Challenges and Costs of Asexuality: Variation in Premeiotic Genome Duplication in Gynogenetic Hybrids from Cobitis taenia Complex

. 2021 Nov 09 ; 22 (22) : . [epub] 20211109

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid34830012

Grantová podpora
19-21552S Czech Science Foundation
21-25185S Czech Science Foundation
no. 539 EXCELLENCE CZ.02.1.01/0.0/0.0/15_003/0000460 OP RDE Ministry of Education Youth and Sports

The transition from sexual reproduction to asexuality is often triggered by hybridization. The gametogenesis of many hybrid asexuals involves premeiotic genome endoreplication leading to bypass hybrid sterility and forming clonal gametes. However, it is still not clear when endoreplication occurs, how many gonial cells it affects and whether its rate differs among clonal lineages. Here, we investigated meiotic and premeiotic cells of diploid and triploid hybrids of spined loaches (Cypriniformes: Cobitis) that reproduce by gynogenesis. We found that in naturally and experimentally produced F1 hybrids asexuality is achieved by genome endoreplication, which occurs in gonocytes just before entering meiosis or, rarely, one or a few divisions before meiosis. However, genome endoreplication was observed only in a minor fraction of the hybrid's gonocytes, while the vast majority of gonocytes were unable to duplicate their genomes and consequently could not proceed beyond pachytene due to defects in bivalent formation. We also noted that the rate of endoreplication was significantly higher among gonocytes of hybrids from natural clones than of experimentally produced F1 hybrids. Thus, asexuality and hybrid sterility are intimately related phenomena and the transition from sexual reproduction to asexuality must overcome significant problems with genome incompatibilities with a possible impact on reproductive potential.

Zobrazit více v PubMed

Coyne J.A., Orr H.A. Speciation. Sinauer Associates Sunderland; Sunderland, MA, USA: 2004.

Avise J.C. Speciation (review) Perspect. Biol. Med. 2005;48:315–316. doi: 10.1353/pbm.2005.0047. DOI

Mallet J. Hybridization as an invasion of the genome. Trends Ecol. Evol. 2005;20:229–237. doi: 10.1016/j.tree.2005.02.010. PubMed DOI

Rieseberg L.H., Willis J.H. Plant speciation. Science. 2007;317:910–914. doi: 10.1126/science.1137729. PubMed DOI PMC

Abbott R., Albach D., Ansell S., Arntzen J.W., Baird S.J.E., Bierne N., Boughman J., Brelsford A., Buerkle C.A., Buggs R., et al. Hybridization and speciation. J. Evol. Biol. 2013;26:229–246. doi: 10.1111/j.1420-9101.2012.02599.x. PubMed DOI

Arnold M.L., Hodges S.A. Are natural hybrids fit or unfit relative to their parents? Trends Ecol. Evol. 1995;10:67–71. doi: 10.1016/S0169-5347(00)88979-X. PubMed DOI

Rieseberg L.H. Chromosomal rearrangements and speciation. Trends Ecol. Evol. 2001;16:351–358. doi: 10.1016/S0169-5347(01)02187-5. PubMed DOI

Coyne J.A., Orr H.A. The evolutionary genetics of speciation. Philos. Trans. R. Soc. Lond. Ser. B Biol. Sci. 1998;353:287–305. doi: 10.1098/rstb.1998.0210. PubMed DOI PMC

Maheshwari S., Barbash D.A. The genetics of hybrid incompatibilities. Annu. Rev. Genet. 2011;45:331–355. doi: 10.1146/annurev-genet-110410-132514. PubMed DOI

Payseur B.A., Krenz J.G., Nachman M.W. Differential patterns of introgression across the X chromosome in a hybrid zone between two species of house mice. Evolution. 2004;58:2064–2078. doi: 10.1111/j.0014-3820.2004.tb00490.x. PubMed DOI

Geraldes A., Ferrand N., Nachman M.W. Contrasting patterns of introgression at X-linked loci across the hybrid zone between subspecies of the European rabbit (Oryctolagus cuniculus) Genetics. 2006;173:919–933. doi: 10.1534/genetics.105.054106. PubMed DOI PMC

Ernst A. Bastardierung Als Ursache der Apogamie Im Pflanzenreich. Eine Hypothese zur Experimentellen Vererbungs- und Abstammungslehre. Fischer; Jena, Germany: 1918. pp. 1–704.

