Agrobacterium
Dotaz
Zobrazit nápovědu
... xylobiont 443 -- 108.5 Endofytické bakterie 443 -- 109 Důležité fytopatogenní bakterie 444 -- 109.1 Agrobacterium ...
Vydání první 476 stran : ilustrace, portréty ; 31 cm
Vysokoškolská učebnice, která se zaměřuje na různé druhy mikroorganismů a jejich ekologii a patogenitu.
- MeSH
- ekologie MeSH
- infekční nemoci MeSH
- mikrobiologické jevy MeSH
- mikrobiologie životního prostředí MeSH
- molekulární biologie MeSH
- Publikační typ
- monografie MeSH
- Konspekt
- Mikrobiologie
- Učební osnovy. Vyučovací předměty. Učebnice
- NLK Obory
- mikrobiologie, lékařská mikrobiologie
- NLK Publikační typ
- učebnice vysokých škol
Greater wax moth (GWM), Galleria mellonella (Lepidoptera: Pyralidae), is a highly destructive honey bee pest prevalent throughout the world. It is considered as a major factor to the alarming decline in honey bee population. GWM destroys active honey combs as it feeds on the beeswax and lays eggs in bee hives, and the primary food of their larva is beeswax. Beeswax is a polymer composed mainly of saturated and unsaturated, linear and complex monoesters, and hydrocarbons. The most frequent bond in beeswax is ethene (CH2-CH2) which is also found in the common plastic polyethylene. As wax-digestion is not a common animal character, we hypothesized about a possible role of GWM gut microflora in the process; which could possibly degrade polyethylene-like polymers as well. This study was aimed to identify the GWM gut microflora via culture-dependant approach. We characterized several bacterial species based on the culture characteristics, Gram-reaction, and various biochemical tests. Sequencing of 16S-rDNA revealed nine bacterial and one microalgal species from GWM gut. The bacterial species included Gram-positive Exiguobacterium aestuarii, Bacillus circulans, Microbacterium zaea, Microbacterium sp. and Enterococcus faecalis; Gram-negative Agrobacterium sp., Sphingomonas pseudosanguinis, Sphingobium yanoikuyae and Acinetobacter radioresistens; the microalgae was Picochlorum oklahomensis. Some of them have been previously reported to degrade polycyclic aromatic hydrocarbon, low-density polyethylene, and 2-methylphenanthrene. Meanwhile, the microalga, P. oklahomensis, was reported to steal bacterial genes to adapt with abiotic stresses. Further investigation is necessary to explore the precise details about polymer degrading capabilities of these microbes; nevertheless, this study builds a foundation for elaborate and advanced future research.
Red rot of sugarcane caused by the hemi-biotrophic fungal pathogen, Colletotrichum falcatum, is a major threat to sugarcane cultivation in many tropical countries such as India, Bangladesh, and Pakistan. With the accumulating information on pathogenicity determinants, namely, effectors and pathogen-associated molecular patterns (PAMPs) of C. falcatum, it is of paramount importance to decipher the functional role of these molecular players that may ultimately decide upon the outcome of sugarcane-C. falcatum interaction. Since C. falcatum is a multinucleated filamentous fungus, the conventional Agrobacterium-mediated transformation method could not be effectively utilized for targeted manipulation of genomic DNA. Hence, we developed a highly efficient protoplast-based transformation method for the virulent pathotype of C. falcatum - Cf671, which involves isolation of protoplast, polyethylene glycol (PEG)-mediated transformation, and regeneration of transformed protoplasts into hyphal colonies. In this study, germinating conidiospores of Cf671 were treated with different enzyme-osmoticum combinations, out of which 20 mg/mL lysing enzyme with 5 mg/mL β-glucanase in an osmoticum of 1.2 mol/L MgSO4 yielded maximum number of viable protoplasts. The resultant protoplasts were transformed with pAsp shuttle vector. Transformed protoplasts were regenerated into hyphal colonies under hygromycin selection and observed for GFP fluorescence. This protocol resulted in a transformation efficiency of > 130 transformants per μg of plasmid DNA. This method of transformation is rapid, simple, and more efficient for gene knockout, site-directed mutagenesis, ectopic expression, and other genetic functional characterization experiments in C. falcatum, even with large vectors (> 10 kb) and can also be applied for other filamentous fungi.
