Challenges and Costs of Asexuality: Variation in Premeiotic Genome Duplication in Gynogenetic Hybrids from Cobitis taenia Complex
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
19-21552S
Czech Science Foundation
21-25185S
Czech Science Foundation
no. 539 EXCELLENCE CZ.02.1.01/0.0/0.0/15_003/0000460 OP RDE
Ministry of Education Youth and Sports
PubMed
34830012
PubMed Central
PMC8622741
DOI
10.3390/ijms222212117
PII: ijms222212117
Knihovny.cz E-zdroje
- Klíčová slova
- Cobitis taenia complex, endoreplication, gynogenesis, hybrid sterility, meiosis, polyploidy,
- MeSH
- gametogeneze genetika MeSH
- hybridizace genetická MeSH
- křížení genetické MeSH
- máloostní genetika růst a vývoj MeSH
- meióza genetika MeSH
- nepohlavní rozmnožování genetika MeSH
- rozmnožování genetika MeSH
- Taenia genetika růst a vývoj MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
The transition from sexual reproduction to asexuality is often triggered by hybridization. The gametogenesis of many hybrid asexuals involves premeiotic genome endoreplication leading to bypass hybrid sterility and forming clonal gametes. However, it is still not clear when endoreplication occurs, how many gonial cells it affects and whether its rate differs among clonal lineages. Here, we investigated meiotic and premeiotic cells of diploid and triploid hybrids of spined loaches (Cypriniformes: Cobitis) that reproduce by gynogenesis. We found that in naturally and experimentally produced F1 hybrids asexuality is achieved by genome endoreplication, which occurs in gonocytes just before entering meiosis or, rarely, one or a few divisions before meiosis. However, genome endoreplication was observed only in a minor fraction of the hybrid's gonocytes, while the vast majority of gonocytes were unable to duplicate their genomes and consequently could not proceed beyond pachytene due to defects in bivalent formation. We also noted that the rate of endoreplication was significantly higher among gonocytes of hybrids from natural clones than of experimentally produced F1 hybrids. Thus, asexuality and hybrid sterility are intimately related phenomena and the transition from sexual reproduction to asexuality must overcome significant problems with genome incompatibilities with a possible impact on reproductive potential.
Department of Zoology Faculty of Science Charles University Prague 128 00 Prague Czech Republic
Institute of Zoology MD 2028 Academiei 1 2001 Chisinau Moldova
Zobrazit více v PubMed
Coyne J.A., Orr H.A. Speciation. Sinauer Associates Sunderland; Sunderland, MA, USA: 2004.
Avise J.C. Speciation (review) Perspect. Biol. Med. 2005;48:315–316. doi: 10.1353/pbm.2005.0047. DOI
Mallet J. Hybridization as an invasion of the genome. Trends Ecol. Evol. 2005;20:229–237. doi: 10.1016/j.tree.2005.02.010. PubMed DOI
Rieseberg L.H., Willis J.H. Plant speciation. Science. 2007;317:910–914. doi: 10.1126/science.1137729. PubMed DOI PMC
Abbott R., Albach D., Ansell S., Arntzen J.W., Baird S.J.E., Bierne N., Boughman J., Brelsford A., Buerkle C.A., Buggs R., et al. Hybridization and speciation. J. Evol. Biol. 2013;26:229–246. doi: 10.1111/j.1420-9101.2012.02599.x. PubMed DOI
Arnold M.L., Hodges S.A. Are natural hybrids fit or unfit relative to their parents? Trends Ecol. Evol. 1995;10:67–71. doi: 10.1016/S0169-5347(00)88979-X. PubMed DOI
Rieseberg L.H. Chromosomal rearrangements and speciation. Trends Ecol. Evol. 2001;16:351–358. doi: 10.1016/S0169-5347(01)02187-5. PubMed DOI
Coyne J.A., Orr H.A. The evolutionary genetics of speciation. Philos. Trans. R. Soc. Lond. Ser. B Biol. Sci. 1998;353:287–305. doi: 10.1098/rstb.1998.0210. PubMed DOI PMC
Maheshwari S., Barbash D.A. The genetics of hybrid incompatibilities. Annu. Rev. Genet. 2011;45:331–355. doi: 10.1146/annurev-genet-110410-132514. PubMed DOI
Payseur B.A., Krenz J.G., Nachman M.W. Differential patterns of introgression across the X chromosome in a hybrid zone between two species of house mice. Evolution. 2004;58:2064–2078. doi: 10.1111/j.0014-3820.2004.tb00490.x. PubMed DOI
Geraldes A., Ferrand N., Nachman M.W. Contrasting patterns of introgression at X-linked loci across the hybrid zone between subspecies of the European rabbit (Oryctolagus cuniculus) Genetics. 2006;173:919–933. doi: 10.1534/genetics.105.054106. PubMed DOI PMC
Ernst A. Bastardierung Als Ursache der Apogamie Im Pflanzenreich. Eine Hypothese zur Experimentellen Vererbungs- und Abstammungslehre. Fischer; Jena, Germany: 1918. pp. 1–704.