Bullini L. Origin and evolution of animal hybrid species. Trends Ecol. Evol. 1994;9:422–426. doi: 10.1016/0169-5347(94)90124-4. PubMed DOI

Choleva L., Janko K., Gelas K.D., Bohlen J., Šlechtová V., Rábová M., Ráb P. Synthesis of clonality and polyploidy in vertebrate animals by hybridization between two sexual species. Evolution. 2012;66:2191–2203. doi: 10.1111/j.1558-5646.2012.01589.x. PubMed DOI

Stenberg P., Saura A. Meiosis and its deviations in polyploid animals. Cytogenet. Genome Res. 2013;140:185–203. doi: 10.1159/000351731. PubMed DOI

Lenormand T., Engelstädter J., Johnston S.E., Wijnker E., Haag C.R. Evolutionary mysteries in meiosis. Philos. Trans. R. Soc. Lond. Ser. B Biol. Sci. 2016;371:20160001. doi: 10.1098/rstb.2016.0001. PubMed DOI PMC

Lampert K.P. Facultative parthenogenesis in vertebrates: Reproductive error or chance? Sex. Dev. 2008;2:290–301. doi: 10.1159/000195678. PubMed DOI

Brownfield L., Köhler C. Unreduced gamete formation in plants: Mechanisms and prospects. J. Exp. Bot. 2011;62:1659–1668. doi: 10.1093/jxb/erq371. PubMed DOI

Mason A.S., Pires J.C. Unreduced gametes: Meiotic mishap or evolutionary mechanism? Trends Genet. 2015;31:5–10. doi: 10.1016/j.tig.2014.09.011. PubMed DOI

Stenberg P., Saura A. Cytology of asexual animals. In: Schön I., Martens K., Dijk P., editors. Lost Sex: The Evolutionary Biology of Parthenogenesis. Springer; Dordrecht, The Netherlands: 2009. pp. 63–74.

Neaves W.B., Baumann P. Unisexual reproduction among vertebrates. Trends Genet. 2011;27:81–88. doi: 10.1016/j.tig.2010.12.002. PubMed DOI

Stöck M., Dedukh D., Reifová R., Lamatsch D.K., Starostová Z., Janko K. Sex chromosomes in meiotic, hemiclonal, clonal and polyploid hybrid vertebrates: Along the ‘extended speciation continuum’. Philos. Trans. R. Soc. B Biol. Sci. 2021;376:20200103. doi: 10.1098/rstb.2020.0103. PubMed DOI PMC

Otto S.P., Lenormand T. Resolving the paradox of sex and recombination. Nat. Rev. Genet. 2002;3:252–261. doi: 10.1038/nrg761. PubMed DOI

Avise J.C. Clonality: The Genetics, Ecology, and Evolution of Sexual Abstinence in Vertebrate Animals. Oxford University Press; Oxford, UK: 2009.

Janko K., Pačes J., Wilkinson-Herbots H., Costa R.J., Roslein J., Drozd P., Iakovenko N., Rídl J., Hroudová M., Kočí J., et al. Hybrid asexuality as a primary postzygotic barrier between nascent species: On the interconnection between asexuality, hybridization and speciation. Mol. Ecol. 2018;27:248–263. doi: 10.1111/mec.14377. PubMed DOI PMC

Dedukh D., Majtánová Z., Marta A., Pšenička M., Kotusz J., Klíma J., Juchno D., Boron A., Janko K. Parthenogenesis as a solution to hybrid sterility: The mechanistic basis of meiotic distortions in clonal and sterile hybrids. Genetics. 2020;215:975–987. doi: 10.1534/genetics.119.302988. PubMed DOI PMC

Suomalainen E. Cytology and Evolution in Parthenogenesis. CRC Press; Boca Raton, FL, USA: 1987.