The microbial biofilms are ubiquitous in nature and represent important biological entities that affect various aspects of human life. As such, they attracted considerable attention during last decades, with the factors affecting the biofilm development being among the frequently studied topics. In our work, the biofilm was cultivated on the surface of polypropylene fibers in a nutrient medium inoculated by the suspension of two unsterile soils. The effects of ionic strength and valence of salt on the amount of the produced biofilm and on composition of biofilm microbial communities were investigated. The effect of valence was significant in some OTUs: Arthrobacter/Pseudarthrobacter/Paenarthrobacter and Bacillus with positive response to monovalent salt (KCl) and Streptomyces, Lysinibacillus, Pseudomonas, and Ensifer with positive response to divalent salt (MgSO4). The significant preference for a certain concentration of salts was observed in the case of OTUs Agrobacterium, Bacillus (both 100 mM), and Brevundimonas (30 mM). A new quantification method based on measuring of oxidizable organic carbon in biofilm biomass, based on dichromate oxidation, was used. We compared the results obtained using this method with results of crystal violet destaining and measuring of extracted DNA concentration as proxies of the biofilm biomass. The dichromate oxidation is simple, inexpensive, and fast, and our results show that it may be more sensitive than crystal violet destaining. The highest biomass values tended to associate with high concentrations of the divalent salt. This trend was not observed in treatments where the monovalent salt was added. Our data confirm the importance of inorganic ions for biofilm composition and biomass accumulation.
- MeSH
- Bacteria klasifikace účinky léků genetika izolace a purifikace MeSH
- bakteriologické techniky MeSH
- biofilmy účinky léků růst a vývoj MeSH
- biomasa MeSH
- kultivační média chemie MeSH
- mikrobiota účinky léků MeSH
- minerály analýza farmakologie MeSH
- polypropyleny MeSH
- půdní mikrobiologie MeSH
- soli analýza farmakologie MeSH
- Publikační typ
- časopisecké články MeSH
Silver nanoparticles (Ag. NPs) have shown a biological activity range, synthesized under different environment-friendly approaches. Ag. NPs were synthesized using aqueous crude extract (ACE) isolated from Plantago lanceolata. The ACE and Ag. NPs were characterized and assessed their biological and antioxidant activities. The existence of nanoparticles (NPs) was confirmed by color shift, atomic force microscopy (AFM), and UV-Vis's spectroscopy. The FT-IR analysis indicated the association of biomolecules (phenolic acid and flavonoids) to reduce silver (Ag+) ions. The SEM study demonstrated a sphere-shaped and mean size in the range of 30 ± 4 nm. The EDX spectrum revealed that the Ag. NPs were composed of 54.87% Ag with 20 nm size as identified by SEM and TEM. AFM has ended up being exceptionally useful in deciding morphological elements and the distance across of Ag. NPs in the scope of 23-30 nm. The TEM image showed aggregations of NPs and physical interaction. Ag. NPs formation also confirmed by XPS, DRS and BET studies. Ag. NPs showed efficient activity as compared to ACE, and finally, the bacterial growth was impaired by biogenic NPs. The lethal dose (LD50) of Ag. NPs against Agrobacterium tumefaciens, Proteus vulgaris, Staphylococcus aureus, and Escherichia coli were 45.66%, 139.71%, 332.87%, and 45.54%, with IC50 (08.02 ± 0.68), (55.78 ± 1.01), (12.34 ± 1.35) and (11.68 ± 1.42) respectively, suppressing the growth as compared to ACE. The antioxidant capacity, i.e., 2,2-diphenyl-1-picrylhydrazyl (DPPH) of Ag. NPs were assayed. ACE and Ag. NPs achieved a peak antioxidant capacity of 62.43 ± 2.4 and 16.85 ± 0.4 μg mL-1, compared to standard (69.60 ± 1.1 at 100 μg mL-1) with IC50 (369.5 ± 13.42 and 159.5 ± 10.52 respectively). Finally, the Ag. NPs synthesized by P. lanceolata extract have an excellent source of bioactive natural products (NP). Outstanding antioxidant, antibacterial activities have been shown by NPs and can be used in various biological techniques in future research.