Bullini L. Origin and evolution of animal hybrid species. Trends Ecol. Evol. 1994;9:422–426. doi: 10.1016/0169-5347(94)90124-4. PubMed DOI
Choleva L., Janko K., Gelas K.D., Bohlen J., Šlechtová V., Rábová M., Ráb P. Synthesis of clonality and polyploidy in vertebrate animals by hybridization between two sexual species. Evolution. 2012;66:2191–2203. doi: 10.1111/j.1558-5646.2012.01589.x. PubMed DOI
Stenberg P., Saura A. Meiosis and its deviations in polyploid animals. Cytogenet. Genome Res. 2013;140:185–203. doi: 10.1159/000351731. PubMed DOI
Lenormand T., Engelstädter J., Johnston S.E., Wijnker E., Haag C.R. Evolutionary mysteries in meiosis. Philos. Trans. R. Soc. Lond. Ser. B Biol. Sci. 2016;371:20160001. doi: 10.1098/rstb.2016.0001. PubMed DOI PMC
Lampert K.P. Facultative parthenogenesis in vertebrates: Reproductive error or chance? Sex. Dev. 2008;2:290–301. doi: 10.1159/000195678. PubMed DOI
Brownfield L., Köhler C. Unreduced gamete formation in plants: Mechanisms and prospects. J. Exp. Bot. 2011;62:1659–1668. doi: 10.1093/jxb/erq371. PubMed DOI
Mason A.S., Pires J.C. Unreduced gametes: Meiotic mishap or evolutionary mechanism? Trends Genet. 2015;31:5–10. doi: 10.1016/j.tig.2014.09.011. PubMed DOI
Stenberg P., Saura A. Cytology of asexual animals. In: Schön I., Martens K., Dijk P., editors. Lost Sex: The Evolutionary Biology of Parthenogenesis. Springer; Dordrecht, The Netherlands: 2009. pp. 63–74.
Neaves W.B., Baumann P. Unisexual reproduction among vertebrates. Trends Genet. 2011;27:81–88. doi: 10.1016/j.tig.2010.12.002. PubMed DOI
Stöck M., Dedukh D., Reifová R., Lamatsch D.K., Starostová Z., Janko K. Sex chromosomes in meiotic, hemiclonal, clonal and polyploid hybrid vertebrates: Along the ‘extended speciation continuum’. Philos. Trans. R. Soc. B Biol. Sci. 2021;376:20200103. doi: 10.1098/rstb.2020.0103. PubMed DOI PMC
Otto S.P., Lenormand T. Resolving the paradox of sex and recombination. Nat. Rev. Genet. 2002;3:252–261. doi: 10.1038/nrg761. PubMed DOI
Avise J.C. Clonality: The Genetics, Ecology, and Evolution of Sexual Abstinence in Vertebrate Animals. Oxford University Press; Oxford, UK: 2009.