Storme N.D., Geelen D. Sexual polyploidization in plants—Cytological mechanisms and molecular regulation. New Phytol. 2013;198:670–684. doi: 10.1111/nph.12184. PubMed DOI PMC

Macgregor H.C., Uzzell T.M. Gynogenesis in salamanders related to Ambystoma jeffersonianum. Science. 1964;143:1043–1045. doi: 10.1126/science.143.3610.1043. PubMed DOI

Lutes A.A., Neaves W.B., Baumann D.P., Wiegraebe W., Baumann P. Sister chromosome pairing maintains heterozygosity in parthenogenetic lizards. Nature. 2010;464:283–286. doi: 10.1038/nature08818. PubMed DOI PMC

Kuroda M., Fujimoto T., Murakami M., Yamaha E., Arai K. Clonal reproduction assured by sister chromosome pairing in dojo loach, a teleost fish. Chromosome Res. 2018;26:243–253. doi: 10.1007/s10577-018-9581-4. PubMed DOI

Dedukh D., Riumin S., Chmielewska M., Rozenblut-Kościsty B., Kolenda K., Kazmierczak M., Dudzik A., Ogielska M., Krasikova A. Micronuclei in germ cells of hybrid frogs from Pelophylax esculentus complex contain gradually eliminated chromosomes. Sci. Rep. 2020;10:1–13. PubMed PMC

Kuroda M., Fujimoto T., Murakami M., Yamaha E., Arai K. Aberrant meiotic configurations cause sterility in clone-origin triploid and inter-group hybrid males of the dojo loach, Misgurnus anguillicaudatus. Cytogenet. Genome Res. 2019;158:46–54. doi: 10.1159/000500303. PubMed DOI

Bateson W. Darwin and Modern Science. Cambridge University Press; Cambridge, UK: 1909. Heredity and variation in modern lights; pp. 85–101.

Moritz C. Genetic diversity and the dynamics of hybrid parthenogenesis in Cnemidophorus (Teiidae) and Heteronotia (Gekkonidae) In: Dawley R.M., Bogart J.P., editors. Evolution and Ecology of Unisexual Vertebrates, Bulletin. Volume 466. New York State Museum; Albany, NY, USA: 1989. pp. 87–112.

Russell S.T. Evolution of intrinsic post-zygotic reproductive isolation in fish. Ann. Zool. Fenn. 2003;40:321–329.

Hamaguchi S., Sakaizumi M. Sexually differentiated mechanisms of sterility in interspecific hybrids between Oryzias latipes and O. curvinotus. J. Exp. Zool. 1992;263:323–329. doi: 10.1002/jez.1402630312. PubMed DOI

Shimizu Y., Shibata N., Sakaizumi M., Yamashita M. Production of diploid eggs through premeiotic endomitosis in the hybrid medaka between Oryzias latipes and O. curvinotus. Zool. Sci. 2000;17:951–958. doi: 10.2108/zsj.17.951. DOI

Newton A.A., Schnittker R.R., Yu Z., Munday S.S., Baumann D.P., Neaves W.B., Baumann P. Widespread failure to complete meiosis does not impair fecundity in parthenogenetic whiptail lizards. Development. 2016;143:4486–4494. doi: 10.1242/dev.141283. PubMed DOI PMC

Bohlen J., Ráb P. Species and hybrid richness in spined loaches of the genus Cobitis (Teleostei: Cobitidae), with a checklist of European forms and suggestions for conservation. J. Fish Biol. 2001;59:75–89. doi: 10.1111/j.1095-8649.2001.tb01380.x. DOI

