. PubMed DOI PMC
Hoffmann T., Kalinowski G., Schwab W. RNAi-induced silencing of gene expression in strawberry fruit (Fragaria × ananassa) by agroinfiltration: A rapid assay for gene function analysis. Plant J. 2006;48:818–826. doi: 10.1111/j.1365-313X.2006.02913.x. PubMed DOI
Menassa R., Ahmad A., Joensuu J.J. Transient expression using agroinfiltration and its applications in molecular farming. In: Wang A., Ma S., editors. Molecular Farming in Plants: Recent Advances and Future Prospects. Springer; Berlin/Heidelberg, Germany: 2012. DOI
Tan L.W., Rahman Z.A., Goh H.H., Hwang D., Ismanizan I., Zamri Z. Production of transgenic rice (indica cv. MR219) overexpressing Abp57 gene through Agrobacterium-mediated transformation. Sains. Malays. 2017;46:703–711. doi: 10.17576/jsm-2017-4605-04. DOI
Wang H., Jiang L. Transient expression and analysis of fluorescent reporter proteins in plant pollen tubes. Nat. Protoc. 2011;6:419–426. doi: 10.1038/nprot.2011.309. PubMed DOI
Del Toro F., Tenllado F., Chung B.N., Canto T.A. Procedure for the transient expression of genes by agroinfiltration above the permissive threshold to study temperature-sensitive processes in plant–pathogen interactions. Mol. Plant Pathol. 2014;15:848–857. doi: 10.1111/mpp.12136. PubMed DOI PMC
Voinnet O., Rivas S., Mestre P., Baulcombe D. An enhanced transient expression system in plants based on suppression of gene silencing by the p19 protein of tomato bushy stunt virus. Plant J. 2003;33:949–956. doi: 10.1046/j.1365-313X.2003.01676.x. PubMed DOI
Liu K., Yang Q., Yang T., Wu Y., Wang G., Yang F., Wang R., Lin X., Li G. Development of Agrobacterium-mediated transient expression system in Caragana intermedia and characterization of CiDREB1C in stress response. BMC Plant Biol. 2019;19:237. doi: 10.1186/s12870-019-1800-4. PubMed DOI PMC
Chen Q., Lai H. Gene delivery into plant cells for recombinant protein production. BioMed Res. Int. 2015;2015:932161. doi: 10.1155/2015/932161. PubMed DOI PMC
Shoji Y., Chichester J.A., Bi H., Musiychuk K., de la Rosa P., Goldschmidt L., Horsey A., Ugulava N., Palmer G.A., Mett V., et al. Plant-expressed HA as a seasonal influenza vaccine candidate. Vaccine. 2008;26:2930–2934. doi: 10.1016/j.vaccine.2008.03.045. PubMed DOI
Ma J., Xiang H., Donnelly D.J., Meng F.-R., Xu H., Durnford D., Li X.-Q. Genome editing in potato plants by agrobacterium-mediated transient expression of transcription activator-like effector nucleases. Plant Biotechnol. Rep. 2017;11:249–258. doi: 10.1007/s11816-017-0448-5. DOI
Krishnan V., Jose J., Jolly M., Vinutha T., Kumar R., Manickavasagam M., Praveen S., Sachdev A. ‘AGRODATE’: A rapid Agrobacterium-mediated transient expression tool for gene function analysis in leaf discs. J. Plant Biochem. Biotechnol. 2019;29:294–304. doi: 10.1007/s13562-019-00536-w. DOI
Fraley R., Horsch R., Matzke A., Chilton M.D., Chilton W.S., Sanders P.R. In vitro transformation of petunia cells by an improved method of co-cultivation with A. tumefaciens strains. Plant Mol. Biol. 1984;3:371–378. doi: 10.1007/BF00033384. PubMed DOI
Horsch R.B., Klee H.J. Rapid assay of foreign gene expression in leaf disc transformed by Agrobacterium tumefaciens: Role of T-DNA borders in the transfer process. Proc. Natl. Acad. Sci. USA. 1986;83:4428–4432. doi: 10.1073/pnas.83.12.4428. PubMed DOI PMC
