Overview of the Mechanisms of Action of Selected Bisphenols and Perfluoroalkyl Chemicals on the Male Reproductive Axes
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články, přehledy
PubMed
34646297
PubMed Central
PMC8502804
DOI
10.3389/fgene.2021.692897
PII: 692897
Knihovny.cz E-zdroje
- Klíčová slova
- bisphenol, endocrine disrupting chemicals, male infertility, perfluoroalkyl substances, spermatogenesis, spermatozoa, steroidogenesis,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Male fertility has been deteriorating worldwide for considerable time, with the greatest deterioration recorded mainly in the United States, Europe countries, and Australia. That is, especially in countries where an abundance of chemicals called endocrine disruptors has repeatedly been reported, both in the environment and in human matrices. Human exposure to persistent and non-persistent chemicals is ubiquitous and associated with endocrine-disrupting effects. This group of endocrine disrupting chemicals (EDC) can act as agonists or antagonists of hormone receptors and can thus significantly affect a number of physiological processes. It can even negatively affect human reproduction with an impact on the development of gonads and gametogenesis, fertilization, and the subsequent development of embryos. The negative effects of endocrine disruptors on sperm gametogenesis and male fertility in general have been investigated and repeatedly demonstrated in experimental and epidemiological studies. Male reproduction is affected by endocrine disruptors via their effect on testicular development, impact on estrogen and androgen receptors, potential epigenetic effect, production of reactive oxygen species or direct effect on spermatozoa and other cells of testicular tissue. Emerging scientific evidence suggests that the increasing incidence of male infertility is associated with the exposure to persistent and non-persistent endocrine-disrupting chemicals such as bisphenols and perfluoroalkyl chemicals (PFAS). These chemicals may impact men's fertility through various mechanisms. This study provides an overview of the mechanisms of action common to persistent (PFAS) and nonpersistent (bisphenols) EDC on male fertility.
Department of Anatomy Poznan University of Medical Sciences Poznan Poland
Department of Histology and Embryology Poznan University of Medical Sciences Poznan Poland
Department of Nursing and Midwifery Faculty of Medicine Masaryk University Brno Czechia
Department of Veterinary Medicine Nicolaus Copernicus University Torun Poland
Department of Veterinary Sciences Czech University of Life Sciences Prague Prague Czechia
RECETOX Centre Faculty of Science Masaryk University Brno Czechia
Zobrazit více v PubMed
Adegoke E. O., Rahman M. S., Pang M.-G. (2020). Bisphenols Threaten Male Reproductive Health via Testicular Cells. Front. Endocrinol. 11, 624. 10.3389/fendo.2020.00624 PubMed DOI PMC
Akingbemi B. T., Sottas C. M., Koulova A. I., Klinefelter G. R., Hardy M. P. (2004). Inhibition of Testicular Steroidogenesis by the Xenoestrogen Bisphenol A Is Associated with Reduced Pituitary Luteinizing Hormone Secretion and Decreased Steroidogenic Enzyme Gene Expression in Rat Leydig Cells. Endocrinology 145, 592–603. 10.1210/en.2003-1174 PubMed DOI
Aoki V. W., Liu L., Carrell D. T. (2005). Identification and Evaluation of a Novel Sperm Protamine Abnormality in a Population of Infertile Males. Hum. Reprod. 20, 1298–1306. 10.1093/humrep/deh798 PubMed DOI
Atkinson A., Roy D. (1995). In Vitro conversion of Environmental Estrogenic Chemical Bisphenol A to DNA Binding Metabolite(s). Biochem. Biophysical Res. Commun. 210, 424–433. 10.1006/bbrc.1995.1678 PubMed DOI
Barbonetti A., Castellini C., Di Giammarco N., Santilli G., Francavilla S., Francavilla F. (2016). In Vitro exposure of Human Spermatozoa to Bisphenol A Induces Pro-oxidative/apoptotic Mitochondrial Dysfunction. Reprod. Toxicol. 66, 61–67. 10.1016/j.reprotox.2016.09.014 PubMed DOI
Benninghoff A. D., Bisson W. H., Koch D. C., Ehresman D. J., Kolluri S. K., Williams D. E. (2011). Estrogen-like Activity of Perfluoroalkyl Acids In Vivo and Interaction with Human and Rainbow trout Estrogen Receptors In Vitro . Toxicol. Sci. 120, 42–58. 10.1093/toxsci/kfq379 PubMed DOI PMC
Biedermann S., Tschudin P., Grob K. (2010). Transfer of Bisphenol A from thermal Printer Paper to the Skin. Anal. Bioanal. Chem. 398, 571–576. 10.1007/s00216-010-3936-9 PubMed DOI
Biegel L. B., Liu R. C. M., Hurtt M. E., Cook J. C. (1995). Effects of Ammonium Perfluorooctanoate on Leydig-Cell Function: In Vitro, In Vivo, and Ex Vivo Studies. Toxicol. Appl. Pharmacol. 134, 18–25. 10.1006/taap.1995.1164 PubMed DOI
Brouwers M. M., Feitz W. F. J., Roelofs L. A. J., Kiemeney L. A. L. M., De Gier R. P. E., Roeleveld N. (2006). Hypospadias: a Transgenerational Effect of Diethylstilbestrol. Hum. Reprod. 21, 666–669. 10.1093/humrep/dei398 PubMed DOI
Brown S. G., Miller M. R., Lishko P. V., Lester D. H., Publicover S. J., Barratt C. L. R., et al. (2018). Homozygous In-Frame Deletion inCATSPEREin a Man Producing Spermatozoa with Loss of CatSper Function and Compromised Fertilizing Capacity. Hum. Reprod. 33, 1812–1816. 10.1093/humrep/dey278 PubMed DOI PMC