Janko K., Flajšhans M., Choleva L., Bohlen J., Šlechtová V., Rábová M., Lajbner Z., Šlechta V., Ivanova P., Dobrovolov I., et al. Diversity of European spined loaches (genus Cobitis l.): An update of the geographic distribution of the Cobitis taenia hybrid complex with a description of new molecular tools for species and hybrid determination. J. Fish Biol. 2007;71:387–408. doi: 10.1111/j.1095-8649.2007.01663.x. DOI

Majtánová Z., Choleva L., Symonová R., Ráb P., Kotusz J., Pekárik L., Janko K. Asexual reproduction does not apparently increase the rate of chromosomal evolution: Karyotype stability in diploid and triploid clonal hybrid fish (Cobitis, Cypriniformes, Teleostei) PLoS ONE. 2016;11:e0146872. doi: 10.1371/journal.pone.0146872. PubMed DOI PMC

Marta A., Dedukh D., Bartoš O., Majtánová Z., Janko K. Cytogenetic characterization of seven novel satDNA markers in two species of spined loaches (Cobitis) and their clonal hybrids. Genes. 2020;11:617. doi: 10.3390/genes11060617. PubMed DOI PMC

Juchno D., Boroń A. Comparative histology of the testes of the spined loach Cobitis taenia l. and natural allotetraploids of Cobitis (Pisces, Cobitidae) Hydrobiologia. 2006;573:45–53. doi: 10.1007/s10750-006-0255-4. DOI

Juchno D., Arai K., Boroń A., Kujawa R. Meiotic chromosome configurations in oocytes of Cobitis taenia and its polyploid hybrids. Ichthyol. Res. 2017;64:240–243. doi: 10.1007/s10228-016-0556-1. DOI

Janko K., Vasil’ev V.P., Ráb P., Rábová M. Genetic and morphological analyses of 50-chromosome spined loaches (Cobitis, Cobitidae, Pisces) from the black sea basin that are morphologically similar to C. taenia, with the description of a new species. Folia Zool. 2005;54:405

Janko K., Kotusz J., De Gelas K., Slechtová V., Opoldusová Z., Drozd P., Choleva L., Popiołek M., Baláž M. Dynamic formation of asexual diploid and polyploid lineages: Multilocus analysis of Cobitis reveals the mechanisms maintaining the diversity of clones. PLoS ONE. 2012;7:e45384. doi: 10.1371/journal.pone.0045384. PubMed DOI PMC

Araya-Jaime C., Serrano É.A., de Andrade Silva D.M.Z., Yamashita M., Iwai T., Oliveira C., Foresti F. Surface-spreading technique of meiotic cells and immunodetection of synaptonemal complex proteins in teleostean fishes. Mol. Cytogenet. 2015;8:4. doi: 10.1186/s13039-015-0108-9. PubMed DOI PMC

Blokhina Y.P., Nguyen A.D., Draper B.W., Burgess S.M. The telomere bouquet is a hub where meiotic double-strand breaks, synapsis, and stable homolog juxtaposition are coordinated in the zebrafish, Danio rerio. PLOS Genet. 2019;15:e1007730. doi: 10.1371/journal.pgen.1007730. PubMed DOI PMC

Callan H.G. Lampbrush Chromosomes. Springer; Berlin/Heidelberg, Germany: 1986.