Vaghchhipawala Z., Rojas C.M., Senthil-Kumar M., Mysore K.S. Agroinoculation and Agroinfiltration: Simple Tools for Complex Gene Function Analyses. In: Pereira A., editor. Plant Reverse Genetics. Volume 678 Humana Press; Totowa, NJ, USA: 2011. Methods in Molecular Biology (Methods and, Protocols) PubMed
Jia H., Liao M., Verbelen J.P., Vissenberg K. Direct creation of marker-free tobacco plants from agroinfiltrated leaf discs. Plant Cell Rep. 2007;26:1961–1965. doi: 10.1007/s00299-007-0403-y. PubMed DOI
Orzaez D., Mirabel S., Wieland W.H., Granell A. Agroinjection of tomato fruits. A tool for rapid functional analysis of transgenes directly in fruit. Plant Physiol. 2006;140:3–11. doi: 10.1104/pp.105.068221. PubMed DOI PMC
Qian W., Yu C., Qin H., Liu X., Zhang A., Johansen I.E., Wang D. Molecular and functional analysis of phosphomannomutase (PMM) from higher plants and genetic evidence for the involvement of PMM in ascorbic acid biosynthesis in Arabidopsis and Nicotiana benthamiana. Plant J. 2007;49:399–413. doi: 10.1111/j.1365-313X.2006.02967.x. PubMed DOI
Zottini M., Barizza E., Costa A., Formentin E., Ruberti C., Carimi F., Schiavo F.L. Agroinfiltration of grapevine leaves for fast transient assays of gene expression and for long-term production of stable transformed cells. Plant Cell Rep. 2008;27:845–853. doi: 10.1007/s00299-008-0510-4. PubMed DOI
Matsuo K., Fukuzawa N., Matsumura T. A simple agroinfiltration method for transient gene expression in plant leaf discs. J. Biosci. Bioeng. 2016;122:351–356. doi: 10.1016/j.jbiosc.2016.02.001. PubMed DOI
Xu K., Huang X., Wu M., Wang Y., Chang Y., Liu K., Zhang J., Zhang Y., Zhang F., Yi L., et al. A rapid, highly efficient and economical method of Agrobacterium-mediated In Planta transient transformation in living onion epidermis. PLoS ONE. 2014;9:e83556. doi: 10.1371/journal.pone.0083556. PubMed DOI PMC
Shin D.I., Park H.S. Transient expression in chinese cabbage by hydrogen peroxide-aided agroinfiltration. Agric. Chem. Biotechnol. 2005;48:229–230.
Naji-Talakar S. Plant-derived biopharmaceuticals: Overview and success of agroinfiltration. Trends Capstone. 2017;2:1–12.
Juranić M., Nagahatenna D.S.K., Salinas-Gamboa R., Hand M.L., Sánchez-León N., Leong W.H., How T., Bazanova N., Spriggs A., Vielle-Calzada J.-P., et al. A detached leaf assay for testing transient gene expression and gene editing in cowpea (Vigna unguiculata [L.] Walp.) Plant Methods. 2020;16:88. doi: 10.1186/s13007-020-00630-4. PubMed DOI PMC
Amoah B.K., Wu H., Sparks C., Jones H.D. Factors influencing Agrobacterium-mediated transient expression of uidA in wheat inflorescence tissue. J. Exp. Bot. 2001;52:1135–1142. doi: 10.1093/jexbot/52.358.1135. PubMed DOI
Mondal T., Bhattacharya A., Ahuja P., Chand P. Transgenic tea [Camellia sinensis (L.) O. Kuntze cv. Kangra Jat] plants obtained by Agrobacterium-mediated transformation of somatic embryos. Plant Cell Rep. 2001;20:712–720. doi: 10.1007/s002990100382. DOI
Dong J.Z., McHughen A. An improved procedure for production of transgenic flax plants using Agrobacterium tumefaciens. Plant Sci. 1993;88:61–71. doi: 10.1016/0168-9452(93)90110-L. DOI
Matsuda D., Dreher T.W. The tRNA-like structure of Turnip yellow mosaic virus RNA is a 3′-translational enhancer. Virology. 2004;321:36–46. doi: 10.1016/j.virol.2003.10.023. PubMed DOI
Sepahdoost S., Haghighi H., Sohi H.H., Jourabchi E., Ghorbanli M. Agroinfiltration of Human Growth Hormone in Medicago sativa and Trifolium Alexanderium Leaves. Volume 4 Iranian Biotechnology Association; Trieste, Italy: 2005. National Congress of Biotechnology of Iran.