Cai H., Zheng W., Zheng P., Wang S., Tan H., He G., et al. (2015). Human Urinary/seminal Phthalates or Their Metabolite Levels and Semen Quality: A Meta-Analysis. Environ. Res. 142, 486–494. 10.1016/j.envres.2015.07.008 PubMed DOI
Calafat A. M., Kato K., Hubbard K., Jia T., Botelho J. C., Wong L.-Y. (2019). Legacy and Alternative Per- and Polyfluoroalkyl Substances in the U.S. General Population: Paired Serum-Urine Data from the 2013-2014 National Health and Nutrition Examination Survey. Environ. Int. 131, 105048. 10.1016/j.envint.2019.105048 PubMed DOI PMC
Cao L.-Y., Ren X.-M., Li C.-H., Zhang J., Qin W.-P., Yang Y., et al. (2017). Bisphenol AF and Bisphenol B Exert Higher Estrogenic Effects Than Bisphenol A via G Protein-Coupled Estrogen Receptor Pathway. Environ. Sci. Technol. 51, 11423–11430. 10.1021/acs.est.7b03336 PubMed DOI
Caserta D., Maranghi L., Mantovani A., Marci R., Maranghi F., Moscarini M. (2008). Impact of Endocrine Disruptor Chemicals in Gynaecology. Hum. Reprod. Update. 14, 59–72. 10.1093/humupd/dmm025 PubMed DOI
Castellini C., Totaro M., Parisi A., D'Andrea S., Lucente L., Cordeschi G., et al. (2020). Bisphenol A and Male Fertility: Myths and Realities. Front. Endocrinol. 11, 353. 10.3389/fendo.2020.00353 PubMed DOI PMC
Cheng C. Y., Mruk D. D. (2012). The Blood-Testis Barrier and its Implications for Male Contraception. Pharmacol. Rev. 64, 16–64. 10.1124/pr.110.002790 PubMed DOI PMC
Cheng C. Y., Wong E. W. P., Lie P. P. Y., Li M. W. M., Mruk D. D., Yan H. H. N., et al. (2011). Regulation of Blood-Testis Barrier Dynamics by Desmosome, gap junction, Hemidesmosome and Polarity Proteins. Spermatogenesis 1, 105–115. 10.4161/spmg.1.2.15745 PubMed DOI PMC
Conlon J. L. (2017). Diethylstilbestrol. J. Am. Acad. PAs. 30, 49–52. 10.1097/01.JAA.0000511800.91372.34 PubMed DOI
Cook J. C., Murray S. M., Frame S. R., Hurtt M. E. (1992). Induction of Leydig Cell Adenomas by Ammonium Perfluorooctanoate: a Possible Endocrine-Related Mechanism. Toxicol. Appl. Pharmacol. 113, 209–217. 10.1016/0041-008X(92)90116-A PubMed DOI
D’Cruz S. C., Jubendradass R., Mathur P. P. (2012). Bisphenol A Induces Oxidative Stress and Decreases Levels of Insulin Receptor Substrate 2 and Glucose Transporter 8 in Rat Testis. Reprod. Sci. 19, 163–172. 10.1177/1933719111415547 PubMed DOI
De Felip E., Abballe A., Albano F. L., Battista T., Carraro V., Conversano M., et al. (2015). Current Exposure of Italian Women of Reproductive Age to PFOS and PFOA: a Human Biomonitoring Study. Chemosphere 137, 1–8. 10.1016/j.chemosphere.2015.03.046 PubMed DOI
Di Nisio A., Sabovic I., Valente U., Tescari S., Rocca M. S., Guidolin D., et al. (2019). Endocrine Disruption of Androgenic Activity by Perfluoroalkyl Substances: Clinical and Experimental Evidence. J. Clin. Endocrinol. Metab. 104, 1259–1271. 10.1210/jc.2018-01855 PubMed DOI
Domínguez-Rebolledo Á. E., Fernández-Santos M. R., Bisbal A., Ros-Santaella J. L., Ramón M., Carmona M., et al. (2010). Improving the Effect of Incubation and Oxidative Stress on Thawed Spermatozoa from Red Deer by Using Different Antioxidant Treatments. Reprod. Fertil. Dev. 22, 856–870. 10.1071/RD09197 PubMed DOI
Doshi T., D’souza C., Vanage G. (2013). Aberrant DNA Methylation at Igf2-H19 Imprinting Control Region in Spermatozoa upon Neonatal Exposure to Bisphenol A and its Association with post Implantation Loss. Mol. Biol. Rep. 40, 4747–4757. 10.1007/s11033-013-2571-x PubMed DOI
Dualde P., Pardo O., Corpas-Burgos F., Kuligowski J., Gormaz M., Vento M., et al. (2019). Biomonitoring of Bisphenols A, F, S in Human Milk and Probabilistic Risk Assessment for Breastfed Infants. Sci. Total Environ. 668, 797–805. 10.1016/j.scitotenv.2019.03.024 PubMed DOI
Duan Y., Sun H., Yao Y., Meng Y., Li Y. (2020). Distribution of Novel and Legacy Per-/polyfluoroalkyl Substances in Serum and its Associations with Two Glycemic Biomarkers Among Chinese Adult Men and Women with normal Blood Glucose Levels. Environ. Int. 134, 105295. 10.1016/j.envint.2019.105295 PubMed DOI
Dumasia K., Kumar A., Deshpande S., Balasinor N. H. (2017). Estrogen, through Estrogen Receptor 1, Regulates Histone Modifications and Chromatin Remodeling during Spermatogenesis in Adult Rats. Epigenetics 12, 953–963. 10.1080/15592294.2017.1382786 PubMed DOI PMC
Eladak S., Grisin T., Moison D., Guerquin M.-J., N'Tumba-Byn T., Pozzi-Gaudin S., et al. (2015). A New Chapter in the Bisphenol A story: Bisphenol S and Bisphenol F Are Not Safe Alternatives to This Compound. Fertil. Sterility. 103, 11–21. 10.1016/j.fertnstert.2014.11.005 PubMed DOI
Elcombe C. R., Elcombe B. M., Foster J. R., Chang S.-C., Ehresman D. J., Butenhoff J. L. (2012). Hepatocellular Hypertrophy and Cell Proliferation in Sprague-Dawley Rats from Dietary Exposure to Potassium Perfluorooctanesulfonate Results from Increased Expression of Xenosensor Nuclear Receptors PPARα and CAR/PXR. Toxicology 293, 16–29. 10.1016/j.tox.2011.12.014 PubMed DOI