Saito K., Sakai C., Kawasaki T., Sakai N. Telomere distribution pattern and synapsis initiation during spermatogenesis in zebrafish. Dev. Dyn. 2014;243:1448–1456. doi: 10.1002/dvdy.24166. PubMed DOI

Itono M., Morishima K., Fujimoto T., Bando E., Yamaha E., Arai K. Premeiotic endomitosis produces diploid eggs in the natural clone loach, Misgurnus anguillicaudatus (Teleostei: Cobitidae) J. Exp. Zool. Part A Comp. Exp. Biol. 2006;305:513–523. doi: 10.1002/jez.a.283. PubMed DOI

Dedukh D., Litvinchuk S., Rosanov J., Mazepa G., Saifitdinova A., Shabanov D., Krasikova A. Optional endoreplication and selective elimination of parental genomes during oogenesis in diploid and triploid hybrid European water frogs. PLoS ONE. 2015;10:e0123304. doi: 10.1371/journal.pone.0123304. PubMed DOI PMC

Roeder G.S., Bailis J.M. The pachytene checkpoint. Trends Genet. 2000;16:395–403. doi: 10.1016/S0168-9525(00)02080-1. PubMed DOI

Subramanian V.V., Hochwagen A. The meiotic checkpoint network: Step-by-step through meiotic prophase. Cold Spring Harb. Perspect. Biol. 2014;6:a016675. doi: 10.1101/cshperspect.a016675. PubMed DOI PMC

MacQueen A.J., Hochwagen A. Checkpoint mechanisms: The puppet masters of meiotic prophase. Trends Cell Biol. 2011;21:393–400. doi: 10.1016/j.tcb.2011.03.004. PubMed DOI

Bohr T., Ashley G., Eggleston E., Firestone K., Bhalla N. Synaptonemal complex components are required for meiotic checkpoint function in Caenorhabditis elegans. Genetics. 2016;204:987–997. doi: 10.1534/genetics.116.191494. PubMed DOI PMC

Marcet-Ortega M., Pacheco S., Martínez-Marchal A., Castillo H., Flores E., Jasin M., Keeney S., Roig I. P53 and TAp63 participate in the recombination-dependent pachytene arrest in mouse spermatocytes. PLoS Genet. 2017;13:e1006845. doi: 10.1371/journal.pgen.1006845. PubMed DOI PMC

Chen X., Gaglione R., Leong T., Bednor L., de Los Santos T., Luk E., Airola M., Hollingsworth N.M. Mek1 coordinates meiotic progression with DNA break repair by directly phosphorylating and inhibiting the yeast pachytene exit regulator Ndt80. PLoS Genet. 2018;14:e1007832. doi: 10.1371/journal.pgen.1007832. PubMed DOI PMC

Musacchio A., Salmon E.D. The spindle-assembly checkpoint in space and time. Nat. Rev. Mol. Cell Biol. 2007;8:379–393. doi: 10.1038/nrm2163. PubMed DOI

Lane S., Kauppi L. Meiotic spindle assembly checkpoint and aneuploidy in males versus females. Cell Mol. Life Sci. 2019;76:1135–1150. doi: 10.1007/s00018-018-2986-6. PubMed DOI PMC

Eaker S., Cobb J., Pyle A., Handel M.A. Meiotic prophase abnormalities and metaphase cell death in MLH1-deficient mouse spermatocytes: Insights into regulation of spermatogenic progress. Dev. Biol. 2002;249:85–95. doi: 10.1006/dbio.2002.0708. PubMed DOI

Burgoyne P.S., Mahadevaiah S.K., Turner J.M.A. The consequences of asynapsis for mammalian meiosis. Nat. Rev. Genet. 2009;10:207–216. doi: 10.1038/nrg2505. PubMed DOI

Kurahashi H., Kogo H., Tsutsumi M., Inagaki H., Ohye T. Failure of homologous synapsis and sex-specific reproduction problems. Front. Genet. 2012;3:112. doi: 10.3389/fgene.2012.00112. PubMed DOI PMC

Fielder S.M., Kempfer R., Kelly W.G. Multiple sex-specific differences in the regulation of meiotic progression in C. elegans. bioRxiv. 2020 doi: 10.1101/2020.03.12.989418. DOI

Shimizu Y., Shibata N., Yamashita M. Spermiogenesis without preceding meiosis in the hybrid medaka between Oryzias latipes and O. curvinotus. J. Exp. Zool. 1997;279:102–112. doi: 10.1002/(SICI)1097-010X(19970901)279:1<102::AID-JEZ10>3.0.CO;2-A. DOI

