Clinicogenomic factors of biotherapy immunogenicity in autoimmune disease: A prospective multicohort study of the ABIRISK consortium
Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
33125391
PubMed Central
PMC7598520
DOI
10.1371/journal.pmed.1003348
PII: PMEDICINE-D-20-00218
Knihovny.cz E-zdroje
- MeSH
- adalimumab terapeutické užití MeSH
- autoimunitní nemoci farmakoterapie genetika MeSH
- biologická terapie metody MeSH
- biologické přípravky imunologie terapeutické užití MeSH
- celogenomová asociační studie metody MeSH
- Crohnova nemoc farmakoterapie genetika MeSH
- dospělí MeSH
- HLA-DQ alfa řetězec genetika MeSH
- humanizované monoklonální protilátky terapeutické užití MeSH
- imunosupresiva terapeutické užití MeSH
- infliximab terapeutické užití MeSH
- interferon beta 1a terapeutické užití MeSH
- kohortové studie MeSH
- lidé středního věku MeSH
- lidé MeSH
- prospektivní studie MeSH
- revmatoidní artritida farmakoterapie genetika MeSH
- rituximab terapeutické užití MeSH
- roztroušená skleróza farmakoterapie genetika MeSH
- ulcerózní kolitida farmakoterapie genetika MeSH
- Check Tag
- dospělí MeSH
- lidé středního věku MeSH
- lidé MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- adalimumab MeSH
- biologické přípravky MeSH
- HLA-DQ alfa řetězec MeSH
- HLA-DQA1 antigen MeSH Prohlížeč
- humanizované monoklonální protilátky MeSH
- imunosupresiva MeSH
- infliximab MeSH
- interferon beta 1a MeSH
- rituximab MeSH
- tocilizumab MeSH Prohlížeč
BACKGROUND: Biopharmaceutical products (BPs) are widely used to treat autoimmune diseases, but immunogenicity limits their efficacy for an important proportion of patients. Our knowledge of patient-related factors influencing the occurrence of antidrug antibodies (ADAs) is still limited. METHODS AND FINDINGS: The European consortium ABIRISK (Anti-Biopharmaceutical Immunization: prediction and analysis of clinical relevance to minimize the RISK) conducted a clinical and genomic multicohort prospective study of 560 patients with multiple sclerosis (MS, n = 147), rheumatoid arthritis (RA, n = 229), Crohn's disease (n = 148), or ulcerative colitis (n = 36) treated with 8 different biopharmaceuticals (etanercept, n = 84; infliximab, n = 101; adalimumab, n = 153; interferon [IFN]-beta-1a intramuscularly [IM], n = 38; IFN-beta-1a subcutaneously [SC], n = 68; IFN-beta-1b SC, n = 41; rituximab, n = 31; tocilizumab, n = 44) and followed during the first 12 months of therapy for time to ADA development. From the bioclinical data collected, we explored the relationships between patient-related factors and the occurrence of ADAs. Both baseline and time-dependent factors such as concomitant medications were analyzed using Cox proportional hazard regression models. Mean age and disease duration were 35.1 and 0.85 years, respectively, for MS; 54.2 and 3.17 years for RA; and 36.9 and 3.69 years for inflammatory bowel diseases (IBDs). In a multivariate Cox regression model including each of the clinical and genetic factors mentioned hereafter, among the clinical factors, immunosuppressants (adjusted hazard ratio [aHR] = 0.408 [95% confidence interval (CI) 0.253-0.657], p < 0.001) and antibiotics (aHR = 0.121 [0.0437-0.333], p < 0.0001) were independently negatively associated with time to ADA development, whereas infections during the study (aHR = 2.757 [1.616-4.704], p < 0.001) and tobacco smoking (aHR = 2.150 [1.319-3.503], p < 0.01) were positively associated. 