Janko K., Pačes J., Wilkinson-Herbots H., Costa R.J., Roslein J., Drozd P., Iakovenko N., Rídl J., Hroudová M., Kočí J., et al. Hybrid asexuality as a primary postzygotic barrier between nascent species: On the interconnection between asexuality, hybridization and speciation. Mol. Ecol. 2018;27:248–263. doi: 10.1111/mec.14377. PubMed DOI PMC
Dedukh D., Majtánová Z., Marta A., Pšenička M., Kotusz J., Klíma J., Juchno D., Boron A., Janko K. Parthenogenesis as a solution to hybrid sterility: The mechanistic basis of meiotic distortions in clonal and sterile hybrids. Genetics. 2020;215:975–987. doi: 10.1534/genetics.119.302988. PubMed DOI PMC
Suomalainen E. Cytology and Evolution in Parthenogenesis. CRC Press; Boca Raton, FL, USA: 1987.
Storme N.D., Geelen D. Sexual polyploidization in plants—Cytological mechanisms and molecular regulation. New Phytol. 2013;198:670–684. doi: 10.1111/nph.12184. PubMed DOI PMC
Macgregor H.C., Uzzell T.M. Gynogenesis in salamanders related to Ambystoma jeffersonianum. Science. 1964;143:1043–1045. doi: 10.1126/science.143.3610.1043. PubMed DOI
Lutes A.A., Neaves W.B., Baumann D.P., Wiegraebe W., Baumann P. Sister chromosome pairing maintains heterozygosity in parthenogenetic lizards. Nature. 2010;464:283–286. doi: 10.1038/nature08818. PubMed DOI PMC
Kuroda M., Fujimoto T., Murakami M., Yamaha E., Arai K. Clonal reproduction assured by sister chromosome pairing in dojo loach, a teleost fish. Chromosome Res. 2018;26:243–253. doi: 10.1007/s10577-018-9581-4. PubMed DOI
Dedukh D., Riumin S., Chmielewska M., Rozenblut-Kościsty B., Kolenda K., Kazmierczak M., Dudzik A., Ogielska M., Krasikova A. Micronuclei in germ cells of hybrid frogs from Pelophylax esculentus complex contain gradually eliminated chromosomes. Sci. Rep. 2020;10:1–13. PubMed PMC
Kuroda M., Fujimoto T., Murakami M., Yamaha E., Arai K. Aberrant meiotic configurations cause sterility in clone-origin triploid and inter-group hybrid males of the dojo loach, Misgurnus anguillicaudatus. Cytogenet. Genome Res. 2019;158:46–54. doi: 10.1159/000500303. PubMed DOI
Bateson W. Darwin and Modern Science. Cambridge University Press; Cambridge, UK: 1909. Heredity and variation in modern lights; pp. 85–101.
Moritz C. Genetic diversity and the dynamics of hybrid parthenogenesis in Cnemidophorus (Teiidae) and Heteronotia (Gekkonidae) In: Dawley R.M., Bogart J.P., editors. Evolution and Ecology of Unisexual Vertebrates, Bulletin. Volume 466. New York State Museum; Albany, NY, USA: 1989. pp. 87–112.
Russell S.T. Evolution of intrinsic post-zygotic reproductive isolation in fish. Ann. Zool. Fenn. 2003;40:321–329.
Hamaguchi S., Sakaizumi M. Sexually differentiated mechanisms of sterility in interspecific hybrids between Oryzias latipes and O. curvinotus. J. Exp. Zool. 1992;263:323–329. doi: 10.1002/jez.1402630312. PubMed DOI
Shimizu Y., Shibata N., Sakaizumi M., Yamashita M. Production of diploid eggs through premeiotic endomitosis in the hybrid medaka between Oryzias latipes and O. curvinotus. Zool. Sci. 2000;17:951–958. doi: 10.2108/zsj.17.951. DOI