Zhang Q., Arai K., Yamashita M. Cytogenetic mechanisms for triploid and haploid egg formation in the triploid loach Misgurnus anguillicaudatus. J. Exp. Zool. 1998;281:608–619. doi: 10.1002/(SICI)1097-010X(19980815)281:6<608::AID-JEZ9>3.0.CO;2-R. DOI

Nagaoka S.I., Hodges C.A., Albertini D.F., Hunt P.A. Oocyte-specific differences in cell-cycle control create an innate susceptibility to meiotic errors. Curr. Biol. 2011;21:651–657. doi: 10.1016/j.cub.2011.03.003. PubMed DOI PMC

Nagaoka S.I., Hassold T.J., Hunt P.A. Human aneuploidy: Mechanisms and new insights into an age-old problem. Nat. Rev. Genet. 2012;13:493–504. doi: 10.1038/nrg3245. PubMed DOI PMC

Tyler C.R., Sumpter J.P. Oocyte growth and development in teleosts. Rev. Fish Biol. Fish. 1996;6:287–318. doi: 10.1007/BF00122584. DOI

Nakamura S., Kobayashi K., Nishimura T., Tanaka M. Ovarian germline stem cells in the teleost fish, medaka (Oryzias latipes) Int. J. Biol. Sci. 2011;7:403–409. doi: 10.7150/ijbs.7.403. PubMed DOI PMC

Wildner D.D., Grier H., Quagio-Grassiotto I. Female germ cell renewal during the annual reproductive cycle in ostariophysians fish. Theriogenology. 2013;79:709–724. doi: 10.1016/j.theriogenology.2012.11.028. PubMed DOI

Yoshikawa H., Morishima K., Kusuda S., Yamaha E., Arai K. Diploid sperm produced by artificially sex-reversed clone loaches. J. Exp. Zool. Part A Ecol. Genet. Physiol. 2007;307:75–83. doi: 10.1002/jez.a.337. PubMed DOI

Lee H.O., Davidson J.M., Duronio R.J. Endoreplication: Polyploidy with purpose. Genes Dev. 2009;23:2461–2477. doi: 10.1101/gad.1829209. PubMed DOI PMC

Calvi B.R. Making big cells: One size does not fit all. Proc. Natl. Acad. Sci. USA. 2013;110:9621–9622. doi: 10.1073/pnas.1306908110. PubMed DOI PMC

Fox D.T., Duronio R.J. Endoreplication and polyploidy: Insights into development and disease. Development. 2013;140:3–12. doi: 10.1242/dev.080531. PubMed DOI PMC

Orr-Weaver T.L. When bigger is better: The role of polyploidy in organogenesis. Trends Genet. 2015;31:307–315. doi: 10.1016/j.tig.2015.03.011. PubMed DOI PMC

Losick V.P., Fox D.T., Spradling A.C. Polyploidization and cell fusion contribute to wound healing in the adult Drosophila epithelium. Curr. Biol. 2013;23:2224–2232. doi: 10.1016/j.cub.2013.09.029. PubMed DOI PMC

Cao J., Wang J., Jackman C.P., Cox A.H., Trembley M.A., Balowski J.J., Cox B.D., De Simone A., Dickson A.L., Di Talia S., et al. Tension creates an endoreplication wavefront that leads regeneration of epicardial tissue. Dev. Cell. 2017;42:600–615. doi: 10.1016/j.devcel.2017.08.024. PubMed DOI PMC

González-Rosa J.M., Sharpe M., Field D., Soonpaa M.H., Field L.J., Burns C.E., Burns C.G. Myocardial polyploidization creates a barrier to heart regeneration in zebrafish. Dev. Cell. 2018;44:433–446. doi: 10.1016/j.devcel.2018.01.021. PubMed DOI PMC