351,824 Single-Nucleotide Polymorphisms (SNPs) and 38 imputed Human Leukocyte Antigen (HLA) alleles were analyzed through a genome-wide association study. We found that the HLA-DQA1*05 allele significantly increased the rate of immunogenicity (aHR = 3.9 [1.923-5.976], p < 0.0001 for the homozygotes). Among the 6 genetic variants selected at a 20% false discovery rate (FDR) threshold, the minor allele of rs10508884, which is situated in an intron of the CXCL12 gene, increased the rate of immunogenicity (aHR = 3.804 [2.139-6.764], p < 1 × 10-5 for patients homozygous for the minor allele) and was chosen for validation through a CXCL12 protein enzyme-linked immunosorbent assay (ELISA) on patient serum at baseline before therapy start. CXCL12 protein levels were higher for patients homozygous for the minor allele carrying higher ADA risk (mean: 2,693 pg/ml) than for the other genotypes (mean: 2,317 pg/ml; p = 0.014), and patients with CXCL12 levels above the median in serum were more prone to develop ADAs (aHR = 2.329 [1.106-4.90], p = 0.026). A limitation of the study is the lack of replication; therefore, other studies are required to confirm our findings. CONCLUSION: In our study, we found that immunosuppressants and antibiotics were associated with decreased risk of ADA development, whereas tobacco smoking and infections during the study were associated with increased risk. We found that the HLA-DQA1*05 allele was associated with an increased rate of immunogenicity. Moreover, our results suggest a relationship between CXCL12 production and ADA development independent of the disease, which is consistent with its known function in affinity maturation of antibodies and plasma cell survival. Our findings may help physicians in the management of patients receiving biotherapies.
AP HP Hôpital Beaujon Paris France
AP HP Hôpital Pitié Salpêtrière Biotherapy Paris France
AP HP Paris Sud University Hospitals Paul Brousse Hospital Villejuif France
BioMedicine Design Pfizer Inc Andover Massachusetts United States of America
Center for Multiple Sclerosis St Michael's Hospital University of Toronto Toronto Canada
Centre for Rheumatology Research University College London London United Kingdom
CHU Ste Justine Research Center Montreal Canada
Clinic for Neurology 2 Med Campus 3 Kepler University Hospital GmbH Linz Austria
Current address Quanterix Corporation Billerica Massachusetts United States of America
Department of Clinical Neuroscience Karolinska Institutet Stockholm Sweden
Department of Gastroenterology AP HP Hôpital Kremlin Bicêtre France
Department of Gastroenterology Hôpital Saint Louis AP HP Université Paris Diderot Paris France
Department of Neurology Medical University of Graz Austria
Department of Neurology Technische Universität München Munich Germany
Department of Neurology University Hospital Köln Köln Germany
Department of Rheumatology Leiden University Medical Center Leiden the Netherlands
Department of Rheumatology University College London Hospital London United Kingdom
Dipartimento di Medicina Sperimentale e Clínica Università di Firenze Firenze Italy
GlaxoSmithKline Clinical Immunology Biopharm Collegeville Pennsylvania United States of America
Immunology Area of Bambino Gesù Pediatric Hospital IRCCS Rome Italy
Innsbruck Medical University Department of Neurology Innsbruck Austria
Institut des maladies de l'Appareil Digestif University Hospital of Nantes Nantes France
Integrated Biologix GmbH Basel Switzerland
Ipsen Biopharm Ltd Berkshire United Kingdom
Munich Cluster for Systems Neurology Munich Germany
Paris University Paris Descartes University INSERM U1016 Paris France
Princess Grace Hospital Rheumatology Monaco
Rheumatology Department CHU de Bordeaux GH Pellegrin Bordeaux France
Rheumatology department Cochin Hospital AP HP CUP Paris France
Rheumatology University Hospital of Clermont Ferrand Clermont Ferrand France
Service d'hépato gastroentérologie University Hospital of Reims Reims France
Sorbonne Université INSERM UMR 959 Immunology Immunopathology Immunotherapy Paris France
Svar Life Science Malmö Sweden
UMR CNRS 5164 Bordeaux University Bordeaux France
University hospital of Lille Maladies de l'appareil digestif Lille France
University of Düsseldorf Medical Faculty Department of Neurology Düsseldorf Germany
Zobrazit více v PubMed
Weert M van de, Møller EH, eds. Immunogenicity of Biopharmaceuticals. New York, NY: Springer; 2008.
Shankar G, Arkin S, Cocea L, Devanarayan V, Kirshner S, Kromminga A, et al. Assessment and Reporting of the Clinical Immunogenicity of Therapeutic Proteins and Peptides—Harmonized Terminology and Tactical Recommendations. AAPS J. 2014;16(4):658–673. 10.1208/s12248-014-9599-2 PubMed DOI PMC
Pineda C, Castañeda Hernández G, Jacobs IA, Alvarez DF, Carini C. Assessing the Immunogenicity of Biopharmaceuticals. BioDrugs. 2016;30(3):195–206. 10.1007/s40259-016-0174-5 PubMed DOI PMC
Rup B, Pallardy M, Sikkema D, Albert T, Allez M, Broet P, et al. Standardizing terms, definitions and concepts for describing and interpreting unwanted immunogenicity of biopharmaceuticals: recommendations of the Innovative Medicines Initiative ABIRISK consortium: Immunogenicity of biopharmaceuticals: ABIRISK recommendations. Clin Exp Immunol. 2015;181(3):385–400. 10.1111/cei.12652 PubMed DOI PMC
ABIRISK Consortium. ABIRISK: Anti-Biopharmaceutical Immunization: Prediction and Analysis of Clinical Relevance to Minimize the Risk [Internet]. 2018 [cited 2020 Jan 1]. Available from: https://www.imi.europa.eu/projects-results/project-factsheets/abiriskref:end
Shankar G, Devanarayan V, Amaravadi L, Barrett YC, Bowsher R, Finco-Kent D, et al. Recommendations for the Validation of Immunoassays Used for Detection of Host Antibodies against Biotechnology Products. Journal of Pharm Biomed Anal. 2008; 48(5): 1267–81. 10.1016/j.jpba.2008.09.020 PubMed DOI
Ingenhoven K, Kramer D, Jensen PE, Hermanrud C, Ryner M, Deisenhammer F, et al. Development and Validation of an Enzyme-Linked Immunosorbent Assay for the Detection of Binding Anti-Drug Antibodies against Interferon Beta. Front Neurol. 2017;8:305 10.3389/fneur.2017.00305 PubMed DOI PMC
Hermanrud C, Ryner M, Luft T, Jensen PE, Ingenhoven K, Rat D, et al. Development and validation of cell-based luciferase reporter gene assays for measuring neutralizing anti-drug antibodies against interferon beta. J Immunol Methods. 2016;430:1–9. 10.1016/j.jim.2016.01.004 PubMed DOI
Jensen PEH, Warnke C, Ingenhoven K, Piccoli L, Gasis M, Hermanrud C, et al. Detection and kinetics of persistent neutralizing anti-interferon-beta antibodies in patients with multiple sclerosis. Results from the ABIRISK prospective cohort study. J Neuroimmunol. 2019;326:19–27. 10.1016/j.jneuroim.2018.11.002 . PubMed DOI
Perdry H, Dandine-Roulland C. “gaston” R package. April 2019. Available from: https://CRAN.R-project.org/package=gaston
Zheng X, Shen J, Cox C, Wakefield JC, Ehm MG, Nelson MR, et al. HIBAG—HLA genotype imputation with attribute bagging. Pharmacogenomics J. 2014;14: 192–200. 10.1038/tpj.2013.18 10.1038/tpj.2013.18 PubMed DOI PMC
Kalbfleisch JD, Prentice RL. The Statistical Analysis of Failure Time Data: Kalbfleisch/The Statistical. Hoboken, NJ, USA: John Wiley & Sons, Inc.; 2002. 10.1002/9781118032985 DOI
Price AL, Zaitlen NA, Reich D, Patterson N. New Approaches to Population Stratification in Genome-Wide Association Studies. Nature Reviews. Genetics 2010:11(7): 459–63. 10.1038/nrg2813 PubMed DOI PMC
Lange T, Hansen JV. Direct and Indirect Effects in a Survival Context. Epidemiology. 2011;22(4):575–581. 10.1097/EDE.0b013e31821c680c PubMed DOI
Aalen O. A model for non-parametric regression analysis of counting processes. In: Klonecki W, Kozek A, Rosinski J, eds. Lecture Notes in Statistics, Mathematical Statistics and Probability Theory. New York: Springer-Verlag; 1980. pp. 1–25.
Bartelds GM, Krieckaert CLM, Nurmohamed MT, van Schouwenburg PA, Lems WF, Twisk JWR, et al. Development of Antidrug Antibodies Against Adalimumab and Association With Disease Activity and Treatment Failure During Long-term Follow-up. JAMA. 2011;305(14):1460 10.1001/jama.2011.406 PubMed DOI
Ungar B, Chowers Y, Yavzori M, Picard O, Fudim E, Har-Noy O, et al. The temporal evolution of antidrug antibodies in patients with inflammatory bowel disease treated with infliximab. Gut. 2014;63(8):1258–1264. 10.1136/gutjnl-2013-305259 PubMed DOI
Francis GS, Rice GPA, Alsop JC, for the PRISMS (Prevention of Relapses and Disability by Interferon ss-1a Subcutaneously in Multiple Sclerosis) Study Group. Interferon -1a in MS: Results following development of neutralizing antibodies in PRISMS. Neurology. 2005;65(1):48–55. 10.1212/01.wnl.0000171748.48188.5b PubMed DOI
Garcês S, Demengeot J, Benito-Garcia E. The immunogenicity of anti-TNF therapy in immune-mediated inflammatory diseases: a systematic review of the literature with a meta-analysis. Ann Rheum Dis. 2013;72(12):1947–1955. 10.1136/annrheumdis-2012-202220 PubMed DOI
Jani M, Barton A, Warren RB, Griffiths CEM, Chinoy H. The role of DMARDs in reducing the immunogenicity of TNF inhibitors in chronic inflammatory diseases. Rheumatology. 2014;53(2):213–222. 10.1093/rheumatology/ket260 PubMed DOI PMC
Bitoun S, Nocturne G, Ly B, Krzysiek R, Roques P, Pruvost A, et al. Methotrexate and BAFF interaction prevents immunization against TNF inhibitors. Ann Rheum Dis. 2018:77(10):1463–1470 10.1136/annrheumdis-2018-213403 PubMed DOI
Borkner L, Misiak A, Wilk MM, Mills KHG. Azithromycin Clears Bordetella pertussis Infection in Mice but Also Modulates Innate and Adaptive Immune Responses and T Cell Memory. Front Immunol. 2018;9:1764 10.3389/fimmu.2018.01764 PubMed DOI PMC
Oh JZ, Ravindran R, Chassaing B, Carvalho FA, Maddur MS, Bower M, et al. TLR5-Mediated Sensing of Gut Microbiota Is Necessary for Antibody Responses to Seasonal Influenza Vaccination. Immunity. 2014;41(3):478–492. 10.1016/j.immuni.2014.08.009 PubMed DOI PMC
Hagan T, Cortese M, Rouphael N, Boudreau C, Linde C, Maddur MS, et al. Antibiotics-Driven Gut Microbiome Perturbation Alters Immunity to Vaccines in Humans. Cell 2019:178(6): 1313–1328.e13. 10.1016/j.cell.2019.08.010 PubMed DOI PMC
Routy B, Le Chatelier E, Derosa L, Duong CPM, Alou MT, Daillère R, et al. Gut microbiome influences efficacy of PD-1–based immunotherapy against epithelial tumors. Science. 2018;359(6371):91–97. 10.1126/science.aan3706 PubMed DOI
Geva-Zatorsky N, Sefik E, Kua L, Pasman L, Tan TZ, Ortiz-Lopez A, et al. Mining the Human Gut Microbiota for Immunomodulatory Organisms. Cell. 2017;168(5):928–943.e11. 10.1016/j.cell.2017.01.022 PubMed DOI PMC
Bachem A, Makhlouf C, Binger KJ, de Souza DP, Tull D, Hochheiser K, et al. Microbiota-Derived Short-Chain Fatty Acids Promote the Memory Potential of Antigen-Activated CD8+ T Cells. Immunity 2019:51(2): 285–297.e5. 10.1016/j.immuni.2019.06.002 PubMed DOI
Emery P, Sebba A, Huizinga TWJ. Biologic and oral disease-modifying antirheumatic drug monotherapy in rheumatoid arthritis. Ann Rheum Dis. 2013;72(12):1897–1904. 10.1136/annrheumdis-2013-203485 PubMed DOI PMC
Hyrich KL, Symmons DPM, Watson KD, Silman AJ, British Society for Rheumatology Biologics Register. Comparison of the response to infliximab or etanercept monotherapy with the response to cotherapy with methotrexate or another disease-modifying antirheumatic drug in patients with rheumatoid arthritis: Results from the British Society for Rheumatology Biologics Register. Arthritis Rheum. 2006;54(6):1786–1794. 10.1002/art.21830 PubMed DOI
Hedström AK, Ryner M, Fink K, Fogdell-Hahn A, Alfredsson L, Olsson T, et al. Smoking and risk of treatment-induced neutralizing antibodies to interferon β-1a. Mult Scler J. 2014;20(4):445–450. 10.1177/1352458513498635 PubMed DOI
Hedström A, Alfredsson L, Lundkvist Ryner M, Fogdell-Hahn A, Hillert J, et al. Smokers run increased risk of developing anti-natalizumab antibodies. Mult Scler J. 2014;20(8):1081–1085. 10.1177/1352458513515086 PubMed DOI
Quistrebert J, Hässler S, Bachelet D, Mbogning C, Musters A, Tak PP, et al. Incidence and risk factors for adalimumab and infliximab anti-drug antibodies in rheumatoid arthritis: A European retrospective multicohort analysis. Semin Arthritis Rheum. 2019;48(6):967–975. 10.1016/j.semarthrit.2018.10.006 PubMed DOI
Auer M, Hegen H, Luft T, Bsteh G, Fogdell-Hahn A, Loercher A, et al.; on behalf of the ABIRISK consortium. Serum cotinine does not predict neutralizing antibodies against Interferon-beta in an Austrian MS-cohort. J Interferon Cytokine Res. 2016;36(12):667–670. 10.1089/jir.2016.0054 PubMed DOI
Bachelet D, Hässler S, Mbogning C, Link J, Ryner M, Ramanujam R, et al. Occurrence of Anti-Drug Antibodies against Interferon-Beta and Natalizumab in Multiple Sclerosis: A Collaborative Cohort Analysis. Ramagopalan SV, ed. PLoS ONE. 2016;11(11):e0162752 10.1371/journal.pone.0162752 PubMed DOI PMC
Janssens R, Struyf S, Proost P. Pathological roles of the homeostatic chemokine CXCL12. Cytokine Growth Factor Rev. 2018;44:51–68. 10.1016/j.cytogfr.2018.10.004 PubMed DOI
Bannard O, Horton RM, Allen CDC, An J, Nagasawa T, Cyster JG. Germinal Center Centroblasts Transition to a Centrocyte Phenotype According to a Timed Program and Depend on the Dark Zone for Effective Selection. Immunity. 2013;39(5):912–924. 10.1016/j.immuni.2013.08.038 PubMed DOI PMC
Barinov A, Luo L, Gasse P, Meas-Yedid V, Donnadieu E, Arenzana-Seisdedos F, et al. Essential role of immobilized chemokine CXCL12 in the regulation of the humoral immune response. Proc Natl Acad Sci. 2017;114(9):2319–2324. 10.1073/pnas.1611958114 PubMed DOI PMC