Newton A.A., Schnittker R.R., Yu Z., Munday S.S., Baumann D.P., Neaves W.B., Baumann P. Widespread failure to complete meiosis does not impair fecundity in parthenogenetic whiptail lizards. Development. 2016;143:4486–4494. doi: 10.1242/dev.141283. PubMed DOI PMC
Bohlen J., Ráb P. Species and hybrid richness in spined loaches of the genus Cobitis (Teleostei: Cobitidae), with a checklist of European forms and suggestions for conservation. J. Fish Biol. 2001;59:75–89. doi: 10.1111/j.1095-8649.2001.tb01380.x. DOI
Janko K., Flajšhans M., Choleva L., Bohlen J., Šlechtová V., Rábová M., Lajbner Z., Šlechta V., Ivanova P., Dobrovolov I., et al. Diversity of European spined loaches (genus Cobitis l.): An update of the geographic distribution of the Cobitis taenia hybrid complex with a description of new molecular tools for species and hybrid determination. J. Fish Biol. 2007;71:387–408. doi: 10.1111/j.1095-8649.2007.01663.x. DOI
Majtánová Z., Choleva L., Symonová R., Ráb P., Kotusz J., Pekárik L., Janko K. Asexual reproduction does not apparently increase the rate of chromosomal evolution: Karyotype stability in diploid and triploid clonal hybrid fish (Cobitis, Cypriniformes, Teleostei) PLoS ONE. 2016;11:e0146872. doi: 10.1371/journal.pone.0146872. PubMed DOI PMC
Marta A., Dedukh D., Bartoš O., Majtánová Z., Janko K. Cytogenetic characterization of seven novel satDNA markers in two species of spined loaches (Cobitis) and their clonal hybrids. Genes. 2020;11:617. doi: 10.3390/genes11060617. PubMed DOI PMC
Juchno D., Boroń A. Comparative histology of the testes of the spined loach Cobitis taenia l. and natural allotetraploids of Cobitis (Pisces, Cobitidae) Hydrobiologia. 2006;573:45–53. doi: 10.1007/s10750-006-0255-4. DOI
Juchno D., Arai K., Boroń A., Kujawa R. Meiotic chromosome configurations in oocytes of Cobitis taenia and its polyploid hybrids. Ichthyol. Res. 2017;64:240–243. doi: 10.1007/s10228-016-0556-1. DOI
Janko K., Vasil’ev V.P., Ráb P., Rábová M. Genetic and morphological analyses of 50-chromosome spined loaches (Cobitis, Cobitidae, Pisces) from the black sea basin that are morphologically similar to C. taenia, with the description of a new species. Folia Zool. 2005;54:405
Janko K., Kotusz J., De Gelas K., Slechtová V., Opoldusová Z., Drozd P., Choleva L., Popiołek M., Baláž M. Dynamic formation of asexual diploid and polyploid lineages: Multilocus analysis of Cobitis reveals the mechanisms maintaining the diversity of clones. PLoS ONE. 2012;7:e45384. doi: 10.1371/journal.pone.0045384. PubMed DOI PMC
Araya-Jaime C., Serrano É.A., de Andrade Silva D.M.Z., Yamashita M., Iwai T., Oliveira C., Foresti F. Surface-spreading technique of meiotic cells and immunodetection of synaptonemal complex proteins in teleostean fishes. Mol. Cytogenet. 2015;8:4. doi: 10.1186/s13039-015-0108-9. PubMed DOI PMC
Blokhina Y.P., Nguyen A.D., Draper B.W., Burgess S.M. The telomere bouquet is a hub where meiotic double-strand breaks, synapsis, and stable homolog juxtaposition are coordinated in the zebrafish, Danio rerio. PLOS Genet. 2019;15:e1007730. doi: 10.1371/journal.pgen.1007730. PubMed DOI PMC
Callan H.G. Lampbrush Chromosomes. Springer; Berlin/Heidelberg, Germany: 1986.