Sauer K., Knoblich J.A., Richardson H., Lehner C.F. Distinct modes of cyclin E/Cdc2c kinase regulation and S-phase control in mitotic and endoreduplication cycles of Drosophila embryogenesis. Genes Dev. 1995;9:1327–1339. doi: 10.1101/gad.9.11.1327. PubMed DOI

Diril M.K., Ratnacaram C.K., Padmakumar V.C., Du T., Wasser M., Coppola V., Tessarollo L., Kaldis P. Cyclin-dependent kinase 1 (Cdk1) is essential for cell division and suppression of DNA re-replication but not for liver regeneration. Proc. Natl. Acad. Sci. USA. 2012;109:3826–3831. doi: 10.1073/pnas.1115201109. PubMed DOI PMC

Nannas N.J., Murray A.W. Complications dawn for kinetochore regulation by Aurora. Proc. Natl. Acad. Sci. USA. 2012;109:15972–15973. doi: 10.1073/pnas.1214115109. PubMed DOI PMC

Rotelli M.D., Policastro R.A., Bolling A.M., Killion A.W., Weinberg A.J., Dixon M.J., Zentner G.E., Walczak C.E., Lilly M.A., Calvi B.R. A Cyclin A-Myb-MuvB-Aurora B network regulates the choice between mitotic cycles and polyploid endoreplication cycles. PLoS Genet. 2019;15:e1008253. doi: 10.1371/journal.pgen.1008253. PubMed DOI PMC

Adams R.R., Maiato H., Earnshaw W.C., Carmena M. Essential roles of Drosophila inner centromere protein (INCENP) and Aurora B in Histone H3 phosphorylation, metaphase chromosome alignment, kinetochore disjunction, and chromosome segregation. J. Cell Biol. 2001;153:865–880. doi: 10.1083/jcb.153.4.865. PubMed DOI PMC

Giet R., Glover D.M. Drosophila Aurora B kinase is required for histone H3 phosphorylation and condensin recruitment during chromosome condensation and to organize the central spindle during cytokinesis. J. Cell Biol. 2001;152:669–682. doi: 10.1083/jcb.152.4.669. PubMed DOI PMC

Chen S., Stout J.R., Dharmaiah S., Yde S., Calvi B.R., Walczak C.E. Transient endoreplication down-regulates the kinesin-14 HSET and contributes to genomic instability. Mol. Biol. Cell. 2016;27:2911–2923. doi: 10.1091/mbc.E16-03-0159. PubMed DOI PMC

Schultz R.J. Hybridization, unisexuality, and polyploidy in the teleost Poeciliopsis (Poeciliidae) and other vertebrates. Am. Nat. 1969;103:605–619. doi: 10.1086/282629. DOI

Cuellar O. On the origin of parthenogenesis in vertebrates: The cytogenetic factors. Am. Nat. 1974;108:625–648. doi: 10.1086/282940. DOI

Sinclair E.A., Pramuk J.B., Bezy R.L., Crandall K.A., Sites J.W., Jr. DNA evidence for nonhybrid origins of parthenogenesis in natural populations of vertebrates. Evol. Int. J. Org. Evol. 2010;64:1346–1357. doi: 10.1111/j.1558-5646.2009.00893.x. PubMed DOI

Maciak S., Janko K., Kotusz J., Choleva L., Boroń A., Juchno D., Kujawa R., Kozłowski J., Konarzewski M. Standard metabolic rate (SMR) is inversely related to erythrocyte and genome size in allopolyploid fish of the Cobitis taenia hybrid complex. Funct. Ecol. 2011;25:1072–1078. doi: 10.1111/j.1365-2435.2011.01870.x. DOI

Juchno D., Boroń A., Kujawa R., Szlachciak J., Szacherski S., Spóz A., Grabowska A. Comparison of egg and offspring size of karyologically identified spined loach, Cobitis taenia L., and hybrid triploid Cobitis females (Pisces, Cobitidae) Fish. Aquat. Life. 2013;21:293–299.

