• This record comes from PubMed

Increased wood biomass growth is associated with lower wood density in Quercus petraea (Matt.) Liebl. saplings growing under elevated CO2

. 2021 ; 16 (10) : e0259054. [epub] 20211022

Language English Country United States Media electronic-ecollection

Document type Journal Article, Research Support, Non-U.S. Gov't

Atmospheric carbon dioxide (CO2) has increased substantially since the industrial revolution began, and physiological responses to elevated atmospheric CO2 concentrations reportedly alter the biometry and wood structure of trees. Additionally, soil nutrient availability may play an important role in regulating these responses. Therefore, in this study, we grew 288 two-year-old saplings of sessile oak (Quercus petraea (Matt.) Liebl.) in lamellar glass domes for three years to evaluate the effects of CO2 concentrations and nutrient supply on above- and belowground biomass, wood density, and wood structure. Elevated CO2 increased above- and belowground biomass by 44.3% and 46.9%, respectively. However, under elevated CO2 treatment, sapling wood density was markedly lower (approximately 1.7%), and notably wider growth rings-and larger, more efficient conduits leading to increased hydraulic conductance-were observed. Moreover, despite the vessels being larger in saplings under elevated CO2, the vessels were significantly fewer (p = 0.023). No direct effects of nutrient supply were observed on biomass growth, wood density, or wood structure, except for a notable decrease in specific leaf area. These results suggest that, although fewer and larger conduits may render the xylem more vulnerable to embolism formation under drought conditions, the high growth rate in sessile oak saplings under elevated CO2 is supported by an efficient vascular system and may increase biomass production in this tree species. Nevertheless, the decreased mechanical strength, indicated by low density and xylem vulnerability to drought, may lead to earlier mortality, offsetting the positive effects of elevated CO2 levels in the future.

See more in PubMed

Dlugokencky E, Tans P. Trends in atmospheric carbondioxide, National Oceanic & Atmospheric Administration, Earth SystemResearch Laboratory (NOAA/ESRL). 2020 [cited 20 Apr 2021]. http://www.esrl.noaa.gov/gmd/ccgg/trends/global.html

van Vuuren DP, Edmonds J, Kainuma M, Riahi K, Thomson A, Hibbard K, et al.. The representative concentration pathways: An overview. Clim Change. 2011;109: 5–31. doi: 10.1007/s10584-011-0148-z DOI

Ciais P, Sabine C, Bala G, Bopp L, Brovkin V, Canadell J, et al.. Carbon and Other Biogeochemical Cycles. In: Intergovernmental Panel on Climate Change, editor. Climate Change 2013—The Physical Science Basis. Cambridge: Cambridge University Press; 2013. pp. 465–570.

Pan Y, Birdsey RA, Fang J, Houghton R, Kauppi PE, Kurz WA, et al.. A large and persistent carbon sink in the world’s forests. Science (80-). 2011;333: 988–993. doi: 10.1126/science.1201609 PubMed DOI

Hättenschwiler S, Schweingruber FH, Körner C. Tree ring responses to elevated CO2 and increased N deposition in Picea abies. Plant, Cell Environ. 1996. doi: 10.1111/j.1365-3040.1996.tb00015.x DOI

Churkina G, Brovkin V, Von Bloh W, Trusilova K, Jung M, Dentener F. Synergy of rising nitrogen depositions and atmospheric CO2 on land carbon uptake moderately offsets global warming. Global Biogeochem Cycles. 2009;23: 1–12. doi: 10.1029/2008GB003291 DOI

Norby RJ, Wullschleger SD, Gunderson CA, Johnson DW, Ceulemans R. Tree responses to rising CO 2 in field experiments: implications for the future forest. Plant, Cell Environ. 1999;22: 683–714. doi: 10.1046/j.1365-3040.1999.00391.x DOI

Walker AP, De Kauwe MG, Bastos A, Belmecheri S, Georgiou K, Keeling R, et al.. Integrating the evidence for a terrestrial carbon sink caused by increasing atmospheric CO 2. New Phytol. 2020. doi: 10.1111/nph.16866 PubMed DOI

Dusenge ME, Duarte AG, Way DA. Plant carbon metabolism and climate change: elevated CO2 and temperature impacts on photosynthesis, photorespiration and respiration. New Phytol. 2019;221: 32–49. doi: 10.1111/nph.15283 PubMed DOI