Vargas-Guevara C., Vargas-Segura C., Villalta-Villalobos J., Pereira L.F.P., Gatica-Arias A. A simple and efficient agroinfiltration method in coffee leaves (Coffea arabica L.): Assessment of factors affecting transgene expression. 3 Biotech. 2018;8:471. doi: 10.1007/s13205-018-1495-5. PubMed DOI PMC
Ahlquist P. RNA-dependent RNA polymerases, viruses, and RNA silencing. Science. 2002;296:1270–1273. doi: 10.1126/science.1069132. PubMed DOI
Fischer R., Stoger E., Schillberg S., Christou P., Twyman R.M. Plant-based production of biopharmaceuticals. Curr. Opin. Plant Biol. 2004;7:152–158. doi: 10.1016/j.pbi.2004.01.007. PubMed DOI
Delgadillo M.O., Saenz P., Salvador B., García J.A., Simón-Mateo C. Human influenza virus NS1 protein enhances viral pathogenicity and acts as an RNA silencing suppressor in plants. J. Gen. Virol. 2004;85:993–999. doi: 10.1099/vir.0.19735-0. PubMed DOI
Han L., Zhang L., Liu J., Li H., Wang Y., Hasi A. Transient expression of optimized and synthesized nattokinase gene in melon (Cucumis melo L.) fruit by agroinfiltration. Plant Biotechnol. 2015;15:0430a. doi: 10.5511/plantbiotechnology.15.0430a. DOI
King J.L., Finer J.J., McHale L.K. Development and optimization of agroinfiltration for soybean. Plant Cell Rep. 2015;34:133–140. doi: 10.1007/s00299-014-1694-4. PubMed DOI
Wydro M., Kozubek E., Lehmann P. Optimization of transient Agrobacterium-mediated gene expression system in leaves of Nicotiana benthamiana. Acta Biochim Pol. 2006;53:289–298. doi: 10.18388/abp.2006_3341. PubMed DOI
Arzola L., Chen J., Rattanaporn K., Maclean J.M., McDonald K.A. Transient co-expression of post-transcriptional gene silencing suppressors for increased In Planta expression of a recombinant anthrax receptor fusion protein. Int. J. Mol. Sci. 2011;12:4975–4990. doi: 10.3390/ijms12084975. PubMed DOI PMC
Zhang Z., Fradin E., de Jonge R., van Esse H.P., Smit P., Liu C.-M., Thomma B.P.H.J. Optimized agroinfiltration and virus-induced gene silencing to study Ve1-mediated Verticillium resistance in tobacco. Mol. Plant Microbe Interact. 2013;26:182–190. doi: 10.1094/MPMI-06-12-0161-R. PubMed DOI
Bashandy H., Jalkanen S., Teeri T.H. Within leaf variation is the largest source of variation in agroinfiltration of Nicotiana benthamiana. Plant Methods. 2015;11:1. doi: 10.1186/s13007-015-0091-5. PubMed DOI PMC
Patil B.L., Fauquet C.M. Light intensity and temperature affect systemic spread of silencing signal in transient agroinfiltration studies. Mol. Plant Pathol. 2015;16:484–494. doi: 10.1111/mpp.12205. PubMed DOI PMC
Fujiuchi N., Matsuda R., Matoba N., Fujiwara K. Removal of bacterial suspension water occupying the intercellular space of detached leaves after agroinfiltration improves the yield of recombinant hemagglutinin in a Nicotiana benthamiana transient gene expression system. Biotechnol Bioeng. 2016;113:901–906. doi: 10.1002/bit.25854. PubMed DOI
Hanittinan O., Oo Y., Chaotham C., Rattanapisit K., Shanmugaraj B., Phoolcharoen W. Expression optimization, purification and in vitro characterization of human epidermal growth factor produced in Nicotiana benthamiana. Biotechnol. Rep. 2020;28:e00524. doi: 10.1016/j.btre.2020.e00524. PubMed DOI PMC
Diamos A.G., Hunter J.G.L., Pardhe M.D., Rosenthal S.H., Sun H., Foster B.C., DiPalma M.P., Chen Q., Mason H.S. High level production of monoclonal antibodies using an optimized plant expression system. Front. Bioeng. Biotechnol. 2020;7:472. doi: 10.3389/fbioe.2019.00472. PubMed DOI PMC
Heidari-Japelaghi R., Valizadeh M., Haddad R., Dorani-Uliaiea E., Jalali-Javaran M. Production of bioactive human IFN-γ protein by agroinfiltration in tobacco. Protein Expr. Purif. 2020;173:105616. doi: 10.1016/j.pep.2020.105616. PubMed DOI
Guy E., Boulain H., Aigu Y., Pennec C.L., Chawki K., Morlière S., Schädel K., Kunert G., Simon J.-C., Sugio A. Optimization of agroinfiltration in Pisum sativum provides a new tool for studying the salivary protein functions in the pea aphid complex. Front Plant Sci. 2016;7:1171. doi: 10.3389/fpls.2016.01171. PubMed DOI PMC
Kokkirala V.R., Peng Y., Abbagani S., Zhu Z., Umate P. Subcellular localization of proteins of Oryza sativa L. in the model tobacco and tomato plants. Plant Signal Behav. 2010;5:1336–1341. doi: 10.4161/psb.5.11.13318. PubMed DOI PMC
Deguchi M., Bogush D., Weeden H., Spuhler Z., Potlakayala S., Kondo T., Zhang Z.J., Rudrabhatla S. Establishment and optimization of a hemp (Cannabis sativa L.) agroinfiltration system for gene expression and silencing studies. Sci. Rep. 2020;10:3504. doi: 10.1038/s41598-020-60323-9. PubMed DOI PMC
Sung H.P. In Vitro culture and transformation by agroinfiltration of lisianthus (Eustoma russellianus) pollen. J. Life Sci. 2004;14:1018–1022.