- MeSH
- antibakteriální látky chemická syntéza chemie farmakologie MeSH
- antioxidancia chemická syntéza chemie farmakologie MeSH
- Bacteria účinky léků MeSH
- bakteriální infekce farmakoterapie MeSH
- kovové nanočástice chemie ultrastruktura MeSH
- lidé MeSH
- nanotechnologie MeSH
- Plantago chemie MeSH
- stříbro chemie MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
The Venus flytrap (Dionaea muscipula J. Ellis) is a carnivorous plant able to synthesize large amounts of phenolic compounds, such as phenylpropanoids, flavonoids, phenolic acids, and 1,4-naphtoquinones. In this study, the first genetic transformation of D. muscipula tissues is presented. Two wild-type Rhizobium rhizogenes strains (LBA 9402 and ATCC 15834) were suitable vector organisms in the transformation process. Transformation led to the formation of teratoma (transformed shoot) cultures with the bacterial rolB gene incorporated into the plant genome in a single copy. Using high-pressure liquid chromatography, we demonstrated that transgenic plants were characterized by an increased quantity of phenolic compounds, including 1,4-naphtoquinone derivative, plumbagin (up to 106.63 mg × g-1 DW), and phenolic acids (including salicylic, caffeic, and ellagic acid), in comparison to non-transformed plants. Moreover, Rhizobium-mediated transformation highly increased the bactericidal properties of teratoma-derived extracts. The antibacterial properties of transformed plants were increased up to 33% against Staphylococcus aureus, Enterococcus faecalis, and Escherichia coli and up to 7% against Pseudomonas aeruginosa. For the first time, we prove the possibility of D. muscipula transformation. Moreover, we propose that transformation may be a valuable tool for enhancing secondary metabolite production in D. muscipula tissue and to increase bactericidal properties against human antibiotic-resistant bacteria. KEY POINTS: • Rhizobium-mediated transformation created Dionaea muscipula teratomas. • Transformed plants had highly increased synthesis of phenolic compounds. • The MBC value was connected with plumbagin and phenolic acid concentrations.
- MeSH
- Agrobacterium genetika MeSH
- antibakteriální látky farmakologie MeSH
- Droseraceae * MeSH
- fenoly MeSH
- lidé MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
Claviceps paspali is used in the pharmaceutical industry for the production of ergot alkaloids. This fungus also biosynthesizes paspalitrems, indole diterpene (IDT) mycotoxins that cause significant economic losses in agriculture and represent safety concerns for ergot alkaloid manufacture. Here, we use Agrobacterium-mediated transformation to replace the idtP and the idtF genes in the IDT biosynthetic gene cluster of C. paspali with a selectable marker gene. We show that the ΔidtP knockout mutant produces paspaline, the first IDT intermediate of the pathway. The ΔidtF strain produces unprenylated IDTs such as paspalinine and paspaline. These experiments validate the function of idtP as the gene encoding the cytochrome P450 monooxygenase that oxidizes and demethylates paspaline to produce 13-desoxypaxilline, and that of idtF as the gene that encodes the α-prenyltransferase that prenylates paspalinine at the C20 or the C21 positions to yield paspalitrems A and C, respectively. In addition, we also show that axenic cultures of the wild type, the ΔidtP and the ΔidtF mutant C. paspali strains fail to produce an assembly of IDTs that are present in C. paspali-Paspalum spp. associations.