Lauriks F, Salomón RL, Steppe K. Temporal variability in tree responses to elevated atmospheric CO2. Plant Cell Environ. 2020; 1–19. PubMed

Pritchard SG, Rogers HH, Prior SA, Peterson CM. Elevated CO2 and plant structure: A review. Glob Chang Biol. 1999;5: 807–837. doi: 10.1046/j.1365-2486.1999.00268.x DOI

Ceulemans R, Mousseau M. Tansley Review No. 71 Effects of elevated atmospheric CO2on woody plants. New Phytol. 1994;127: 425–446. doi: 10.1111/j.1469-8137.1994.tb03961.x DOI

Lotfiomran N, Köhl M, Fromm J. Interaction effect between elevated CO2 and fertilization on biomass, gas exchange and C/N ratio of European beech (Fagus sylvatica L.). Plants. 2016;5: 1010–1016. doi: 10.3390/plants5030038 PubMed DOI PMC

Uchytilová T, Krejza J, Veselá B, Holub P, Urban O, Horáček P, et al.. Ultraviolet radiation modulates C:N stoichiometry and biomass allocation in Fagus sylvatica saplings cultivated under elevated CO2 concentration. Plant Physiol Biochem. 2019;134: 103–112. doi: 10.1016/j.plaphy.2018.07.038 PubMed DOI

Ofori-Amanfo KK, Klem K, Veselá B, Holub P, Agyei T, Marek M V., et al.. Interactive Effect of Elevated CO2 and Reduced Summer Precipitation on Photosynthesis is Species-Specific: The Case Study with Soil-Planted Norway Spruce and Sessile Oak in a Mountainous Forest Plot. Forests. 2020;12: 42. doi: 10.3390/f12010042 DOI

Eamus D, Jarvis PG. The Direct Effects of Increase in the Global Atmospheric CO2 Concentration on Natural and Commercial Temperate Trees and Forests. Advances in Ecological Research. 2004. pp. 1–58. doi: 10.1016/S0065-2504(03)34001-2 DOI

Körner C. Plant CO2 responses: An issue of definition, time and resource supply. New Phytol. 2006;172: 393–411. doi: 10.1111/j.1469-8137.2006.01886.x PubMed DOI

Milanović S, Milenković I, Dobrosavljević J, Popović M, Solla A, Tomšovský M, et al.. Growth rates of lymantria dispar larvae and quercus robur seedlings at elevated CO2 concentration and phytophthora plurivora infection. Forests. 2020;11: 1–14. doi: 10.3390/f11101059 DOI

Jiang M, Medlyn BE, Drake JE, Duursma RA, Anderson IC, Barton CVM, et al.. The fate of carbon in a mature forest under carbon dioxide enrichment. Nature. 2020;580: 227–231. doi: 10.1038/s41586-020-2128-9 PubMed DOI

Reich PB, Hungate BA, Luo Y. Carbon-nitrogen interactions in terrestrial ecosystems in response to rising atmospheric carbon dioxide. Annu Rev Ecol Evol Syst. 2006;37: 611–636. doi: 10.1146/annurev.ecolsys.37.091305.110039 DOI

Dieleman WIJ, Luyssaert S, Rey A, De Angelis P, Barton CVM, Broadmeadow MSJ, et al.. Soil [N] modulates soil C cycling in CO2-fumigated tree stands: A meta-analysis. Plant, Cell Environ. 2010;33: 2001–2011. doi: 10.1111/j.1365-3040.2010.02201.x PubMed DOI

Norby RJ, Warren JM, Iversen CM, Medlyn BE, McMurtrie RE. CO2enhancement of forest productivity constrained by limited nitrogen availability. Proc Natl Acad Sci U S A. 2010. doi: 10.1073/pnas.1006463107 PubMed DOI PMC

Luo Y, Su B, Currie WS, Dukes JS, Finzi A, Hartwig U, et al.. Progressive Nitrogen Limitation of Ecosystem Responses to Rising Atmospheric Carbon Dioxide. Bioscience. 2004;54: 731.

Terrer C, Jackson RB, Prentice IC, Keenan TF, Kaiser C, Vicca S, et al.. Nitrogen and phosphorus constrain the CO2 fertilization of global plant biomass. Nat Clim Chang. 2019;9: 684–689. doi: 10.1038/s41558-019-0545-2 DOI

Kirschbaum MUF, Lambie SM. Re-analysis of plant CO2 responses during the exponential growth phase: Interactions with light, temperature, nutrients and water availability. Funct Plant Biol. 2015;42: 989–1000. doi: 10.1071/FP15103 PubMed DOI

Yazaki K, Maruyama Y, Mori S, Koike T, Funada R. Effects of elevated carbon dioxide concentration on wood structure and formation in trees. Plant Responses to Air Pollution and Global Change. Tokyo: Springer Japan; 2005. pp. 89–97.