Emmen J. M. A., McLuskey A., Adham I. M., Engel W., Verhoef-Post M., Themmen A. P. N., et al. (2000). Involvement of Insulin-like Factor 3 (Insl3) in Diethylstilbestrol-Induced Cryptorchidism. Endocrinology 141, 846. 10.1210/endo.141.2.7379 PubMed DOI
Fillol C., Oleko A., Saoudi A., Zeghnoun A., Balicco A., Gane J., et al. (2021). Exposure of the French Population to Bisphenols, Phthalates, Parabens, Glycol Ethers, Brominated Flame Retardants, and Perfluorinated Compounds in 2014-2016: Results from the Esteban Study. Environ. Int. 147, 106340. 10.1016/j.envint.2020.106340 PubMed DOI
Fiorini C., Tilloy-Ellul A., Chevalier S., Charuel C., Pointis G. (2004). Sertoli Cell Junctional Proteins as Early Targets for Different Classes of Reproductive Toxicants. Reprod. Toxicol. 18, 413–421. 10.1016/j.reprotox.2004.01.002 PubMed DOI
Fitzgerald A. C., Peyton C., Dong J., Thomas P. (2015). Bisphenol A and Related Alkylphenols Exert Nongenomic Estrogenic Actions through a G Protein-Coupled Estrogen Receptor 1 (Gper)/Epidermal Growth Factor Receptor (Egfr) Pathway to Inhibit Meiotic Maturation of Zebrafish Oocytes1. Biol. Reprod. 93, 135. 10.1095/biolreprod.115.132316 PubMed DOI PMC
Gao Y., Mruk D. D., Cheng C. Y. (2015). Sertoli Cells Are the Target of Environmental Toxicants in the Testis - a Mechanistic and Therapeutic Insight. Expert Opin. Ther. Targets. 19, 1073–1090. 10.1517/14728222.2015.1039513 PubMed DOI PMC
Gayrard V., Lacroix M. Z., Collet S. H., Viguié C., Bousquet-Melou A., Toutain P.-L., et al. (2013). High Bioavailability of Bisphenol A from Sublingual Exposure. Environ. Health Perspect. 121, 951–956. 10.1289/ehp.1206339 PubMed DOI PMC
Ge L.-C., Chen Z.-J., Liu H.-Y., Zhang K.-S., Liu H., Huang H.-B., et al. (2014). Involvement of Activating ERK1/2 through G Protein Coupled Receptor 30 and Estrogen Receptor α/β in Low Doses of Bisphenol A Promoting Growth of Sertoli TM4 Cells. Toxicol. Lett. 226, 81–89. 10.1016/j.toxlet.2014.01.035 PubMed DOI
Geens T., Aerts D., Berthot C., Bourguignon J.-P., Goeyens L., Lecomte P., et al. (2012). A Review of Dietary and Non-dietary Exposure to Bisphenol-A. Food Chem. Toxicol. 50, 3725–3740. 10.1016/j.fct.2012.07.059 PubMed DOI
Geens T., Roosens L., Neels H., Covaci A. (2009). Assessment of Human Exposure to Bisphenol-A, Triclosan and Tetrabromobisphenol-A through Indoor Dust Intake in Belgium. Chemosphere 76, 755–760. 10.1016/j.chemosphere.2009.05.024 PubMed DOI
Gerona R. R., Woodruff T. J., Dickenson C. A., Pan J., Schwartz J. M., Sen S., et al. (2013). Bisphenol-A (BPA), BPA Glucuronide, and BPA Sulfate in Midgestation Umbilical Cord Serum in a Northern and central California Population. Environ. Sci. Technol. 47, 12477–12485. 10.1021/es402764d PubMed DOI PMC
Göckener B., Weber T., Rüdel H., Bücking M., Kolossa-Gehring M. (2020). Human Biomonitoring of Per- and Polyfluoroalkyl Substances in German Blood Plasma Samples from 1982 to 2019. Environ. Int. 145, 106123. 10.1016/j.envint.2020.106123 PubMed DOI
Goldstone A. E., Chen Z., Perry M. J., Kannan K., Louis G. M. B. (2015). Urinary Bisphenol A and Semen Quality, the LIFE Study. Reprod. Toxicol. 51, 7–13. 10.1016/j.reprotox.2014.11.003 PubMed DOI PMC
Guignard D., Gauderat G., Gayrard V., Lacroix M. Z., Picard-Hagen N., Puel S., et al. (2016). Characterization of the Contribution of Buccal Absorption to Internal Exposure to Bisphenol A through the Diet. Food Chem. Toxicol. 93, 82–88. 10.1016/j.fct.2016.04.004 PubMed DOI
Hampl R., Kubatova J., Heracek J., Sobotka V., Starka L. (2013). Hormones and Endocrine Disruptors in Human Seminal Plasma. endo 47, 149–158. 10.4149/endo_2013_03_149 PubMed DOI
Hanioka N., Naito T., Narimatsu S. (2008). Human UDP-Glucuronosyltransferase Isoforms Involved in Bisphenol A Glucuronidation. Chemosphere 74, 33–36. 10.1016/j.chemosphere.2008.09.053 PubMed DOI
Hassan H. M., Kolendowski B., Isovic M., Bose K., Dranse H. J., Sampaio A. V., et al. (2017). Regulation of Active DNA Demethylation through RAR-Mediated Recruitment of a TET/TDG Complex. Cel Rep. 19, 1685–1697. 10.1016/j.celrep.2017.05.007 PubMed DOI
Hines C. J., Christianson A. L., Jackson M. V., Ye X., Pretty J. R., Arnold J. E., et al. (2018). An Evaluation of the Relationship Among Urine, Air, and Hand Measures of Exposure to Bisphenol A (BPA) in US Manufacturing Workers. Ann. Work Exposures Health 62, 840–851. 10.1093/annweh/wxy042 PubMed DOI PMC
Hormann A. M., Vom Saal F. S., Nagel S. C., Stahlhut R. W., Moyer C. L., Ellersieck M. R., et al. (2014). Holding thermal Receipt Paper and Eating Food after Using Hand Sanitizer Results in High Serum Bioactive and Urine Total Levels of Bisphenol A (BPA). PLoS One 9, e110509. 10.1371/journal.pone.0110509 PubMed DOI PMC
Ješeta M., Crha T., Žáková J., Ventruba P. (2019a). Bisphenols in the Pathology of Reproduction. Ceska Gynekologie – Czech Gynaecol. 84, 161–165. PubMed
Ješeta M., Moravec J., Žáková J., Nevoral J., Lousová E., Crha I., et al. (2019b). “Bisphenol S Content in Human Follicular Fluid and its Effect on IVF Outcomes,” in 35th Annual Meeting of ESHRE, Vienna, Austria, June 24–26, 2019.