Hussein G.M., Abu El-Heba G.A., Abdou S.M., Abdallah N.A. Optimization of transient gene expression system in Gerbera jamesonii petals. GM Crops Food. 2013;4:50–57. doi: 10.4161/gmcr.23925. PubMed DOI
Mani T., Manjula S. Optimization of Agrobacterium-mediated transient gene expression and endogenous gene silencing in Piper colubrinum Link. by vacuum infiltration. Plant Cell Tiss. Organ Cult. 2011;105:113–119. doi: 10.1007/s11240-010-9836-z. DOI
Santos-Rosa M., Poutaraud A., Merdinoglu D., Mestre P. Development of a transient expression system in grapevine via agro-infiltration. Plant Cell Rep. 2008;27:1053–1063. doi: 10.1007/s00299-008-0531-z. PubMed DOI
Faizal A., Geelen D. Agroinfiltration of intact leaves as a method for the transient and stable transformation of saponin producing Maesa lanceolata. Plant Cell Rep. 2012;31:1517–1526. doi: 10.1007/s00299-012-1266-4. PubMed DOI
Chevreau E., Dousset N., Joffrion C., Richer A., Charrier A., Vergne E. Agroinfiltration is a key factor to improve the efficiency of apple and pear transformation. Sci. Hortic. 2019;251:150–154. doi: 10.1016/j.scienta.2019.03.003. DOI
Abd-Aziz N., Tan B.C., Rejab N.A., Othman R.Y., Khalid N. A new plant expression system for producing pharmaceutical proteins. Mol. Biotechnol. 2020;62:240–251. doi: 10.1007/s12033-020-00242-2. PubMed DOI
Sohi H.H., Jourabchi E., Khodabandeh M. Transient expression of human growth hormone in potato (Solanum tuberosum), tobacco (Nicotiana tobacum) and lettuce (Lactuca sativa) leaves by agroinfiltration. Iranian J. Biotechnol. 2005;3:109–113.
Koscianska E., Kalantidis K., Wypijewski K., Sadowski J., Tabler M. Analysis of RNA silencing in agroinfiltrated leaves of Nicotiana benthamiana and Nicotiana tabacum. Plant Mol. Biol. 2005;59:647–661. doi: 10.1007/s11103-005-0668-x. PubMed DOI
Yamamoto T., Hoshikawa K., Ezura K., Okazawa R., Fujita S., Takaoka M., Mason H.S., Ezura H., Miura K. Improvement of the transient expression system for production of recombinant proteins in plants. Sci. Rep. 2018;8:4755. doi: 10.1038/s41598-018-23024-y. PubMed DOI PMC
Affandi N.D., Mostaffa N.H., Al-Idrus A. Interactomics: Development of an efficient and improved Agrobacterium tumefaciens-mediated transformation method for transient expression of heterologous protein in recalcitrant plant tissues in planta. Res. Square. 2020 doi: 10.21203/rs.2.22256/v1. DOI
Belhaj K., Chaparro-Garcia A., Kamoun S., Nekrasov V. Plant genome editing made easy: Targeted mutagenesis in model and crop plants using the CRISPR/Cas system. Plant Methods. 2013;9:39. doi: 10.1186/1746-4811-9-39. PubMed DOI PMC
Fischer R., Emans N. Molecular farming of pharmaceutical proteins. Transgenic Res. 2000;9:279–299. doi: 10.1023/A:1008975123362. PubMed DOI
Song G., Yamaguchi K. Efficient agroinfiltration-mediated transient GUS expression for assaying different promoters in rice. Plant Biotechnol. 2003;20:235–239. doi: 10.5511/plantbiotechnology.20.235. DOI
Coura R., Nardi N. A role for adeno-associated viral vectors in gene therapy. Genet. Mol. Biol. 2008;31:1–11. doi: 10.1590/S1415-47572008000100001. DOI
Soyars C.L., Peterson B.A., Burr C.A., Nimchuk Z.L. Cutting edge genetics: CRISPR/Cas9 editing of plant genomes. Plant Cell Physiol. 2018;59:1608–1620. doi: 10.1093/pcp/pcy079. PubMed DOI
Sharma R., Liang Y., Lee M.Y., Pidatala V.R., Mortimer J.C., Scheller H.V. Agrobacterium-mediated transient transformation of sorghum leaves for accelerating functional genomics and genome editing studies. BMC Res. Notes. 2020;13:116. doi: 10.1186/s13104-020-04968-9. PubMed DOI PMC
