The Development of Dentin Microstructure Is Controlled by the Type of Adjacent Epithelium
Jazyk angličtina Země Velká Británie, Anglie Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
34783080
PubMed Central
PMC9300090
DOI
10.1002/jbmr.4471
Knihovny.cz E-zdroje
- Klíčová slova
- DENTIN, DENTINOGENESIS, INCISOR, LIBS, MICROSTRUCTURE, MOLAR, ODONTOBLAST, ODONTOGENESIS, PROCESSES, TEETH, WNT SIGNALING,
- MeSH
- buněčná diferenciace MeSH
- dentin * MeSH
- epitel MeSH
- extracelulární matrix - proteiny genetika MeSH
- myši MeSH
- odontoblasty * MeSH
- odontogeneze MeSH
- řezáky MeSH
- zvířata MeSH
- Check Tag
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- extracelulární matrix - proteiny MeSH
Considerable amount of research has been focused on dentin mineralization, odontoblast differentiation, and their application in dental tissue engineering. However, very little is known about the differential role of functionally and spatially distinct types of dental epithelium during odontoblast development. Here we show morphological and functional differences in dentin located in the crown and roots of mouse molar and analogous parts of continuously growing incisors. Using a reporter (DSPP-cerulean/DMP1-cherry) mouse strain and mice with ectopic enamel (Spry2+/- ;Spry4-/- ), we show that the different microstructure of dentin is initiated in the very beginning of dentin matrix production and is maintained throughout the whole duration of dentin growth. This phenomenon is regulated by the different inductive role of the adjacent epithelium. Thus, based on the type of interacting epithelium, we introduce more generalized terms for two distinct types of dentins: cementum versus enamel-facing dentin. In the odontoblasts, which produce enamel-facing dentin, we identified uniquely expressed genes (Dkk1, Wisp1, and Sall1) that were either absent or downregulated in odontoblasts, which form cementum-facing dentin. This suggests the potential role of Wnt signalling on the dentin structure patterning. Finally, we show the distribution of calcium and magnesium composition in the two developmentally different types of dentins by utilizing spatial element composition analysis (LIBS). Therefore, variations in dentin inner structure and element composition are the outcome of different developmental history initiated from the very beginning of tooth development. Taken together, our results elucidate the different effects of dental epithelium, during crown and root formation on adjacent odontoblasts and the possible role of Wnt signalling which together results in formation of dentin of different quality. © 2021 The Authors. Journal of Bone and Mineral Research published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research (ASBMR).
Department of Cell Biology Faculty of Science Charles University Prague Czech Republic
Department of Histology and Embryology Faculty of Medicine Masaryk University Brno Czech Republic
Institute of Anatomy 1st Faculty of Medicine Charles University Prague Czech Republic
Institute of Dental Medicine 1st Faculty of Medicine Charles University Prague Czech Republic
Zobrazit více v PubMed
Pashley DH. Dynamics of the pulpo‐dentin complex. Crit Rev Oral Biol Med. 1996;7(2):104‐133. PubMed
Cho YS, Ryu CH, Won JH, et al. Rat odontoblasts may use glutamate to signal dentin injury. Neuroscience. 2016;29(335):54‐63. PubMed
Lee Y‐L, Liu J, Clarkson BH, Lin C‐P, Godovikova V, Ritchie HH. Dentin‐pulp complex responses to carious lesions. Caries Res. 2006;40(3):256‐264. PubMed
Lin M, Luo ZY, Bai BF, Xu F, Lu TJ. Fluid mechanics in dentinal microtubules provides mechanistic insights into the difference between hot and cold dental pain. PLOS One. 2011;6(3):e18068. PubMed PMC
Veerayutthwilai O, Byers MR, Pham T‐TT, Darveau RP, Dale BA. Differential regulation of immune responses by odontoblasts. Oral Microbiol Immunol. 2007;22(1):5‐13. PubMed