Juchno D., Jabłońska O., Boroń A., Kujawa R., Leska A., Grabowska A., Nynca A., Świgońska S., Król M., Spóz A., et al. Ploidy-dependent survival of progeny arising from crosses between natural allotriploid Cobitis females and diploid C. taenia males (Pisces, Cobitidae) Genetica. 2014;142:351–359. doi: 10.1007/s10709-014-9779-0. PubMed DOI

Sogard S.M. Size-selective mortality in the juvenile stage of teleost fishes: A review. Bull. Mar. Sci. 1997;60:1129–1157.

Schlupp I., Plath M. Male mate choice and sperm allocation in a sexual/asexual mating complex of Poecilia (Poeciliidae, Teleostei) Biol. Lett. 2005;1:169–171. doi: 10.1098/rsbl.2005.0306. PubMed DOI PMC

Mee J.A., Otto S.P. Variation in the strength of male mate choice allows long-term coexistence of sperm-dependent asexuals and their sexual hosts. Evolution. 2010;64:2808–2819. doi: 10.1111/j.1558-5646.2010.01047.x. PubMed DOI

Morgado-Santos M., Pereira H.M., Vicente L., Collares-Pereira M.J. Mate choice drives evolutionary stability in a hybrid complex. PLoS ONE. 2015;10:e0132760. doi: 10.1371/journal.pone.0132760. PubMed DOI PMC

Bobyrev A., Burmensky V., Vasil’ev V., Kriksunov E., Lebedeva E. Coexistence of triploid and diploid forms of spined loach, Cobitis taenia: A model-based approach. Folia Biol. 2003;51:55–60. PubMed

Leung C., Angers B. Imitating the cost of males: A hypothesis for coexistence of all-female sperm-dependent species and their sexual host. Ecol. Evol. 2018;8:266–272. doi: 10.1002/ece3.3681. PubMed DOI PMC

Juchno D., Boroń A. Fecundity of the spined loach, Cobitis taenia (Pisces, Cobitidae) and natural allopolyploids of Cobitis from a diploid-polyploid population. Folia Zool. 2010;59:35–43. doi: 10.25225/fozo.v59.i1.a6.2010. DOI

Kočí J., Röslein J., Pačes J., Kotusz J., Halačka K., Koščo J., Fedorčák J., Iakovenko N., Janko K. No evidence for accumulation of deleterious mutations and fitness degradation in clonal fish hybrids: Abandoning sex without regrets. Mol. Ecol. 2020;29:3038–3055. doi: 10.1111/mec.15539. PubMed DOI PMC

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Gradual chromosomal lagging drive programmed genome elimination in hemiclonal fishes from the genus Hypseleotris

. 2024 Nov 06 ; 14 (1) : 26866. [epub] 20241106

Meiotic deviations and endoreplication lead to diploid oocytes in female hybrids between bighead catfish (Clarias macrocephalus) and North African catfish (Clarias gariepinus)

. 2024 ; 12 () : 1465335. [epub] 20240823

A cyclical switch of gametogenic pathways in hybrids depends on the ploidy level

. 2024 Apr 08 ; 7 (1) : 424. [epub] 20240408

Genetic and karyotype divergence between parents affect clonality and sterility in hybrids

. 2023 Nov 06 ; 12 () : . [epub] 20231106

Sperm-dependent asexual species and their role in ecology and evolution

. 2023 Oct ; 13 (10) : e10522. [epub] 20230928

Achiasmatic meiosis in the unisexual Amazon molly, Poecilia formosa

. 2022 Dec ; 30 (4) : 443-457. [epub] 20221202

Genome elimination from the germline cells in diploid and triploid male water frogs Pelophylax esculentus

. 2022 ; 10 () : 1008506. [epub] 20221014

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...