Ma Q, Jones D, Springer TA. The chemokine receptor CXCR4 is required for the retention of B lineage and granulocytic precursors within the bone marrow microenvironment. Immunity. 1999;10: 463–471. 10.1016/s1074-7613(00)80046-1 PubMed DOI
Majumder PP, Sarkar-Roy N, Staats H, Ramamurthy T, Maiti S, Chowdhury G, et al. Genomic correlates of variability in immune response to an oral cholera vaccine. Eur J Hum Genet. 2013;21: 1000–1006. 10.1038/ejhg.2012.278 PubMed DOI PMC
Haralambieva IH, Zimmermann MT, Ovsyannikova IG, Grill DE, Oberg AL, Kennedy RB, et al. Whole Transcriptome Profiling Identifies CD93 and Other Plasma Cell Survival Factor Genes Associated with Measles-Specific Antibody Response after Vaccination. PLoS ONE. 2016;11: e0160970 10.1371/journal.pone.0160970 PubMed DOI PMC
Liu CL, Lyle MJ, Shin SC, Miao CH. Strategies to target long-lived plasma cells for treating hemophilia A inhibitors. Cell Immunol. 2016;301: 65–73. 10.1016/j.cellimm.2016.01.005 PubMed DOI PMC
Sazonovs A, Kennedy NA, Moutsianas L, Heap GA, Rice DL, Reppell M, et al. HLA-DQA1*05 Carriage Associated With Development of Anti-Drug Antibodies to Infliximab and Adalimumab in Patients With Crohn’s Disease. Gastroenterology 2020. January;158(1):189–199. 10.1053/j.gastro.2019.09.041 PubMed DOI
Buck D, Andlauer TF, Igl W, Wicklein EM, Mühlau M, Weber F, et al. Effect of HLA-DRB1 alleles and genetic variants on the development of neutralizing antibodies to interferon beta in the BEYOND and BENEFIT trials. Mult Scler J. 2019;25(4):565–573. 10.1177/1352458518763089 PubMed DOI
Liu M, Degner J, Davis JW, Idler KB, Nader A, Mostafa NM, et al. Identification of HLA-DRB1 association to adalimumab immunogenicity. De Re V, ed. PLoS ONE. 2018;13(4):e0195325 10.1371/journal.pone.0195325 PubMed DOI PMC
Kular L, Liu Y, Ruhrmann S, Zheleznyakova G, Marabita F, Gomez-Cabrero D, et al. DNA methylation as a mediator of HLA-DRB1*15:01 and a protective variant in multiple sclerosis. Nat Commun. 2018;9(1):2397 10.1038/s41467-018-04732-5 PubMed DOI PMC
Lam TH, Shen M, Tay MZ, Ren EC. Unique Allelic eQTL Clusters in Human MHC Haplotypes. G3amp58 GenesGenomesGenetics 2017;7(8):2595–2604. 10.1534/g3.117.043828 PubMed DOI PMC
Alcina A, Abad-Grau M del M, Fedetz M, Izquierdo G, Lucas M, Fernández O, et al. Multiple Sclerosis Risk Variant HLA-DRB1*1501 Associates with High Expression of DRB1 Gene in Different Human Populations. Palau F, ed. PLoS ONE. 2012;7(1):e29819 10.1371/journal.pone.0029819 PubMed DOI PMC
van Schouwenburg PA, Kruithof S, Wolbink G, Wouters D, Rispens T. Using monoclonal antibodies as an international standard for the measurement of anti-adalimumab antibodies. J Pharm Biomed Anal. 2016;120: 198–201. 10.1016/j.jpba.2015.12.040 PubMed DOI