Joensen U. N., Bossi R., Leffers H., Jensen A. A., Skakkebæk N. E., Jørgensen N. (2009). Do perfluoroalkyl Compounds Impair Human Semen Quality. Environ. Health Perspect. 117, 923–927. 10.1289/ehp.0800517 PubMed DOI PMC
Joensen U. N., Veyrand B., Antignac J.-P., Blomberg Jensen M., Petersen J. H., Marchand P., et al. (2013). PFOS (Perfluorooctanesulfonate) in Serum Is Negatively Associated with Testosterone Levels, but Not with Semen Quality, in Healthy Men. Hum. Reprod. 28, 599–608. 10.1093/humrep/des425 PubMed DOI
Jorgensen E. M., Alderman M. H., III, Taylor H. S. (2016). Preferential Epigenetic Programming of Estrogen Response after In Utero Xenoestrogen (bisphenol‐A) Exposure. FASEB j. 30, 3194–3201. 10.1096/fj.201500089R PubMed DOI PMC
Joskow R., Barr D. B., Barr J. R., Calafat A. M., Needham L. L., Rubin C. (2006). Exposure to Bisphenol A from Bis-Glycidyl Dimethacrylate-Based Dental Sealants. J. Am. Dental Assoc. 137, 353–362. 10.14219/jada.archive.2006.0185 PubMed DOI
Karmakar P. C., Kang H.-G., Kim Y.-H., Jung S.-E., Rahman M. S., Lee H.-S., et al. (2017). Bisphenol A Affects on the Functional Properties and Proteome of Testicular Germ Cells and Spermatogonial Stem Cells In Vitro Culture Model. Sci. Rep. 7, 1–14. 10.1038/s41598-017-12195-9 PubMed DOI PMC
Karrer C., Roiss T., von Goetz N., Gramec Skledar D., Peterlin Mašič L., Hungerbühler K. (2018). Physiologically Based Pharmacokinetic (PBPK) Modeling of the Bisphenols BPA, BPS, BPF, and BPAF with New Experimental Metabolic Parameters: Comparing the Pharmacokinetic Behavior of BPA with its Substitutes. Environ. Health Perspect. 126, 077002. 10.1289/EHP2739 PubMed DOI PMC
Kitraki E., Nalvarte I., Alavian-Ghavanini A., Rüegg J. (2015). Developmental Exposure to Bisphenol A Alters Expression and DNA Methylation of Fkbp5, an Important Regulator of the Stress Response. Mol. Cell Endocrinol. 417, 191–199. 10.1016/j.mce.2015.09.028 PubMed DOI
Kjeldsen L. S., Bonefeld-Jørgensen E. C. (2013). Perfluorinated Compounds Affect the Function of Sex Hormone Receptors. Environ. Sci. Pollut. Res. 20, 8031–8044. 10.1007/s11356-013-1753-3 PubMed DOI
Kotwicka M., Skibinska I., Piworun N., Jendraszak M., Chmielewska M., Jedrzejczak P. (2016). Bisphenol A Modifies Human Spermatozoa Motility In Vitro . Jms 85, 39–45. 10.20883/jms.2016.5 DOI
Kouzmenko A., Ohtake F., Fujiki R., Kato S. (2010). Hormonal Gene Regulation through DNA Methylation and Demethylation. Epigenomics 2, 765–774. 10.2217/epi.10.58 PubMed DOI
Lagarde F., Beausoleil C., Belcher S. M., Belzunces L. P., Emond C., Guerbet M., et al. (2015). Non-monotonic Dose-Response Relationships and Endocrine Disruptors: a Qualitative Method of Assessment. Environ. Health 14, 1–15. 10.1186/1476-069X-14-13 PubMed DOI PMC
Lau C., Thibodeaux J. R., Hanson R. G., Narotsky M. G., Rogers J. M., Lindstrom A. B., et al. (2006). Effects of Perfluorooctanoic Acid Exposure during Pregnancy in the Mouse. Toxicol. Sci. 90, 510–518. 10.1093/toxsci/kfj105 PubMed DOI
Le H. H., Carlson E. M., Chua J. P., Belcher S. M. (2008). Bisphenol A Is Released from Polycarbonate Drinking Bottles and Mimics the Neurotoxic Actions of Estrogen in Developing Cerebellar Neurons. Toxicol. Lett. 176, 149–156. 10.1016/j.toxlet.2007.11.001 PubMed DOI PMC
Lehmler H.-J., Liu B., Gadogbe M., Bao W. (2018). Exposure to Bisphenol A, Bisphenol F, and Bisphenol S in U.S. Adults and Children: The National Health and Nutrition Examination Survey 2013-2014. ACS Omega 3, 6523–6532. 10.1021/acsomega.8b00824 PubMed DOI PMC
Levine H., Jørgensen N., Martino-Andrade A., Mendiola J., Weksler-Derri D., Mindlis I., et al. (2017). Temporal Trends in Sperm Count: a Systematic Review and Meta-Regression Analysis. Hum. Reprod. Update 23, 646–659. 10.1093/humupd/dmx022 PubMed DOI PMC
Li D.-K., Zhou Z., Miao M., He Y., Wang J., Ferber J., et al. (2011). Urine Bisphenol-A (BPA) Level in Relation to Semen Quality. Fertil. Sterility 95, 625–630. 10.1016/j.fertnstert.2010.09.026 PubMed DOI
Li M. W. M., Mruk D. D., Lee W. M., Cheng C. Y. (2009). Disruption of the Blood-Testis Barrier Integrity by Bisphenol A In Vitro: Is This a Suitable Model for Studying Blood-Testis Barrier Dynamics. Int. J. Biochem. Cel Biol. 41, 2302–2314. 10.1016/j.biocel.2009.05.016 PubMed DOI PMC