Wullschleger SD, Tschaplinski TJ, Norby RJ. Plant water relations at elevated CO2—Implications for water-limited environments. Plant, Cell Environ. 2002;25: 319–331. doi: 10.1046/j.1365-3040.2002.00796.x PubMed DOI

Watanabe Y, Tobita H, Kitao M, Maruyama Y, Choi DS, Sasa K, et al.. Effects of elevated CO2 and nitrogen on wood structure related to water transport in seedlings of two deciduous broad-leaved tree species. Trees—Struct Funct. 2008;22: 403–411. doi: 10.1007/s00468-007-0201-8 DOI

Ceulemans R, Jach ME, Van De Velde R, Lin JX, Stevens M. Elevated atmospheric CO2 alters wood production, wood quality and wood strength of Scots pine (Pinus sylvestris L) after three years of enrichment. Glob Chang Biol. 2002;8: 153–162. doi: 10.1046/j.1354-1013.2001.00461.x DOI

Domec JC, Smith DD, McCulloh KA. A synthesis of the effects of atmospheric carbon dioxide enrichment on plant hydraulics: implications for whole-plant water use efficiency and resistance to drought. Plant Cell Environ. 2017;40: 921–937. doi: 10.1111/pce.12843 PubMed DOI

Yazaki K, Funada R, Mori S, Maruyama Y, Abaimov AP, Kayama M, et al.. Growth and annual ring structure of Larix sibirica grown at different carbon dioxide concentrations and nutrient supply rates. Tree Physiol. 2001;21: 1223–1229. doi: 10.1093/treephys/21.16.1223 PubMed DOI

Kaakinen S, Kostiainen K, Ek F, Saranpää P, Kubiske ME, Sober J, et al.. Stem wood properties of Populus tremuloides, Betula papyrifera and Acer saccharum saplings after 3 years of treatments to elevated carbon dioxide and ozone. Glob Chang Biol. 2004;10: 1513–1525. doi: 10.1111/j.1365-2486.2004.00814.x DOI

Kostiainen K, Jalkanen H, Kaakinen S, Saranpää P, Vapaavuori E. Wood properties of two silver birch clones exposed to elevated CO2and O3. Glob Chang Biol. 2006;12: 1230–1240. doi: 10.1111/j.1365-2486.2006.01165.x DOI

Lotfiomran N, Fromm J, Luinstra GA. Effects of elevated CO2 and different nutrient supplies on wood structure of European beech (Fagus sylvatica) and gray poplar (Populus × canescens). IAWA J. 2015;36: 84–97. doi: 10.1163/22941932-00000087 DOI

Atkinson CJ, Taylor JM. Effects of elevated CO2 on stem growth, vessel area and hydraulic conductivity of oak and cherry seedlings. New Phytol. 1996;133: 617–626. doi: 10.1111/j.1469-8137.1996.tb01930.x DOI

Watanabe Y, Satomura T, Sasa K, Funada R, Koike T. Differential anatomical responses to elevated CO2 in saplings of four hardwood species. Plant, Cell Environ. 2010;33: 1101–1111. doi: 10.1111/j.1365-3040.2010.02132.x PubMed DOI

Tyree ME, Zimmermann MH. Xylem Structure and the Ascent of Sap (Second Edition). Springer Verlag. 2002.

Chave J, Coomes D, Jansen S, Lewis SL, Swenson NG, Zanne AE. Towards a worldwide wood economics spectrum. Ecol Lett. 2009;12: 351–366. doi: 10.1111/j.1461-0248.2009.01285.x PubMed DOI

Ziemińska K, Butler DW, Gleason SM, Wright IJ, Westoby M. Fibre wall and lumen fractions drive wood density variation across 24 Australian angiosperms. AoB Plants. 2013;5: 1–14. doi: 10.1093/aobpla/plt046 DOI

Enquist BJ, West GB, Charnov EL, Brown JH. Allometric scaling of production and life-history variation in vascular plants. Nature. 1999;401: 907–911. doi: 10.1038/44819 DOI