Nanotechnology, new fascinating field of science, is bringing many application's options. However, it is necessary to understand their potential environmental risk and toxicity. Zinc selenide quantum dots (ZnSe QDs) are getting valuable due to wide industrial usage, mainly as cadmium free diodes or stabilizing ligand. Thanks to unique properties, they could also open the possibilities of application in the agriculture. Their effects on living organisms, including plants, are still unknown. Therefore, the attention of this work was given to antioxidant response of Arabidopsis thaliana to 100 and 250 μM ZnSe QDs foliar feeding. ZnSe QDs treatment had no statistically significant differences in morphology but led to increased antioxidant response in the leaves at the level of gene expression and production secondary antioxidant metabolites. Concurrently, analysis of growth properties of Agrobacterium tumefaciens was done. 250 μM ZnSe solution inhibited the Agrobacterium tumefaciens viability by 60%. This is the first mention about effect ZnSe QDs on the plants. Although QDs induced oxidative stress, the apply treatment dose of ZnSe QDs did not have significant toxic effect on the plants and even no morphological changes were observed. However, the same amount of ZnSe QD induced an inhibitory effect on Agrobacterium tumefaciens.
- MeSH
- Agrobacterium tumefaciens účinky léků růst a vývoj MeSH
- antioxidancia metabolismus MeSH
- Arabidopsis genetika růst a vývoj metabolismus MeSH
- exprese genu * MeSH
- kvantové tečky toxicita MeSH
- metabolomika * MeSH
- sloučeniny selenu aplikace a dávkování toxicita MeSH
- sloučeniny zinku aplikace a dávkování toxicita MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Many Gram-negative bacteria use N-acyl-homoserine lactones (N-acyl-HSL) as quorum sensing signal molecules. N-acyl-HSL are the subject of investigation by many research groups. Simple methods have been designed to detect N-acyl-HSL using bacterial strains that doesn't produce its own signal molecules, but the reporter gene is expressed when exogenous N-acyl-HSL are present. This article reviews and discusses the most common and most currently obtainable systems using bacteria such as Agrobacterium tumefaciens, Chromobacterium violaceum, Escherichia coli or Vibrio fischeri. These biological sensing elements can be used to detect and study a wide range of N-acyl-HSL and related molecules interfering with quorum sensing systems.
Organophosphorus compounds have been widely employed to the development of warfare nerve agents and pesticides, resulting in a huge number of people intoxicated annually, being a serious problem of public health. Efforts worldwide have been done in order to design new technologies that are capable of combating or even reversing the poisoning caused by these OP nerve agents. In this line, the bioremediation arises as a promising and efficient alternative for this purpose. As an example of degrading enzymes, there is the organophosphate-degrading (OpdA) enzyme from Agrobacterium radiobacter, which has been quite investigated experimentally due to its high performance in the degradation of neurotoxic nerve agents. This work aims to look into the structural and electronic details that govern the interaction modes of these compounds in the OpdA active site, with the posterior hydrolysis reaction prediction. Our findings have brought about data about the OpdA performance towards different nerve agents, and among them, we may realize that the degradation efficiency strongly depends on the nerve agent structure and its stereochemistry, being in this case the compound Tabun the one more effectively hydrolyzed. By means of the chemical bonds (AIM) and orbitals (FERMO) analysis, it is suggested that the initial reactivity of the OP nerve agents in the OpdA active site does not necessarily dictate the reactivity and interaction modes over the reaction coordinate.
- MeSH
- Agrobacterium tumefaciens enzymologie MeSH
- bakteriální proteiny chemie metabolismus MeSH
- biodegradace * MeSH
- biokatalýza MeSH
- fosfatasy chemie metabolismus MeSH
- katalytická doména MeSH
- kvantová teorie MeSH
- lidé MeSH
- nervová bojová látka chemie metabolismus MeSH
- sarin chemie metabolismus MeSH
- simulace molekulového dockingu MeSH
- vazebná místa MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH