Rapid oxygen exchange between hematite and water vapor
Status PubMed-not-MEDLINE Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
Z250-N27
Austrian Science Fund (Fonds zur Förderung der Wissenschaftlichen Forschung)
Start Prize Y847-N20
Austrian Science Fund (Fonds zur Förderung der Wissenschaftlichen Forschung)
883395
EC | EU Framework Programme for Research and Innovation H2020 | H2020 Priority Excellent Science | H2020 European Research Council (H2020 Excellent Science - European Research Council)
864628
EC | EU Framework Programme for Research and Innovation H2020 | H2020 Priority Excellent Science | H2020 European Research Council (H2020 Excellent Science - European Research Council)
PubMed
34759277
PubMed Central
PMC8580966
DOI
10.1038/s41467-021-26601-4
PII: 10.1038/s41467-021-26601-4
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
Oxygen exchange at oxide/liquid and oxide/gas interfaces is important in technology and environmental studies, as it is closely linked to both catalytic activity and material degradation. The atomic-scale details are mostly unknown, however, and are often ascribed to poorly defined defects in the crystal lattice. Here we show that even thermodynamically stable, well-ordered surfaces can be surprisingly reactive. Specifically, we show that all the 3-fold coordinated lattice oxygen atoms on a defect-free single-crystalline "r-cut" ([Formula: see text]) surface of hematite (α-Fe2O3) are exchanged with oxygen from surrounding water vapor within minutes at temperatures below 70 °C, while the atomic-scale surface structure is unperturbed by the process. A similar behavior is observed after liquid-water exposure, but the experimental data clearly show most of the exchange happens during desorption of the final monolayer, not during immersion. Density functional theory computations show that the exchange can happen during on-surface diffusion, where the cost of the lattice oxygen extraction is compensated by the stability of an HO-HOH-OH complex. Such insights into lattice oxygen stability are highly relevant for many research fields ranging from catalysis and hydrogen production to geochemistry and paleoclimatology.
Alma Mater Studiorum Università di Bologna Bologna Italy
Central European Institute of Technology Brno University of Technology Brno Czech Republic
Zobrazit více v PubMed
Lee S, Banjac K, Lingenfelder M, Hu X. Oxygen isotope labeling experiments reveal different reaction sites for the oxygen evolution reaction on nickel and nickel iron oxides. Angew. Chem. Int. Ed. 2019;58:10295–10299. PubMed PMC
Kasian O, et al. Degradation of iridium oxides via oxygen evolution from the lattice: correlating atomic scale structure with reaction mechanisms. Energy Environ. Sci. 2019;12:3548–3555.
Doornkamp C, Ponec V. The universal character of the Mars and Van Krevelen mechanism. J. Mol. Catal. A Chem. 2000;162:19–32.
Geiger S, et al. The stability number as a metric for electrocatalyst stability benchmarking. Nat. Catal. 2018;1:508–515.
Riva M, et al. Influence of surface atomic structure demonstrated on oxygen incorporation mechanism at a model perovskite oxide. Nat. Comm. 2018;9:3710. PubMed PMC
Schweinar K, Gault B, Mouton I, Kasian O. Lattice oxygen exchange in rutile IrO2 during the oxygen evolution reaction. J. Phys. Chem. Lett. 2020;11:5008–5014. PubMed PMC
Gorski CA, Fantle MS. Stable mineral recrystallization in low temperature aqueous systems: a critical review. Geochim. Cosmochim. Acta. 2017;198:439–465.
Frierdich AJ, et al. Iron atom exchange between hematite and aqueous Fe(II) Environ. Sci. Technol. 2015;49:8479–8486. PubMed
Taylor SD, et al. Visualizing the iron atom exchange front in the Fe(II)-catalyzed recrystallization of goethite by atom probe tomography. Proc. Natl Acad. Sci. USA. 2019;116:2866–2874. PubMed PMC
Hellmann R, et al. Nanometre-scale evidence for interfacial dissolution–reprecipitation control of silicate glass corrosion. Nat. Mater. 2015;14:307–311. PubMed
Ohlin CA, Villa EM, Rustad JR, Casey WH. Dissolution of insulating oxide materials at the molecular scale. Nat. Mater. 2009;9:11–19. PubMed
Frierdich AJ, et al. Low temperature, non-stoichiometric oxygen-isotope exchange coupled to Fe(II)–goethite interactions. Geochim. Cosmochim. Acta. 2015;160:38–54.
Bliem R, et al. An atomic-scale view of CO and H2 oxidation on a Pt/Fe3O4 model catalyst. Angew. Chem. Int. Ed. 2015;54:13999–14002. PubMed
Yoo JS, Rong X, Liu Y, Kolpak AM. Role of lattice oxygen participation in understanding trends in the oxygen evolution reaction on perovskites. ACS Catal. 2018;8:4628–4636.
Casey WH, Rustad JR. Pathways for oxygen-isotope exchange in two model oxide clusters. N. J. Chem. 2016;40:898–905.
Rustad JR, Casey WH. Metastable structures and isotope exchange reactions in polyoxometalate ions provide a molecular view of oxide dissolution. Nat. Mater. 2012;11:223–226. PubMed
Therrien AJ, et al. An atomic-scale view of single-site Pt catalysis for low-temperature CO oxidation. Nat. Catal. 2018;1:192–198.
Schlexer P, Widmann D, Behm RJ, Pacchioni G. CO oxidation on a Au/TiO2 nanoparticle catalyst via the Au-assisted Mars–van Krevelen mechanism. ACS Catal. 2018;8:6513–6525.
Henderson M. The interaction of water with solid surfaces: fundamental aspects revisited. Surf. Sci. Rep. 2002;46:1–308.
Henderson MA, Joyce SA, Rustad JR. Interaction of water with the (1×1) and (2×1) surfaces of α-Fe2O3(012) Surf. Sci. 1998;417:66–81.
Pan JM, Maschhoff BL, Diebold U, Madey TE. Interaction of water, oxygen, and hydrogen with TiO2(110) surfaces having different defect densities. J. Vac. Sci. Technol. A. 1992;10:2470–2476.
Henderson MA. Structural sensitivity in the dissociation of water on TiO2 single-crystal surfaces. Langmuir. 1996;12:5093–5098.
Elam JW, Nelson CE, Cameron MA, Tolbert MA, George SM. Adsorption of H2O on a single-crystal α-Al2O3(0001) surface. J. Phys. Chem. B. 1998;102:7008–7015.
Kraushofer F, et al. Atomic-scale structure of the hematite α-Fe2O3( PubMed PMC
Jakub Z, et al. Partially dissociated water dimers at the water–hematite interface. ACS Energy Lett. 2019;4:390–396.
Catalano JG, Fenter P, Park C. Interfacial water structure on the (012) surface of hematite: ordering and reactivity in comparison with corundum. Geochim. Cosmochim. Acta. 2007;71:5313–5324.
Henderson MA. Insights into the (1×1)-to-(2×1) phase transition of the α-Fe2O3(012) surface using EELS, LEED and water TPD. Surf. Sci. 2002;515:253–262.
Henderson MA. Surface stabilization of organics on hematite by conversion from terminal to bridging adsorption structures. Geochim. Cosmochim. Acta. 2003;67:1055–1063.
Tanwar KS, et al. Surface diffraction study of the hydrated hematite (
McBriarty ME, et al. Dynamic stabilization of metal oxide–water interfaces. J. Am. Chem. Soc. 2017;139:2581–2584. PubMed
Kerisit S. Water structure at hematite–water interfaces. Geochim. Cosmochim. Acta. 2011;75:2043–2061.
Lo, C. S., Tanwar, K. S. Chaka, A. M. & Trainor, T. P. Density functional theory study of the clean and hydrated hematite (
Tanwar KS, et al. Hydrated α-Fe2O3 surface structure: role of surface preparation. Surf. Sci. 2007;601:L59–L64.
Balajka J, Pavelec J, Komora M, Schmid M, Diebold U. Apparatus for dosing liquid water in ultrahigh vacuum. Rev. Sci. Instrum. 2018;89:083906. PubMed
Balajka J, et al. High-affinity adsorption leads to molecularly ordered interfaces on TiO2 in air and solution. Science. 2018;361:786–789. PubMed
Kraushofer F, et al. Self-limited growth of an oxyhydroxide phase at the Fe3O4(001) surface in liquid and ambient pressure water. J. Chem. Phys. 2019;151:154702. PubMed
Gamba O, et al. Adsorption of formic acid on the Fe3O4(001) surface. J. Phys. Chem. C. 2015;119:20459–20465.
Schiros T, et al. Cooperativity in surface bonding and hydrogen bonding of water and hydroxyl at metal surfaces. J. Phys. Chem. C. 2010;114:10240–10248.