Pretzsch H, Biber P, Schütze G, Kemmerer J, Uhl E. Wood density reduced while wood volume growth accelerated in Central European forests since 1870. For Ecol Manage. 2018;429: 589–616. doi: 10.1016/j.foreco.2018.07.045 DOI

Pietras J, Stojanović M, Knott R, Pokorný R. Oak sprouts grow better than seedlings under drought stress. iForest—Biogeosciences For. 2016;009: e1–e7. doi: 10.3832/ifor1823-009 DOI

McDowell NG, Allen CD, Anderson-Teixeira K, Aukema BH, Bond-Lamberty B, Chini L, et al.. Pervasive shifts in forest dynamics in a changing world. Science (80-). 2020;368: eaaz9463. doi: 10.1126/science.aaz9463 PubMed DOI

Allen CD, Macalady AK, Chenchouni H, Bachelet D, McDowell N, Vennetier M, et al.. A global overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests. For Ecol Manage. 2010;259: 660–684. doi: 10.1016/j.foreco.2009.09.001 DOI

Krejza J, Cienciala E, Světlík J, Bellan M, Noyer E, Horáček P, et al.. Evidence of climate-induced stress of Norway spruce along elevation gradient preceding the current dieback in Central Europe. Trees. 2021;35: 103–119. doi: 10.1007/s00468-020-02022-6 DOI

Hanewinkel M, Cullmann DA, Schelhaas MJ, Nabuurs GJ, Zimmermann NE. Climate change may cause severe loss in the economic value of European forest land. Nat Clim Chang. 2013;3: 203–207. doi: 10.1038/nclimate1687 DOI

Kohler M, Pyttel P, Kuehne C, Modrow T, Bauhus J. On the knowns and unknowns of natural regeneration of silviculturally managed sessile oak (Quercus petraea (Matt.) Liebl.) forests—a literature review. Ann For Sci. 2020;77: 1–19. doi: 10.1007/s13595-020-00998-2 DOI

Mölder A, Meyer P, Nagel RV. Integrative management to sustain biodiversity and ecological continuity in Central European temperate oak (Quercus robur, Q. petraea) forests: An overview. For Ecol Manage. 2019;437: 324–339. doi: 10.1016/j.foreco.2019.01.006 DOI

Cochard H, Bréda N, Granier A. Whole tree hydraulic conductance and water loss regulation in Quercus during drought: evidence for stomatal control of embolism? Ann des Sci For. 1996;53: 197–206. doi: 10.1051/forest:19960203 DOI

Stojanović M, Szatniewska J, Kyselová I, Pokorný R, Čater M. Transpiration and water potential of young Quercus petraea (M.) Liebl. coppice sprouts and seedlings during favourable and drought conditions. J For Sci. 2017;63: 313–323. doi: 10.17221/36/2017-JFS DOI

Nölte A, Yousefpour R, Hanewinkel M. Changes in sessile oak (Quercus petraea) productivity under climate change by improved leaf phenology in the 3-PG model. Ecol Modell. 2020;438: 109285. doi: 10.1016/j.ecolmodel.2020.109285 DOI

Kunz J, Löffler G, Bauhus J. Minor European broadleaved tree species are more drought-tolerant than Fagus sylvatica but not more tolerant than Quercus petraea. For Ecol Manage. 2018;414: 15–27. doi: 10.1016/j.foreco.2018.02.016 DOI

Bergès L, Nepveu G, Franc A. Effects of ecological factors on radial growth and wood density components of sessile oak (Quercus petraea Liebl.) in Northern France. For Ecol Manage. 2008;255: 567–579. doi: 10.1016/j.foreco.2007.09.027 DOI

Lauriks F, Salomón RL, De Roo L, Steppe K. Leaf and tree responses of young European aspen trees to elevated atmospheric CO2 concentration vary over the season. Tree Physiol. 2021; 1–28. PubMed

Cha S, Chae HM, Lee SH, Shim JK. Effect of elevated atmospheric CO2 concentration on growth and leaf litter decomposition of Quercus acutissima and Fraxinus rhynchophylla. PLoS One. 2017;12: 14–16. doi: 10.1371/journal.pone.0171197 PubMed DOI PMC

Urban O, Janouš D, Pokorný R, Markova I, Pavelka M, Fojtík Z, et al.. Glass domes with adjustable windows: A novel technique for exposing juvenile forest stands to elevated CO2 concentration. Photosynthetica. 2001. pp. 395–401. doi: 10.1023/A:1015134427592 DOI

Williamson GB, Wiemann MC. Measuring wood specific gravity…correctly. Am J Bot. 2010;97: 519–524. doi: 10.3732/ajb.0900243 PubMed DOI

Rossi S, Anfodillo T, Menardi R. Trephor: A New Tool for Sampling Microcores from tree stems. IAWA J. 2006;27: 89–97. doi: 10.1163/22941932-90000139 DOI

Fajstavr M, Giagli K, Vavrčík H, Gryc V, Horáček P, Urban J. The cambial response of Scots pine trees to girdling and water stress. IAWA J. 2020;41: 159–185. doi: 10.1163/22941932-bja10004 DOI

Schneider CA, Rasband WS, Eliceiri KW. NIH Image to ImageJ: 25 years of image analysis. Nat Methods. 2012;9: 671–675. doi: 10.1038/nmeth.2089 PubMed DOI PMC

Fonti P, Heller O, Cherubini P, Rigling A, Arend M. Wood anatomical responses of oak saplings exposed to air warming and soil drought. Plant Biol. 2013;15: 210–219. doi: 10.1111/j.1438-8677.2012.00599.x PubMed DOI

Tyree MT, Ewers FW. The hydraulic architecture of trees and other woody plants. New Phytol. 1991;119: 345–360. doi: 10.1111/j.1469-8137.1991.tb00035.x DOI

Noyer E, Lachenbruch B, Dlouhá J, Collet C, Ruelle J, Ningre F, et al.. Xylem traits in European beech (Fagus sylvatica L.) display a large plasticity in response to canopy release. Ann For Sci. 2017;74: 46. doi: 10.1007/s13595-017-0634-1 DOI

Stojanović M, Sánchez-Salguero R, Levanič T, Szatniewska J, Pokorný R, Linares JC. Forecasting tree growth in coppiced and high forests in the Czech Republic. The legacy of management drives the coming Quercus petraea climate responses. For Ecol Manage. 2017;405: 56–68. doi: 10.1016/j.foreco.2017.09.021 DOI

Carlquist S. Ecological factors in wood evolution: a floristic approach. Am J Bot. 1977;64: 887–896. doi: 10.1002/j.1537-2197.1977.tb11932.x DOI

Copini P, Vergeldt FJ, Fonti P, Sass-Klaassen U, den Ouden J, Sterck F, et al.. Magnetic resonance imaging suggests functional role of previous year vessels and fibres in ring-porous sap flow resumption. Steppe K, editor. Tree Physiol. 2019;39: 1009–1018. doi: 10.1093/treephys/tpz019 PubMed DOI

Taneda H, Sperry JS. A case-study of water transport in co-occurring ring- versus diffuse-porous trees: Contrasts in water-status, conducting capacity, cavitation and vessel refilling. Tree Physiol. 2008;28: 1641–1651. doi: 10.1093/treephys/28.11.1641 PubMed DOI

Sevanto S, Michele Holbrook N, Ball MC. Freeze/thaw-induced embolism: Probability of critical bubble formation depends on speed of ice formation. Front Plant Sci. 2012;3: 1–12. PubMed PMC

Wood SN. Generalized additive models: An introduction with R, second edition. Generalized Additive Models: An Introduction with R, Second Edition. 2017.

Kirschbaum MUF. Direct and indirect climate change effects on photosynthesis and transpiration. Plant Biol. 2004;6: 242–253. doi: 10.1055/s-2004-820883 PubMed DOI

Saxe H, Ellsworth DS, Heath J. Tree and forest functioning in an enriched CO2 atmosphere. New Phytol. 1998;139: 395–436. doi: 10.1046/j.1469-8137.1998.00221.x DOI

Steppe K, Sterck F, Deslauriers A. Diel growth dynamics in tree stems: Linking anatomy and ecophysiology. Trends Plant Sci. 2015;20: 335–343. doi: 10.1016/j.tplants.2015.03.015 PubMed DOI

Pantin F, Simonneau T, Muller B. Coming of leaf age: Control of growth by hydraulics and metabolics during leaf ontogeny. New Phytol. 2012;196: 349–366. doi: 10.1111/j.1469-8137.2012.04273.x PubMed DOI

Körner C. Carbon limitation in trees. J Ecol. 2003;91: 4–17. doi: 10.1046/j.1365-2745.2003.00742.x DOI

Muller B, Pantin F, Génard M, Turc O, Freixes S, Piques M, et al.. Water deficits uncouple growth from photosynthesis, increase C content, and modify the relationships between C and growth in sink organs. J Exp Bot. 2011;62: 1715–1729. doi: 10.1093/jxb/erq438 PubMed DOI

Peters RL, Steppe K, Cuny HE, De Pauw DJW, Frank DC, Schaub M, et al.. Turgor—a limiting factor for radial growth in mature conifers along an elevational gradient. New Phytol. 2020. doi: 10.1111/nph.16872 PubMed DOI

Bin Luo Z, Langenfeld-Heyser R, Calfapietra C, Polle A. Influence of free air CO2 enrichment (EUROFACE) and nitrogen fertilisation on the anatomy of juvenile wood of three poplar species after coppicing. Trees—Struct Funct. 2005;19: 109–118. doi: 10.1007/s00468-004-0369-0 DOI

Rao R V., Aebischer DP, Denne MP. Latewood density in relation to wood fibre diameter, wall thickness, and fibre and vessel percentages in Quercus robur L. IAWA J. 1997;18: 127–138. doi: 10.1163/22941932-90001474 DOI

Leal S, Sousa VB, Knapic S, Louzada JL, Pereira H. Vessel size and number are contributors to define wood density in cork oak. Eur J For Res. 2011;130: 1023–1029. doi: 10.1007/s10342-011-0487-3 DOI

Norby RJ, O’Neill EG, Luxmoore RJ. Effects of Atmospheric CO 2 Enrichment on the Growth and Mineral Nutrition of Quercus alba Seedlings in Nutrient-Poor Soil. Plant Physiol. 1986;82: 83–89. doi: 10.1104/pp.82.1.83 PubMed DOI PMC

Stitt M, Krapp A. The interaction between elevated carbon dioxide and nitrogen nutrition: the physiological and molecular background. 1999; 583–621. doi: 10.1046/j.1365-3040.1999.00386.x DOI

Rolo V, Andivia E, Pokorný R. Response of Fagus sylvatica and Picea abies to the interactive effect of neighbor identity and enhanced CO2 levels. Trees—Struct Funct. 2015;29: 1459–1469. doi: 10.1007/s00468-015-1225-0 DOI

Hacke UG, Sperry JS, Pittermann J. Efficiency Versus Safety Tradeoffs for Water Conduction in Angiosperm Vessels Versus Gymnosperm Tracheids. Vascular Transport in Plants. Elsevier; 2005. pp. 333–353. doi: 10.1016/B978-012088457-5/50018-6 DOI

Levanic T, Cater M, McDowell NG. Associations between growth, wood anatomy, carbon isotope discrimination and mortality in a Quercus robur forest. Tree Physiol. 2011;31: 298–308. doi: 10.1093/treephys/tpq111 PubMed DOI

Niklas KJ, Spatz H. Worldwide correlations of mechanical properties and green wood density. Am J Bot. 2010;97: 1587–1594. doi: 10.3732/ajb.1000150 PubMed DOI

Larjavaara M, Muller-Landau HC. Rethinking the value of high wood density. Funct Ecol. 2010;24: 701–705. doi: 10.1111/j.1365-2435.2010.01698.x PubMed DOI

Badel E, Ewers FW, Cochard H, Telewski FW. Acclimation of mechanical and hydraulic functions in trees: impact of the thigmomorphogenetic process. Front Plant Sci. 2015;6: 1–12. PubMed PMC

Fournier M, Dlouhá J, Jaouen G, Almeras T. Integrative biomechanics for tree ecology: beyond wood density and strength. J Exp Bot. 2013;64: 4793–4815. doi: 10.1093/jxb/ert279 PubMed DOI

Schelhaas MJ, Nabuurs GJ, Schuck A. Natural disturbances in the European forests in the 19th and 20th centuries. Glob Chang Biol. 2003;9: 1620–1633. doi: 10.1046/j.1365-2486.2003.00684.x DOI

Zobel BJ, Sprague JR. Predictions of Mature and Total Tree Wood Properties from Juvenile Wood. Juvenile Wood in Forest Trees. 1998. pp. 173–187. doi: 10.1007/978-3-642-72126-7_6 DOI

Brienen RJW, Caldwell L, Duchesne L, Voelker S, Barichivich J, Baliva M, et al.. Forest carbon sink neutralized by pervasive growth-lifespan trade-offs. Nat Commun. 2020;11: 4241. doi: 10.1038/s41467-020-17966-z PubMed DOI PMC

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...