Li X., Wen Z., Wang Y., Mo J., Zhong Y., Ge R.-S. (2020). Bisphenols and Leydig Cell Development and Function. Front. Endocrinol. 11, 447. 10.3389/fendo.2020.00447 PubMed DOI PMC
Lie P. P. Y., Cheng C. Y., Mruk D. D. (2009). Coordinating Cellular Events during Spermatogenesis: a Biochemical Model. Trends Biochem. Sci. 34, 366–373. 10.1016/j.tibs.2009.03.005 PubMed DOI PMC
Liu J., Martin J. W. (2017). Prolonged Exposure to Bisphenol A from Single Dermal Contact Events. Environ. Sci. Technol. 51, 9940–9949. 10.1021/acs.est.7b03093 PubMed DOI
López-Doval S., Salgado R., Pereiro N., Moyano R., Lafuente A. (2014). Perfluorooctane Sulfonate Effects on the Reproductive axis in Adult Male Rats. Environ. Res. 134, 158–168. 10.1016/j.envres.2014.07.006 PubMed DOI
Lu Y., Luo B., Li J., Dai J. (2016). Perfluorooctanoic Acid Disrupts the Blood-Testis Barrier and Activates the TNFα/p38 MAPK Signaling Pathway In Vivo and In Vitro . Arch. Toxicol. 90, 971–983. 10.1007/s00204-015-1492-y PubMed DOI
Lu Z., Ma Y., Gao L., Li Y., Li Q., Qiang M. (2018). Urine Mercury Levels Correlate with DNA Methylation of Imprinting Gene H19 in the Sperm of Reproductive-Aged Men. PLoS One 13, e0196314. 10.1371/journal.pone.0196314 PubMed DOI PMC
Lušin T. T., Roškar R., Mrhar A. (2012). Evaluation of Bisphenol A Glucuronidation According to UGT1A1*28 Polymorphism by a New LC-MS/MS Assay. Toxicology 292, 33–41. 10.1016/j.tox.2011.11.015 PubMed DOI
Maamar M. B., Lesné L., Desdoits-Lethimonier C., Coiffec I., Lassurguère J., Lavoué V., et al. (2015). An Investigation of the Endocrine-Disruptive Effects of Bisphenol A in Human and Rat Fetal Testes. PLoS One 10, e0117226. 10.1371/journal.pone.0117226 PubMed DOI PMC
Martens J. H. A., Rao N. A. S., Stunnenberg H. G. (2011). Genome-wide Interplay of Nuclear Receptors with the Epigenome. Biochim. Biophys. Acta (Bba) - Mol. Basis Dis. 1812, 818–823. 10.1016/j.bbadis.2010.10.005 PubMed DOI
Meeker J. D., Ehrlich S., Toth T. L., Wright D. L., Calafat A. M., Trisini A. T., et al. (2010). Semen Quality and Sperm DNA Damage in Relation to Urinary Bisphenol A Among Men from an Infertility Clinic☆☆☆. Reprod. Toxicol. 30, 532–539. 10.1016/j.reprotox.2010.07.005 PubMed DOI PMC
Men Y., Zhao Y., Zhang P., Zhang H., Gao Y., Liu J., et al. (2019). Gestational Exposure to Low‐dose Zearalenone Disrupting Offspring Spermatogenesis Might Be through Epigenetic Modifications. Basic Clin. Pharmacol. Toxicol. 125, 382–393. 10.1111/bcpt.13243 PubMed DOI
Muratori M., Tamburrino L., Marchiani S., Cambi M., Olivito B., Azzari C., et al. (2015). Investigation on the Origin of Sperm DNA Fragmentation: Role of Apoptosis, Immaturity and Oxidative Stress. Mol. Med. 21, 109–122. 10.2119/molmed.2014.00158 PubMed DOI PMC
Naciff J. M., Hess K. A., Overmann G. J., Torontali S. M., Carr G. J., Tiesman J. P., et al. (2005). Gene Expression Changes Induced in the Testis by Transplacental Exposure to High and Low Doses of 17α-Ethynyl Estradiol, Genistein, or Bisphenol A. Toxicol. Sci. 86, 396–416. 10.1093/toxsci/kfi198 PubMed DOI
Nevoral J., Kolinko Y., Moravec J., Žalmanová T., Hošková K., Prokešová Š., et al. (2018). Long-term Exposure to Very Low Doses of Bisphenol S Affects Female Reproduction. Reproduction 156, 47–57. 10.1530/REP-18-0092 PubMed DOI
Nishikawa M., Iwano H., Yanagisawa R., Koike N., Inoue H., Yokota H. (2010). Placental Transfer of Conjugated Bisphenol A and Subsequent Reactivation in the Rat Fetus. Environ. Health Perspect. 118, 1196–1203. 10.1289/ehp.0901575 PubMed DOI PMC
Nordkap L., Joensen U. N., Blomberg Jensen M., Jørgensen N. (2012). Regional Differences and Temporal Trends in Male Reproductive Health Disorders: Semen Quality May Be a Sensitive Marker of Environmental Exposures. Mol. Cell Endocrinol. 355, 221–230. 10.1016/j.mce.2011.05.048 PubMed DOI
Oliva R. (2006). Protamines and Male Infertility. Hum. Reprod. Update 12, 417–435. 10.1093/humupd/dml009 PubMed DOI
Olsen G. W., Burris J. M., Ehresman D. J., Froehlich J. W., Seacat A. M., Butenhoff J. L., et al. (2007). Half-Life of Serum Elimination of Perfluorooctanesulfonate,Perfluorohexanesulfonate, and Perfluorooctanoate in Retired Fluorochemical Production Workers. Environ. Health Perspect. 115, 1298–1305. 10.1289/ehp.10009 PubMed DOI PMC
Olufsen M., Cangialosi M. V., Arukwe A. (2014). Modulation of Membrane Lipid Composition and Homeostasis in salmon Hepatocytes Exposed to Hypoxia and Perfluorooctane Sulfonamide, Given Singly or in Combination. PLoS One 9, e102485. 10.1371/journal.pone.0102485 PubMed DOI PMC
Omran G. A., Gaber H. D., Mostafa N. A. M., Abdel-Gaber R. M., Salah E. A. (2018). Potential Hazards of Bisphenol A Exposure to Semen Quality and Sperm DNA Integrity Among Infertile Men. Reprod. Toxicol. 81, 188–195. 10.1016/j.reprotox.2018.08.010 PubMed DOI
Palmer J. R., Herbst A. L., Noller K. L., Boggs D. A., Troisi R., Titus-Ernstoff L., et al. (2009). Urogenital Abnormalities in Men Exposed to Diethylstilbestrol In Utero: a Cohort Study. Environ. Health 8, 1–6. 10.1186/1476-069X-8-37 PubMed DOI PMC
Pan Y., Cui Q., Wang J., Sheng N., Jing J., Yao B., et al. (2019). Profiles of Emerging and Legacy Per-/polyfluoroalkyl Substances in Matched Serum and Semen Samples: New Implications for Human Semen Quality. Environ. Health Perspect. 127, 127005. 10.1289/EHP4431 PubMed DOI PMC
Pietryk E. W., Clement K., Elnagheeb M., Kuster R., Kilpatrick K., Love M. I., et al. (2018). Intergenerational Response to the Endocrine Disruptor Vinclozolin Is Influenced by Maternal Genotype and Crossing Scheme. Reprod. Toxicol. 78, 9–19. 10.1016/j.reprotox.2018.03.005 PubMed DOI PMC
Prins G. S., Hu W.-Y., Shi G.-B., Hu D.-P., Majumdar S., Li G., et al. (2014). Bisphenol A Promotes Human Prostate Stem-Progenitor Cell Self-Renewal and Increases In Vivo Carcinogenesis in Human Prostate Epithelium. Endocrinology 155, 805–817. 10.1210/en.2013-1955 PubMed DOI PMC
Qiu L., Zhang X., Zhang X., Zhang Y., Gu J., Chen M., et al. (2013). Sertoli Cell Is a Potential Target for Perfluorooctane Sulfonate-Induced Reproductive Dysfunction in Male Mice. Toxicol. Sci. 135, 229–240. 10.1093/toxsci/kft129 PubMed DOI
Qu J.-H., Lu C.-C., Xu C., Chen G., Qiu L.-L., Jiang J.-K., et al. (2016). Perfluorooctane Sulfonate-Induced Testicular Toxicity and Differential Testicular Expression of Estrogen Receptor in Male Mice. Environ. Toxicol. Pharmacol. 45, 150–157. 10.1016/j.etap.2016.05.025 PubMed DOI
Radke E. G., Braun J. M., Meeker J. D., Cooper G. S. (2018). Phthalate Exposure and Male Reproductive Outcomes: A Systematic Review of the Human Epidemiological Evidence. Environ. Int. 121, 764–793. 10.1016/j.envint.2018.07.029 PubMed DOI PMC
Rahman M. S., Kwon W.-S., Karmakar P. C., Yoon S.-J., Ryu B.-Y., Pang M.-G. (2017). Gestational Exposure to Bisphenol A Affects the Function and Proteome Profile of F1 Spermatozoa in Adult Mice. Environ. Health Perspect. 125, 238–245. 10.1289/EHP378 PubMed DOI PMC
Rahman M. S., Kwon W.-S., Lee J.-S., Yoon S.-J., Ryu B.-Y., Pang M.-G. (2015). Bisphenol-A Affects Male Fertility via Fertility-Related Proteins in Spermatozoa. Sci. Rep. 5, 1–9. 10.1038/srep09169 PubMed DOI PMC
Rahman M. S., Kwon W.-S., Ryu D.-Y., Khatun A., Karmakar P. C., Ryu B.-Y., et al. (2018). Functional and Proteomic Alterations of F1 Capacitated Spermatozoa of Adult Mice Following Gestational Exposure to Bisphenol A. J. Proteome Res. 17, 524–535. 10.1021/acs.jproteome.7b00668 PubMed DOI
Rahman M. S., Kwon W.-S., Yoon S.-J., Park Y.-J., Ryu B.-Y., Pang M.-G. (2016). A Novel Approach to Assessing Bisphenol-A Hazards Using an In Vitro Model System. BMC Genomics 17, 1–12. 10.1186/s12864-016-2979-5 PubMed DOI PMC
Rehfeld A., Mendoza N., Ausejo R., Skakkebæk N. E. (2020). Bisphenol A Diglycidyl Ether (BADGE) and Progesterone Do Not Induce Ca2+ Signals in Boar Sperm Cells. Front. Physiol. 11, 785. 10.3389/fphys.2020.00785 PubMed DOI PMC
Rehman S., Usman Z., Rehman S., AlDraihem M., Rehman N., Rehman I., et al. (2018). Endocrine Disrupting Chemicals and Impact on Male Reproductive Health. Transl. Androl. Urol. 7, 490–503. 10.21037/tau.2018.05.17 PubMed DOI PMC
Samanta L., Parida R., Dias T. R., Agarwal A. (2018). The Enigmatic Seminal Plasma: a Proteomics Insight from Ejaculation to Fertilization. Reprod. Biol. Endocrinol. 16, 1–11. 10.1186/s12958-018-0358-6 PubMed DOI PMC
Sasso A. F., Pirow R., Andra S. S., Church R., Nachman R. M., Linke S., et al. (2020). Pharmacokinetics of Bisphenol A in Humans Following Dermal Administration. Environ. Int. 144, 106031. 10.1016/j.envint.2020.106031 PubMed DOI PMC
Schiffer C., Müller A., Egeberg D. L., Alvarez L., Brenker C., Rehfeld A., et al. (2014). Direct Action of Endocrine Disrupting Chemicals on Human Sperm. EMBO Rep. 15, 758–765. 10.15252/embr.201438869 PubMed DOI PMC