Won J, Vang H, Kim JH, Lee PR, Kang Y, Oh SB. TRPM7 mediates mechanosensitivity in adult rat odontoblasts. J Dent Res. 2018;97(9):1039‐1046. PubMed
Arana‐Chavez VE, Massa LF. Odontoblasts: the cells forming and maintaining dentine. Int J Biochem Cell Biol. 2004;36(8):1367‐1373. PubMed
Balic A, Thesleff I. Chapter seven—tissue interactions regulating tooth development and renewal. Curr Top Dev Biol. 2015;115:157‐186. PubMed
Thesleff I, Sharpe P. Signalling networks regulating dental development. Mech Dev. 1997;67(2):111‐123. PubMed
Bae C‐H, Kim T‐H, Chu J‐Y, Cho E‐S. New population of odontoblasts responsible for tooth root formation. Gene Expr Patterns. 2013;13(5):197‐202. PubMed
Xiong J, Gronthos S, Bartold PM. Role of the epithelial cell rests of Malassez in the development, maintenance and regeneration of periodontal ligament tissues. Periodontol. 2000;63:217‐233. PubMed
Yamashiro T, Zheng L, Shitaku Y, et al. Wnt10a regulates dentin sialophosphoprotein mRNA expression and possibly links odontoblast differentiation and tooth morphogenesis. Differentiation. 2007;75(5):452‐462. PubMed
Krivanek J, Adameyko I, Fried K. Heterogeneity and developmental connections between cell types inhabiting teeth. Front Physiol. 2017;8:376. PubMed PMC
Khatibi Shahidi M, Krivanek J, Kaukua N, et al. Three‐dimensional imaging reveals new compartments and structural adaptations in odontoblasts. J Dent Res. 2015;94(7):945‐954. PubMed
Smith AJ, Cassidy N, Perry H, Begue‐Kirn C, Ruch J‐V, Lesot H. Reactionary dentinogenesis. Int J Dev Biol. 1995;39(1):273‐280. PubMed
Smith AJ, Scheven BA, Takahashi Y, Ferracane JL, Shelton RM, Cooper PR. Dentine as a bioactive extracellular matrix. Arch Oral Biol. 2012;57(2):109‐121. PubMed
Couve E, Osorio R, Schmachtenberg O. The amazing odontoblast: activity, autophagy, and aging. J Dent Res. 2013;92(9):765‐772. PubMed
Beertsen W, Niehof A. Root‐analogue versus crown‐analogue dentin: a radioautographic and ultrastructural investigation of the mouse incisor. Anat Rec. 1986;215(2):106‐118. PubMed
Steinfort J, van den Bos T, Beertsen W. Differences between enamel‐related and cementum‐related dentin in the rat incisor with special emphasis on the phosphoproteins. J Biol Chem. 1989;264(5):2840‐2845. PubMed
Simon S, Smith AJ, Lumley PJ, et al. Molecular characterization of young and mature odontoblasts. Bone. 2009;45(4):693‐703. PubMed
Sun Y, Gandhi V, Prasad M, et al. Distribution of small integrin‐binding ligand, N‐linked glycoproteins (SIBLING) in the condylar cartilage of rat mandible. Int J Oral Maxillofac Surg. 2010;39(3):272‐281. PubMed PMC
Toyosawa S, Okabayashi K, Komori T, Ijuhin N. mRNA expression and protein localization of dentin matrix protein 1 during dental root formation. Bone. 2004;34(1):124‐133. PubMed
Vijaykumar A, Ghassem‐Zadeh S, Vidovic‐Zdrilic I, et al. Generation and characterization of DSPP‐cerulean/DMP1‐cherry reporter mice. Genesis. 2019;57:e23324. PubMed PMC
Boran T, Peterkova R, Lesot H, Lyons DB, Peterka M, Klein OD. Temporal analysis of ectopic enamel production in incisors from sprouty mutant mice. J Exp Zoolog B Mol Dev Evol. 2009;312B(5):473‐485. PubMed PMC
Klein OD, Lyons DB, Balooch G, et al. An FGF signaling loop sustains the generation of differentiated progeny from stem cells in mouse incisors. Development. 2008;135(2):377‐385. PubMed PMC
Klein OD, Minowada G, Peterkova R, et al. Sprouty genes control diastema tooth development via bidirectional antagonism of epithelial‐mesenchymal FGF signaling. Dev Cell. 2006;11(2):181‐190. PubMed PMC
Shim K, Minowada G, Coling DE, Martin GR. Sprouty2, a mouse deafness gene, regulates cell fate decisions in the auditory sensory epithelium by antagonizing FGF signaling. Dev Cell. 2005;8(4):553‐564. PubMed
Krivanek J, Soldatov RA, Kastriti ME, et al. Dental cell type atlas reveals stem and differentiated cell types in mouse and human teeth. Nat Commun. 2020;11(1):4816. PubMed PMC
Schneider CA, Rasband WS, Eliceiri KW. NIH Image to ImageJ: 25 years of image analysis. Nature Methods. 2012;9(7):671‐675. 10.1038/nmeth.2089 PubMed DOI PMC