Li J.F., Norville J., Aach J., McCormack M., Zhang D., Bush J., Church G.M., Sheen J. Multiplex and homologous recombination–mediated genome editing in Arabidopsis and Nicotiana benthamiana using guide RNA and Cas9. Nat. Biotechnol. 2013;31:688–691. doi: 10.1038/nbt.2654. PubMed DOI PMC
Jiang W., Zhou H., Bi H., Fromm M., Yang B., Weeks D.P. Demonstration of CRISPR/Cas9/sgRNA-mediated targeted gene modification in Arabidopsis, tobacco, sorghum and rice. Nucleic Acids Res. 2013;41:e188. doi: 10.1093/nar/gkt780. PubMed DOI PMC
Nekrasov V., Staskawicz B., Weigel D., Jones J.D.G., Kamoun S. Targeted mutagenesis in the model plant Nicotiana benthamiana using Cas9 RNA-guided endonuclease. Nat. Biotechnol. 2013;31:691–693. doi: 10.1038/nbt.2655. PubMed DOI
Upadhyay S.K., Kumar J., Alok A., Tuli R. RNA-guided genome editing for target gene mutations in wheat. G3. 2013;3:2233–2238. doi: 10.1534/g3.113.008847. PubMed DOI PMC
Piatek A., Ali Z., Baazim H., Li L., Abulfaraj A., Al-Shareef S., Aouida M., Mahfouz M.M. RNA-guided transcriptional regulation in planta via synthetic dCas9-based transcription factors. Plant Biotechnol. J. 2015;13:578–589. doi: 10.1111/pbi.12284. PubMed DOI
Yin K., Han T., Liu G., Chen T., Wang Y., Yu A.Y.L., Liu Y. A geminivirus-based guide RNA delivery system for CRISPR/Cas9 mediated plant genome editing. Sci. Rep. 2015;5:14926. doi: 10.1038/srep14926. PubMed DOI PMC
Schmitz D.J., Ali Z., Wang C., Aljedaani F., Hooykaas P.J.J., Mahfouz M., de Pater S. CRISPR/Cas9 Mutagenesis by translocation of Cas9 protein into plant cells via the Agrobacterium Type IV secretion system. Front. Genome Ed. 2020;2:6. doi: 10.3389/fgeed.2020.00006. PubMed DOI PMC
Baltes N.J., Hummel A.W., Konecna E., Cegan R., Bruns A.N., Bisaro D.M., Voytas D.F. Conferring resistance to geminiviruses with the CRISPR–Cas prokaryotic immune system. Nat. Plants. 2015;1:1–4. doi: 10.1038/nplants.2015.145. PubMed DOI PMC
Vazquez-Vilar M., Bernabé-Orts J.M., Fernandez-del-Carmen A., Ziarsolo P., Blanca J., Granell A., Orzaez D. A modular toolbox for gRNA–Cas9 genome engineering in plants based on the GoldenBraid standard. Plant Methods. 2016;12:10. doi: 10.1186/s13007-016-0101-2. PubMed DOI PMC
Ali Z., Abul-faraj A., Li L., Ghosh N., Piatek M., Mahjoub A., Aouida M., Piatek A., Baltes N.J., Voytas D.F., et al. Efficient virus-mediated genome editing in plants using the CRISPR/Cas9 system. Mol. Plant. 2015;8:1288–1291. doi: 10.1016/j.molp.2015.02.011. PubMed DOI
Alagoz Y., Gurkok T., Zhang B., Unver T. Manipulating the biosynthesis of bioactive compound alkaloids for next-generation metabolic engineering in opium poppy using CRISPR-Cas9 genome editing technology. Sci. Rep. 2016;6:30910. doi: 10.1038/srep30910. PubMed DOI PMC
Mubarik M.S., Khan S.H., Ahmad A., Khan Z., Sajjad M., Khan I.A. Disruption of phytoene desaturase gene using transient expression of Cas9: gRNA Complex. Int. J. Agric. Biol. 2016;18 doi: 10.17957/IJAB/15.0199. DOI
Jia H., Wang N. Targeted genome editing of sweet orange using Cas9/sgRNA. PLoS ONE. 2014;9:e93806. doi: 10.1371/journal.pone.0093806. PubMed DOI PMC
Jia H., Zhang Y., Orbovic V., Xu J., White F., Jones J., Wang N. Genome editing of the disease susceptibility gene CsLOB1 in citrus confers resistance to citrus canker. Plant Biotechnol. J. 2016;15:817–823. doi: 10.1111/pbi.12677. PubMed DOI PMC
Martín-Pizarro C., Triviño J.C., Posé D. Functional analysis of the TM6 MADS-box gene in the octoploid strawberry by CRISPR/Cas9-directed mutagenesis. J. Exp. Bot. 2019;70:885–895. doi: 10.1093/jxb/ery400. PubMed DOI PMC
Stajič E., Kiełkowska A., Murovec J., Bohanec B. Deep sequencing analysis of CRISPR/Cas9 induced mutations by two delivery methods in target model genes and the CENH3 region of red cabbage (Brassica oleracea var. capitata f. rubra) Plant Cell Tissue Organ Cult. 2019;139:227–235. doi: 10.1007/s11240-019-01665-9. DOI