Sengupta P., Dutta S., Tusimin M., Irez T., Krajewska-Kulak E. (2018). Sperm Counts in Asian Men: Reviewing the Trend of Past 50 Years. Asian Pac. J. Reprod. 7, 87–92. 10.4103/2305-0500.228018 DOI
Shi X.-Y., Wang Z., Liu L., Feng L.-M., Li N., Liu S., et al. (2017). Low Concentrations of Bisphenol A Promote Human Ovarian Cancer Cell Proliferation and Glycolysis-Based Metabolism through the Estrogen Receptor-α Pathway. Chemosphere 185, 361–367. 10.1016/j.chemosphere.2017.07.027 PubMed DOI
Sonthithai P., Suriyo T., Thiantanawat A., Watcharasit P., Ruchirawat M., Satayavivad J. (2016). Perfluorinated Chemicals, PFOS and PFOA, Enhance the Estrogenic Effects of 17β-Estradiol in T47D Human Breast Cancer Cells. J. Appl. Toxicol. 36, 790–801. 10.1002/jat.3210 PubMed DOI
Sunderland E. M., Hu X. C., Dassuncao C., Tokranov A. K., Wagner C. C., Allen J. G. (2019). A Review of the Pathways of Human Exposure to Poly- and Perfluoroalkyl Substances (PFASs) and Present Understanding of Health Effects. J. Expo. Sci. Environ. Epidemiol. 29, 131–147. 10.1038/s41370-018-0094-1 PubMed DOI PMC
Sweeney M. F., Hasan N., Soto A. M., Sonnenschein C. (2015). Environmental Endocrine Disruptors: Effects on the Human Male Reproductive System. Rev. Endocr. Metab. Disord. 16, 341–357. 10.1007/s11154-016-9337-4 PubMed DOI PMC
Tavares R. S., Mansell S., Barratt C. L. R., Wilson S. M., Publicover S. J., Ramalho-Santos J. (2013). p,p′-DDE Activates CatSper and Compromises Human Sperm Function at Environmentally Relevant Concentrations. Hum. Reprod. 28, 3167–3177. 10.1093/humrep/det372 PubMed DOI PMC
Teeguarden J. G., Twaddle N. C., Churchwell M. I., Yang X., Fisher J. W., Seryak L. M., et al. (2015). 24-hour Human Urine and Serum Profiles of Bisphenol A: Evidence against Sublingual Absorption Following Ingestion in Soup. Toxicol. Appl. Pharmacol. 288, 131–142. 10.1016/j.taap.2015.01.009 PubMed DOI
Thayer K. A., Doerge D. R., Hunt D., Schurman S. H., Twaddle N. C., Churchwell M. I., et al. (2015). Pharmacokinetics of Bisphenol A in Humans Following a Single Oral Administration. Environ. Int. 83, 107–115. 10.1016/j.envint.2015.06.008 PubMed DOI PMC
Thayer K. A., Taylor K. W., Garantziotis S., Schurman S. H., Kissling G. E., Hunt D., et al. (2016). Bisphenol A, Bisphenol S, and 4-Hydroxyphenyl 4-Isoprooxyphenylsulfone (BPSIP) in Urine and Blood of Cashiers. Environ. Health Perspect. 124, 437–444. 10.1289/ehp.1409427 PubMed DOI PMC
Toyama Y., Suzuki-Toyota F., Maekawa M., Ito C., Toshimori K. (2004). Adverse Effects of Bisphenol A to Spermiogenesis in Mice and Rats. Arch. Histology Cytol. 67, 373–381. 10.1679/aohc.67.373 PubMed DOI
Ullah A., Pirzada M., Jahan S., Ullah H., Khan M. J. (2019). Bisphenol A Analogues Bisphenol B, Bisphenol F, and Bisphenol S Induce Oxidative Stress, Disrupt Daily Sperm Production, and Damage DNA in Rat Spermatozoa: A Comparative In Vitro and In Vivo Study. Toxicol. Ind. Health 35, 294–303. 10.1177/0748233719831528 PubMed DOI
Ullah A., Pirzada M., Jahan S., Ullah H., Shaheen G., Rehman H., et al. (2018). Bisphenol A and its Analogs Bisphenol B, Bisphenol F, and Bisphenol S: Comparative In Vitro and In Vivo Studies on the Sperms and Testicular Tissues of Rats. Chemosphere 209, 508–516. 10.1016/j.chemosphere.2018.06.089 PubMed DOI
Van der Meer T. P., Artacho-Cordón F., Swaab D. F., Struik D., Makris K. C., Wolffenbuttel B. H. R., et al. (2017). Distribution of Non-persistent Endocrine Disruptors in Two Different Regions of the Human Brain. Ijerph 14, 1059. 10.3390/ijerph14091059 PubMed DOI PMC
Vénisse N., Cambien G., Robin J., Rouillon S., Nadeau C., Charles T., et al. (2019). Development and Validation of an LC-MS/MS Method for the Simultaneous Determination of Bisphenol A and its Chlorinated Derivatives in Adipose Tissue. Talanta 204, 145–152. 10.1016/j.talanta.2019.05.103 PubMed DOI
Vitku J., Heracek J., Sosvorova L., Hampl R., Chlupacova T., Hill M., et al. (2016). Associations of Bisphenol A and Polychlorinated Biphenyls with Spermatogenesis and Steroidogenesis in Two Biological Fluids from Men Attending an Infertility Clinic. Environ. Int. 89-90, 166–173. 10.1016/j.envint.2016.01.021 PubMed DOI