Meier M, et al. Water agglomerates on Fe3O4(001) Proc. Natl Acad. Sci. USA. 2018;115:E5642–E5650. PubMed PMC
Yang W, et al. Effect of the hydrogen bond in photoinduced water dissociation: a double-edged sword. J. Phys. Chem. Lett. 2016;7:603–608. PubMed
Mu R, Zhao Z-j, Dohnálek Z, Gong J. Structural motifs of water on metal oxide surfaces. Chem. Soc. Rev. 2017;46:1785–1806. PubMed
Mirabella F, et al. Cooperative formation of long-range ordering in water ad-layers on Fe3O4(111) Surfaces. Angew. Chem. Int. Ed. 2018;57:1409–1413. PubMed
Hulva, J. Studies of Adsorption on Magnetite (001) Using Molecular Beams. Thesis, TU Wien (2019).
Bliem R, et al. Subsurface cation vacancy stabilization of the magnetite (001) surface. Science. 2014;346:1215–1218. PubMed
Liu H, Bianchetti E, Siani P, Di C. Valentin, insight into the interface between Fe3O4(001) surface and water overlayers through multiscale molecular dynamics simulations. J. Chem. Phys. 2020;152:124711. PubMed
Mu R, et al. Dimerization induced deprotonation of water on RuO2(110) J. Phys. Chem. Lett. 2014;5:3445–3450. PubMed
Kan HH, Colmyer RJ, Asthagiri A, Weaver JF. Adsorption of water on a PdO(101) thin film: evidence of an adsorbed HO−H2O complex. J. Phys. Chem. C. 2009;113:1495–1506.
Galili N, et al. The geologic history of seawater oxygen isotopes from marine iron oxides. Science. 2019;365:469–473. PubMed
Bao H, Koch PL. Oxygen isotope fractionation in ferric oxide-water systems: low temperature synthesis. Geochim. Cosmochim. Acta. 1999;63:599–613.
Yapp C. Rusty relics of earth history: iron(III) oxides, isotopes, and surficial environments. Annu. Rev. Earth Planet. Sci. 2001;29:165–199.
Atkinson A, Taylor RI. Diffusion of 55Fe in Fe2O3 single crystals. J. Phys. Chem. Solids. 1985;46:469–475.
Hallström S, Höglund L, Ågren J. Modeling of iron diffusion in the iron oxides magnetite and hematite with variable stoichiometry. Acta Mater. 2011;59:53–60.
Pavelec J, et al. A multi-technique study of CO2 adsorption on Fe3O4 magnetite. J. Chem. Phys. 2017;146:014701. PubMed
L. Haar, L., Gallagher, J. S., Kell, G. S. & National Standard Reference Data System. NBS/NRC Steam Tables: Thermodynamic and Transport Properties and Computer Programs for Vapor and Liquid States of Water in SI Units (Hemisphere Publishing Corporation, 1984).
Kresse G, Furthmüller J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 1996;6:15–50. PubMed
Kresse G, Hafner J. Ab initio molecular dynamics for open-shell transition metals. Phys. Rev. B. 1993;48:13115–13118. PubMed
Kresse G, Joubert D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B. 1999;59:1758–1775.
Blöchl PE. Projector augmented-wave method. Phys. Rev. B. 1994;50:17953–17979. PubMed
Henkelman G, Jónsson H. Improved tangent estimate in the nudged elastic band method for finding minimum energy paths and saddle points. J. Chem. Phys. 2000;113:9978–9985.
Perdew JP, Burke K, Ernzerhof M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996;77:3865–3868. PubMed
Grimme S. Semiempirical GGA-type density functional constructed with a long-range dispersion correction. J. Comput. Chem. 2006;27:1787–1799. PubMed
Klimeš J, Bowler DR, Michaelides A. Chemical accuracy for the van der Waals density functional. J. Phys. Condens. Matter. 2009;22:022201. PubMed
Dion M, Rydberg H, Schröder E, Langreth DC, Lundqvist BI. Van der Waals density functional for general geometries. Phys. Rev. Lett. 2004;92:246401. PubMed
Román-Pérez G, Soler JM. Efficient implementation of a van der Waals density functional: application to double-wall carbon nanotubes. Phys. Rev. Lett. 2009;103:096102. PubMed
Dudarev SL, Botton GA, Savrasov SY, Humphreys CJ, Sutton AP. Electron-energy-loss spectra and the structural stability of nickel oxide: an LSDA+U study. Phys. Rev. B. 1998;57:1505–1509.
Chaput L, Togo A, Tanaka I, Hug G. Phonon-phonon interactions in transition metals. Phys. Rev. B. 2011;84:094302.