An Z, Sabalic M, Bloomquist RF, Fowler TE, Streelman T, Sharpe PT. A quiescent cell population replenishes mesenchymal stem cells to drive accelerated growth in mouse incisors. Nat Commun. 2018;9(1):1‐9. PubMed PMC
Harada H, Kettunen P, Jung H‐S, Mustonen T, Wang YA, Thesleff I. Localization of putative stem cells in dental epithelium and their association with notch and Fgf signaling. J Cell Biol. 1999;147(1):105‐120. PubMed PMC
Bleckert A, Photowala H, Alford S. Dual pools of actin at presynaptic terminals. J Neurophysiol. 2012;107(12):3479‐3492. PubMed PMC
Limbeck A, Brunnbauer L, Lohninger H, et al. Methodology and applications of elemental mapping by laser induced breakdown spectroscopy. Anal Chim Acta. 2021;22(1147):72‐98. PubMed
Modlitbová P, Pořízka P, Kaiser J. Laser‐induced breakdown spectroscopy as a promising tool in the elemental bioimaging of plant tissues. TrAC Trends in Analytical Chemistry, 2020;122:115729. 10.1016/j.trac.2019.115729 DOI
Pořízka P, Klus J, Képeš E, Prochazka D, Hahn DW, Kaiser J. On the utilization of principal component analysis in laser‐induced breakdown spectroscopy data analysis, a review. Spectrochim Acta Part B Atomic Spectroscopy. 2018;148:65‐82. 10.1016/j.sab.2018.05.030 DOI
Li C, Jing Y, Wang K, et al. Dentinal mineralization is not limited in the mineralization front but occurs along with the entire odontoblast process. Int J Biol Sci. 2018;14(7):693‐704. PubMed PMC
Mishima H, Kozawa Y, Sakae T. Two patterns of calcification in rat and rabbit incisor dentin. In Suga S, Nakahara H, eds. Mechanisms and phylogeny of mineralization in biological systems. Tokyo: Springer Japan; 1991. pp 223‐227.
Shuhaibar N, Hand AR, Terasaki M. Odontoblast processes of the mouse incisor are plates oriented in the direction of growth. Anat Rec. 2020;304(8):1820‐1827. PubMed PMC
Foster BL, Soenjaya Y, Nociti FH, et al. Deficiency in acellular cementum and periodontal attachment in Bsp null mice. J Dent Res. 2013;92(2):166‐172. PubMed PMC
Imhof T, Balic A, Heilig J, et al. Pivotal role of tenascin‐W (‐N) in postnatal incisor growth and periodontal ligament remodeling. Front Immunol. 2021;11:608223. PubMed PMC
Tummers M, Thesleff I. Observations on continuously growing roots of the sloth and the K14‐Eda transgenic mice indicate that epithelial stem cells can give rise to both the ameloblast and root epithelium cell lineage creating distinct tooth patterns. Evol Dev. 2008;10(2):187‐195. PubMed
Wen Q, Jing J, Han X, et al. Runx2 regulates mouse tooth root development via activation of WNT inhibitor NOTUM. J Bone Miner Res. 2020;35(11):2252‐2264. PubMed PMC
Lin Y, Xiao Y, Lin C, et al. SALL1 regulates commitment of odontoblast lineages by interacting with RUNX2 to remodel open chromatin regions. Stem Cells. 2021;39(2):196‐209. PubMed
Huang X, Xu X, Bringas P, Hung YP, Chai Y. Smad4‐Shh‐Nfic Signaling Cascade‐Mediated Epithelial‐Mesenchymal Interaction is Crucial in Regulating Tooth Root Development. J Bone Miner Res. 2010;25(5):1167‐1178. 10.1359/jbmr.091103 PubMed DOI PMC
Kim T‐H, Bae C‐H, Yang S, Park J‐C, Cho ES. Nfic regulates tooth root patterning and growth. Anat Cell Biol. 2015;48(3):188‐194. PubMed PMC
Liu Y, Feng J, Li J, Zhao H, Ho T‐V, Chai Y. An Nfic‐hedgehog signaling cascade regulates tooth root development. Development. 2015;142(19):3374‐3382. PubMed PMC
Steinfort J, Deblauwe BM, Beertsen W. The inorganic components of cementum‐ and enamel‐related dentin in the rat incisor. J Dent Res. 1990;69(6):1287‐1292. PubMed
Gradl R, Zanette I, Ruiz‐Yaniz M, et al. Mass density measurement of mineralized tissue with grating‐based X‐ray phase tomography. PLOS One. 2016;11(12):e0167797. PubMed PMC
Manly RS, Hodge HC, Ange LE. Density and refractive index studies of dental hard tissues: II. Density distribution curves 1,2. J Dent Res. 1939;18(3):203‐211.
Plasticity of Dental Cell Types in Development, Regeneration, and Evolution