EMA. Guideline on Immunogenicity assessment of therapeutic proteins, Committee for Medicinal Products for Human Use (CHMP). EMEA/CHMP/BMWP/14327/2006 Rev 1 [Internet]. 2017 [cited 2017 Jan 17]. Available from: https://www.ema.europa.eu/en/immunogenicity-assessment-biotechnology-derived-therapeutic-proteins#document-history—revision-1-(current-version)-section
FDA. Immunogenicity Testing of Therapeutic Protein Products–Developing and Validating Assays for Anti-Drug Antibody Detection. Guidance for Industry [Internet]. 2019 [cited 2019 Jan 1]. Available from: https://www.fda.gov/regulatory-information
Eng GP, Bouchelouche P, Bartels EM, Bliddal H, Bendtzen K, Stoltenberg M. Anti-Drug Antibodies, Drug Levels, Interleukin-6 and Soluble TNF Receptors in Rheumatoid Arthritis Patients during the First 6 Months of Treatment with Adalimumab or Infliximab: A Descriptive Cohort Study. Kuwana M, ed. PLoS ONE. 2016;11(9):e0162316 10.1371/journal.pone.0162316 eCollection 2016 PubMed DOI PMC
Kennedy NA, Heap GA, Green HD, Hamilton B, Bewshea C, Walker GJ, et al. Predictors of Anti-TNF Treatment Failure in Anti-TNF-Naive Patients with Active Luminal Crohn’s Disease: A Prospective, Multicentre, Cohort Study. The Lancet. Gastroenterology & Hepatology 2019:4(5): 341–53. 10.1016/S2468-1253(19)30012-3 PubMed DOI
van Schouwenburg PA, Rispens T, Wolbink GJ. Immunogenicity of anti-TNF biologic therapies for rheumatoid arthritis. Nat Rev Rheumatol. 2013;9(3):164–172. 10.1038/nrrheum.2013.4 PubMed DOI
Burmester GR, Choy E, Kivitz A, Ogata A, Bao M, Nomura A, et al. Low immunogenicity of tocilizumab in patients with rheumatoid arthritis. Ann Rheum Dis. 2017;76(6):1078–1085. 10.1136/annrheumdis-2016-210297 PubMed DOI
Benucci M, Meacci F, Grossi V, Infantino M, Manfredi M, Bellio E, et al. Correlations between immunogenicity, drug levels,and disease activity in an Italian cohort of rheumatoid arthritis patients treated with tocilizumab. Biol Targets Ther. 2016: 10:53–8. 10.2147/BTT.S97234 . PubMed DOI PMC
Sigaux J, Hamze M, Daien C, Morel J, Krzysiek R, Pallardy M, et al. Immunogenicity of tocilizumab in patients with rheumatoid arthritis. Joint Bone Spine. 2017;84(1):39–45. 10.1016/j.jbspin.2016.04.013 PubMed DOI
Einarsson JT, Evert M, Geborek P, Saxne T, Lundgren M, Kapetanovic MC. Rituximab in clinical practice: dosage, drug adherence, Ig levels, infections, and drug antibodies. Clin Rheumatol. 2017;36(12):2743–2750. 10.1007/s10067-017-3848-6 PubMed DOI PMC
Strand V, Balsa A, Al-Saleh J, Barile-Fabris L, Horiuchi T, Takeuchi T, et al. Immunogenicity of Biologics in Chronic Inflammatory Diseases: A Systematic Review. BioDrugs. 2017;31(4):299–316. 10.1007/s40259-017-0231-8 PubMed DOI PMC
Link J, Ramanujam R, Auer M, Ryner M, Hässler S, Bachelet D, et al. Clinical practice of analysis of anti-drug antibodies against interferon beta and natalizumab in multiple sclerosis patients in Europe: A descriptive study of test results. van Hall T, ed. PLoS ONE. 2017;12(2):e0170395 10.1371/journal.pone.0170395 eCollection 2017 PubMed DOI PMC