Syombua E.D., Zhang Z., Tripathi J.N. A CRISPR/Cas9-based genome-editing system for yam (Dioscorea spp.) Plant Biotechnol. J. 2020;19:645–647. doi: 10.1111/pbi.13515. PubMed DOI PMC
Chen K., Gao C. Targeted genome modification technologies and their applications in crop improvements. Plant Cell Rep. 2014;33:575–583. doi: 10.1007/s00299-013-1539-6. PubMed DOI
Bortesi L., Fischer R. The CRISPR/Cas9 system for plant genome editing and beyond. Biotechnol. Adv. 2015;33:41–52. doi: 10.1016/j.biotechadv.2014.12.006. PubMed DOI
Goodin M.M., Dietzgen R.G., Schichnes D., Ruzin S., Jackson A.O. pGD vectors: Versatile tools for the expression of green and red fluorescent protein fusions in agroinfiltrated plant leaves. Plant J. 2002;31:375–383. doi: 10.1046/j.1365-313X.2002.01360.x. PubMed DOI
Jia H., Wang N. Xcc-facilitated agroinfiltration of citrus leaves: A tool for rapid functional analysis of transgenes in citrus leaves. Plant Cell Rep. 2014;33:1993–2001. doi: 10.1007/s00299-014-1673-9. PubMed DOI
Poles L., Licciardello C., Distefano G., Nicolosi E., Gentile A., Malfa S.L. Recent advances of in vitro culture for the application of new breeding techniques in citrus. Plants. 2020;9:938. doi: 10.3390/plants9080938. PubMed DOI PMC
Li X., Li H., Zhao Y., Zong P., Zhan Z., Piao Z. Establishment of Agrobacterium-mediated genetic transformation and application of CRISPR/Cas9 gene editing system to Chinese cabbage (Brassica rapa L. ssp. pekinensis) Res. Square. 2020 doi: 10.21203/rs.3.rs-27074/v1. DOI
Grefen C., Donald N., Hashimoto K., Kudla J., Schumacher K., Blatt M.R. A ubiquitin-10 promoter-based vector set for fluorescent protein tagging facilitates temporal stability and native protein distribution in transient and stable expression studies. Plant J. 2010;64:355–365. doi: 10.1111/j.1365-313X.2010.04322.x. PubMed DOI
Picard K., Lee R., Hellens R., Macknight R. Transient gene expression in Medicago truncatula leaves via agroinfiltration. In: Rose J.R., editor. Legume Genomics Methods Protocols. Humana Press; Totowa, NJ, USA: 2013. pp. 215–226. PubMed
Lombardi R., Villani M.E., Di Carli M., Brunetti P., Benvenuto E., Donini M. Optimisation of the purification process of a tumour-targeting antibody produced in N. benthamiana using vacuum-agroinfiltration. Transgenic Res. 2010;19:1083–1097. doi: 10.1007/s11248-010-9382-9. PubMed DOI
D’Aoust M.A., Lavoie P.O., Belles-Isles J., Bechtold N., Martel M., Vézina L.P. Transient expression of antibodies in plants using syringe agroinfiltration. Methods Mol. Biol. 2009;483:41–50. PubMed
Du J., Rietman H., Vleeshouwers V.G.A.A. Agroinfiltration and PVX agroinfection in potato and Nicotiana benthamiana. J. Visual Exp. 2013;83:e50971. doi: 10.3791/50971. PubMed DOI PMC
Schöb H., Kunz C., Meins J.F. Silencing of transgenes introduced into leaves by agroinfiltration: A simple, rapid method for investigating sequence requirements for gene silencing. Mol. Gen. Genet. 1997;256:581–585. doi: 10.1007/s004380050604. PubMed DOI
Voinnet O., Baulcombe D. Systemic signalling in gene silencing. Nature. 1997;389:553. doi: 10.1038/39215. PubMed DOI
Voinnet O., Vain P., Angell S., Baulcombe D.C. Systemic spread of sequence-specific transgene RNA degradation in plants is initiated by localized introduction of ectopic promoterless DNA. Cell. 1998;95:177–187. doi: 10.1016/S0092-8674(00)81749-3. PubMed DOI
Bertazzon N., Raiola A., Castiglioni C., Gardiman M., Angelini E., Borgo M., Ferrari S. Transient silencing of the grapevine gene VvPGIP1 by agroinfiltration with a construct for RNA interference. Plant Cell Rep. 2012;31:133–143. doi: 10.1007/s00299-011-1147-2. PubMed DOI
Dubey V.K., Lee U.G., Kwon D.H., Lee S.H. Agroinfiltration-based expression of hairpin RNA in soybean plants for RNA interference against Tetranychus urticae. Pestic. Biochem. Physiol. 2017;142:53–58. doi: 10.1016/j.pestbp.2017.01.004. PubMed DOI
Abbink T.E.M., Tjernberg P.A., Bol J.F., Linthorst H.J.M. Tobacco mosaic virus helicase domain induces necrosis in N gene-carrying tobacco in the absence of virus replication. Mol. Plant Microbe Interact. 1998;11:1242–1246. doi: 10.1094/MPMI.1998.11.12.1242. DOI
Palanichelvam K., Cole A.B., Shababi M., Schoelz J.E. Agroinfiltration of cauliflower mosaic virus gene vi elicits hypersensitive response in Nicotiana species. Mol. Plant Microbe Interact. 2000;13:1275–1279. doi: 10.1094/MPMI.2000.13.11.1275. PubMed DOI
Van der Hoorn R.A.L., Laurent F., Roth R., De Wit P.J.G.M. Agroinfiltration is a versatile tool that facilitates comparative analyses of Avr9/Cf-9-induced and Avr4/Cf-4-induced necrosis. Mol. Plant-Microbe Interact. 2000;13:439–446. doi: 10.1094/MPMI.2000.13.4.439. PubMed DOI
Bendahmane M., Lynch C., II, Tulsiani D.R. Calmodulin signals capacitation and triggers the agonist-induced acrosome reaction in mouse spermatozoa. Arch. Biochem Biophys. 2001;390:1–8. doi: 10.1006/abbi.2001.2364. PubMed DOI
Peart J.R., Lu R., Sadanandom A., Malcuit I., Moffett P., Brice D.C., Schauser L., Jaggard D.A.W., Xiao S., Coleman M.J., et al. Ubiquitin ligase-associated protein SGT1 is required for host and nonhost disease resistance in plants. Proc. Natl. Acad. Sci. USA. 2002;99:10865–10869. doi: 10.1073/pnas.152330599. PubMed DOI PMC
Leckie B.M., Stewart C.N. Agroinfiltration as a technique for rapid assays for evaluating candidate insect resistance transgenes in plants. Plant Cell Rep. 2011;30:325–334. doi: 10.1007/s00299-010-0961-2. PubMed DOI
Yang Y., Li R., Qi M. In vivo analysis of plant promoters and transcription factors by agroinfiltration of tobacco leaves. Plant J. 2000;22:543–551. doi: 10.1046/j.1365-313x.2000.00760.x. PubMed DOI
Rancé I., Norre F., Gruber V., Theisen M. Combination of viral promoter sequences to generate highly active promoters for heterologous therapeutic protein over-expression in plants. Plant Sci. 2002;162:833–842. doi: 10.1016/S0168-9452(02)00031-6. DOI
Merle C., Perret S., Lacour T., Jonval V., Hudaverdian S., Garrone R., Ruggiero F., Theisen M. Hydroxylated human homotrimeric collagen I in Agrobacterium tumefaciens-mediated transient expression and in transgenic tobacco plant. FEBS Lett. 2002;515:114–118. doi: 10.1016/S0014-5793(02)02452-3. PubMed DOI
Tampakaki A.P., Panopoulos N.J. Elicitation of hypersensitive cell death by extracellularly targeted HrpZPsph produced In Planta. Mol. Plant Microbe Interact. 2000;13:1366–1374. doi: 10.1094/MPMI.2000.13.12.1366. PubMed DOI
Vaquero C., Sack M., Schuster F. A carcinoembryonic antigen-specific diabody produced in tobacco. FASEB J. 2002;16:408–410. doi: 10.1096/fj.01-0363fje. PubMed DOI
Kathuria S., Sriraman R., Nath R., Sack M., Pal R., Artsaenko O., Talwar G.P., Fischer R., Finnern R. Efficacy of plant-produced recombinant antibodies against HCG. Hum. Reprod. 2002;17:2054–2061. doi: 10.1093/humrep/17.8.2054. PubMed DOI
Vézina L.P., Faye L., Lerouge P., D’Aoust M.-A., Marquet-Blouin E., Burel C., Lavoie P.-O., Bardor M., Gomord V. Transient co-expression for fast and high-yield production of antibodies with human-like N-glycans in plants. Plant Biotechnol. J. 2009;7:442–455. doi: 10.1111/j.1467-7652.2009.00414.x. PubMed DOI
Habibi-Pirkoohi M., Malekzadeh-Shafaroudi S., Marashi H., Moshtaghi N., Nassiri M., Zibaee S. Transient expression of foot and mouth disease virus (FMDV) coat protein in tobacco (Nicotiana tabacom) via agroinfiltration. Iranian J. Biotechnol. 2014;12:28–34. doi: 10.15171/ijb.1015. DOI