Wan H. T., Zhao Y. G., Wong M. H., Lee K. F., Yeung W. S. B., Giesy J. P., et al. (2011). Testicular Signaling Is the Potential Target of Perfluorooctanesulfonate-Mediated Subfertility in Male Mice1. Biol. Reprod. 84, 1016–1023. 10.1095/biolreprod.110.089219 PubMed DOI
Wang C., Qi S., Liu C., Yang A., Fu W., Quan C., et al. (2017). Mitochondrial Dysfunction and Ca2+ Overload in Injured Sertoli Cells Exposed to Bisphenol A. Environ. Toxicol. 32, 823–831. 10.1002/tox.22282 PubMed DOI
Wang H., Ding Z., Shi Q.-M., Ge X., Wang H.-X., Li M.-X., et al. (2017). Anti-androgenic Mechanisms of Bisphenol A Involve Androgen Receptor Signaling Pathway. Toxicology 387, 10–16. 10.1016/j.tox.2017.06.007 PubMed DOI
Wang T., Han J., Duan X., Xiong B., Cui X.-S., Kim N.-H., et al. (2016). The Toxic Effects and Possible Mechanisms of Bisphenol A on Oocyte Maturation of Porcine In Vitro . Oncotarget 7, 32554–32565. 10.18632/oncotarget.8689 PubMed DOI PMC
Wang Y., Zhong Y., Li J., Zhang J., Lyu B., Zhao Y., et al. (2018). Occurrence of Perfluoroalkyl Substances in Matched Human Serum, Urine, Hair and Nail. J. Environ. Sci. 67, 191–197. 10.1016/j.jes.2017.08.017 PubMed DOI
Xiao X., Mruk D. D., Tang E. I., Wong C. K. C., Lee W. M., John C. M., et al. (2014). Environmental Toxicants Perturb Human Sertoli Cell Adhesive Function via Changes in F-Actin Organization Mediated by Actin Regulatory Proteins. Hum. Reprod. 29, 1279–1291. 10.1093/humrep/deu011 PubMed DOI PMC
Xie F., Chen X., Weng S., Xia T., Sun X., Luo T., et al. (2019). Effects of Two Environmental Endocrine Disruptors Di-n-butyl Phthalate (DBP) and Mono-N-Butyl Phthalate (MBP) on Human Sperm Functions In Vitro . Reprod. Toxicol. 83, 1–7. 10.1016/j.reprotox.2018.10.011 PubMed DOI
Ye L., Zhao B., Hu G., Chu Y., Ge R.-S. (2011). Inhibition of Human and Rat Testicular Steroidogenic Enzyme Activities by Bisphenol A. Toxicol. Lett. 207, 137–142. 10.1016/j.toxlet.2011.09.001 PubMed DOI
Yuan Y., Ding X., Cheng Y., Kang H., Luo T., Zhang X., et al. (2020). PFOA Evokes Extracellular Ca2+ Influx and Compromises Progesterone-Induced Response in Human Sperm. Chemosphere 241, 125074. 10.1016/j.chemosphere.2019.125074 PubMed DOI
Žalmanová T., Hošková K., Nevoral J., Prokešová Š., Zámostná K., Kott T., et al. (2016). Bisphenol S Instead of Bisphenol A: a story of Reproductive Disruption by Regretable Substitution - a Review. Czech J. Anim. Sci. 61, 433–449. 10.17221/81/2015-CJAS DOI
Zamkowska D., Karwacka A., Jurewicz J., Radwan M. (2018). Environmental Exposure to Non-persistent Endocrine Disrupting Chemicals and Semen Quality: An Overview of the Current Epidemiological Evidence. Int. J. Occup. Med. Environ. Health 31, 377–414. 10.13075/ijomeh.1896.01195 PubMed DOI
Zatecka E., Castillo J., Elzeinova F., Kubatova A., Ded L., Peknicova J., et al. (2014). The Effect of Tetrabromobisphenol A on Protamine Content and DNA Integrity in Mouse Spermatozoa. Andrology 2, 910–917. 10.1111/j.2047-2927.2014.00257.x PubMed DOI
Zhang X.-F., Zhang L.-J., Feng Y.-N., Chen B., Feng Y.-M., Liang G.-J., et al. (2012). Bisphenol A Exposure Modifies DNA Methylation of Imprint Genes in Mouse Fetal Germ Cells. Mol. Biol. Rep. 39, 8621–8628. 10.1007/s11033-012-1716-7 PubMed DOI
Zhang Z., Alomirah H., Cho H.-S., Li Y.-F., Liao C., Minh T. B., et al. (2011). Urinary Bisphenol A Concentrations and Their Implications for Human Exposure in Several Asian Countries. Environ. Sci. Technol. 45, 7044–7050. 10.1021/es200976k PubMed DOI
Zhao B., Chu Y., Hardy D. O., Li X.-k., Ge R.-S. (2010). Inhibition of 3β- and 17β-Hydroxysteroid Dehydrogenase Activities in Rat Leydig Cells by Perfluorooctane Acid. J. Steroid Biochem. Mol. Biol. 118, 13–17. 10.1016/j.jsbmb.2009.09.010 PubMed DOI
Zhao B., Li L., Liu J., Li H., Zhang C., Han P., et al. (2014). Exposure to Perfluorooctane Sulfonate In Utero Reduces Testosterone Production in Rat Fetal Leydig Cells. PLoS One 9, e78888. 10.1371/journal.pone.0078888 PubMed DOI PMC
Zimmermann S., Steding G., Emmen J. M. A., Brinkmann A. O., Nayernia K., Holstein A. F., et al. (1999). Targeted Disruption of the Insl3 Gene Causes Bilateral Cryptorchidism. Mol. Endocrinol. 13, 681–691. 10.1210/mend.13.5.0272 PubMed DOI
Zou Q.-x., Peng Z., Zhao Q., Chen H.-y., Cheng Y.-m., Liu Q., et al. (2017). Diethylstilbestrol Activates CatSper and Disturbs Progesterone Actions in Human Spermatozoa. Hum. Reprod. 32, 290–298. 10.1093/humrep/dew332 PubMed DOI