Liu L., Zhang Y., Tang S., Zhao Q., Zhang Z., Zhang H., Dong L., Guo H., Xie Q. An efficient system to detect protein ubiquitination by agroinfiltration in Nicotiana benthamiana. Plant J. 2010;61:893–903. doi: 10.1111/j.1365-313X.2009.04109.x. PubMed DOI
Pillay P., Kunert K.J., van Wyk S., Makgopa M.E., Cullis C.A., Vorster B.J. Agroinfiltration contributes to VP1 recombinant protein degradation. Bioengineered. 2016;7:459–477. doi: 10.1080/21655979.2016.1208868. PubMed DOI PMC
Liu W., Mazarei M., Rudis M.R., Fethe M.H., Stewart J.C.N. Rapid in vivo analysis of synthetic promoters for plant pathogen phytosensing. BMC Biotechnol. 2011;11:108. doi: 10.1186/1472-6750-11-108. PubMed DOI PMC
D’Aoust M.A., Lavoie P.O., Couture M.M.-J., Trépanier S., Guay J.-M., Dargis M., Mongrand S., Landry N., Ward B.J., Vézina L.-P. Influenza virus-like particles produced by transient expression in Nicotiana benthamiana induce a protective immune response against a lethal viral challenge in mice. Plant Biotechnol. J. 2008;6:930–940. doi: 10.1111/j.1467-7652.2008.00384.x. PubMed DOI
Rajabi A., Fahmideh L., Keikhasaber M., Omran V.G. Evaluation of transient expression of AS1 and 4′CGT genes in African violets petals by agroinfiltration for production new color in the flower. Iranian J. Biol. 2021;2021:2383–2738.
Liu P., Wang Y., Ulrich R.G., Simmons C.W., VanderGheynst J.S., Gallo R.L., Huang C.-M. Leaf-Encapsulated vaccines: Agroinfiltration and transient expression of the antigen staphylococcal endotoxin B in radish leaves. J. Immunol. Res. 2018;2018:3710961. doi: 10.1155/2018/3710961. PubMed DOI PMC
Kaushik P. Standardisation of an agroinfiltration protocol for eggplant fruits and proving its usefulness by over-expressing the SmHQT gene. Preprints. 2019 doi: 10.20944/preprints201908.0129.v1. DOI
Hesami M., Alizadeh M., Naderi R., Tohidfar M. Forecasting and optimizing Agrobacterium-mediated genetic transformation via ensemble model- fruit fly optimization algorithm: A data mining approach using chrysanthemum databases. PLoS ONE. 2020;15:e0239901. doi: 10.1371/journal.pone.0239901. PubMed DOI PMC
Leuzinger K., Dent M., Hurtado J., Stahnke J., Lai H., Zhou X., Chen Q. Efficient agroinfiltration of plants for high-level transient expression of recombinant proteins. J. Vis. Exp. 2013;77:50521. doi: 10.3791/50521. PubMed DOI PMC
Mirakhorli N., Reyhani A.H., Shiran B., Hooshmand S. Optimization of transient expression by Agrobacterium in almond. J. Genet. Eng. Biotechnol. 2014;3:9–18.
Kumar S. Biosafety and Biosecurity Issues in Biotechnology Research. Biosafety. 2015;4:1. doi: 10.4172/2167-0331.1000e153. DOI
Breyer D., Kopertekh L., Reheul D. Alternatives to antibiotic resistance marker genes for in vitro selection of genetically modified plants—Scientific developments, current use, operational access and biosafety considerations. Crit. Rev. Plant Sci. 2014;33:286–330. doi: 10.1080/07352689.2013.870422. DOI
Shanmugaraj B., Ramalingam S. Plant expression platform for the production of recombinant pharmaceutical proteins. Austin J. Biotechnol. Bioeng. 2014;1:4.
Mahesh S. The state of art of new transgenic techniques in plant breeding: A review. J. Adv. Biol. Biotechnol. 2016;9:1–11. doi: 10.9734/JABB/2016/27846. DOI
Grosse-Holz F., Madeira L., Zahid M.A., Songer M., Kourelis J., Fesenko M., Ninck S., Kaschani F., Kaiser M., van der Hoorn R.A.L. Three unrelated protease inhibitors enhance accumulation of pharmaceutical recombinant proteins in Nicotiana benthamiana. Plant Biotechnol. J. 2018;16:1797–1810. doi: 10.1111/pbi.12916. PubMed DOI PMC