Saito K., Sakai C., Kawasaki T., Sakai N. Telomere distribution pattern and synapsis initiation during spermatogenesis in zebrafish. Dev. Dyn. 2014;243:1448–1456. doi: 10.1002/dvdy.24166. PubMed DOI
Itono M., Morishima K., Fujimoto T., Bando E., Yamaha E., Arai K. Premeiotic endomitosis produces diploid eggs in the natural clone loach, Misgurnus anguillicaudatus (Teleostei: Cobitidae) J. Exp. Zool. Part A Comp. Exp. Biol. 2006;305:513–523. doi: 10.1002/jez.a.283. PubMed DOI
Dedukh D., Litvinchuk S., Rosanov J., Mazepa G., Saifitdinova A., Shabanov D., Krasikova A. Optional endoreplication and selective elimination of parental genomes during oogenesis in diploid and triploid hybrid European water frogs. PLoS ONE. 2015;10:e0123304. doi: 10.1371/journal.pone.0123304. PubMed DOI PMC
Roeder G.S., Bailis J.M. The pachytene checkpoint. Trends Genet. 2000;16:395–403. doi: 10.1016/S0168-9525(00)02080-1. PubMed DOI
Subramanian V.V., Hochwagen A. The meiotic checkpoint network: Step-by-step through meiotic prophase. Cold Spring Harb. Perspect. Biol. 2014;6:a016675. doi: 10.1101/cshperspect.a016675. PubMed DOI PMC
MacQueen A.J., Hochwagen A. Checkpoint mechanisms: The puppet masters of meiotic prophase. Trends Cell Biol. 2011;21:393–400. doi: 10.1016/j.tcb.2011.03.004. PubMed DOI
Bohr T., Ashley G., Eggleston E., Firestone K., Bhalla N. Synaptonemal complex components are required for meiotic checkpoint function in Caenorhabditis elegans. Genetics. 2016;204:987–997. doi: 10.1534/genetics.116.191494. PubMed DOI PMC
Marcet-Ortega M., Pacheco S., Martínez-Marchal A., Castillo H., Flores E., Jasin M., Keeney S., Roig I. P53 and TAp63 participate in the recombination-dependent pachytene arrest in mouse spermatocytes. PLoS Genet. 2017;13:e1006845. doi: 10.1371/journal.pgen.1006845. PubMed DOI PMC
Chen X., Gaglione R., Leong T., Bednor L., de Los Santos T., Luk E., Airola M., Hollingsworth N.M. Mek1 coordinates meiotic progression with DNA break repair by directly phosphorylating and inhibiting the yeast pachytene exit regulator Ndt80. PLoS Genet. 2018;14:e1007832. doi: 10.1371/journal.pgen.1007832. PubMed DOI PMC
Musacchio A., Salmon E.D. The spindle-assembly checkpoint in space and time. Nat. Rev. Mol. Cell Biol. 2007;8:379–393. doi: 10.1038/nrm2163. PubMed DOI
Lane S., Kauppi L. Meiotic spindle assembly checkpoint and aneuploidy in males versus females. Cell Mol. Life Sci. 2019;76:1135–1150. doi: 10.1007/s00018-018-2986-6. PubMed DOI PMC
Eaker S., Cobb J., Pyle A., Handel M.A. Meiotic prophase abnormalities and metaphase cell death in MLH1-deficient mouse spermatocytes: Insights into regulation of spermatogenic progress. Dev. Biol. 2002;249:85–95. doi: 10.1006/dbio.2002.0708. PubMed DOI
Burgoyne P.S., Mahadevaiah S.K., Turner J.M.A. The consequences of asynapsis for mammalian meiosis. Nat. Rev. Genet. 2009;10:207–216. doi: 10.1038/nrg2505. PubMed DOI
Kurahashi H., Kogo H., Tsutsumi M., Inagaki H., Ohye T. Failure of homologous synapsis and sex-specific reproduction problems. Front. Genet. 2012;3:112. doi: 10.3389/fgene.2012.00112. PubMed DOI PMC
Fielder S.M., Kempfer R., Kelly W.G. Multiple sex-specific differences in the regulation of meiotic progression in C. elegans. bioRxiv. 2020 doi: 10.1101/2020.03.12.989418. DOI
Shimizu Y., Shibata N., Yamashita M. Spermiogenesis without preceding meiosis in the hybrid medaka between Oryzias latipes and O. curvinotus. J. Exp. Zool. 1997;279:102–112. doi: 10.1002/(SICI)1097-010X(19970901)279:1<102::AID-JEZ10>3.0.CO;2-A. DOI
Zhang Q., Arai K., Yamashita M. Cytogenetic mechanisms for triploid and haploid egg formation in the triploid loach Misgurnus anguillicaudatus. J. Exp. Zool. 1998;281:608–619. doi: 10.1002/(SICI)1097-010X(19980815)281:6<608::AID-JEZ9>3.0.CO;2-R. DOI
Nagaoka S.I., Hodges C.A., Albertini D.F., Hunt P.A. Oocyte-specific differences in cell-cycle control create an innate susceptibility to meiotic errors. Curr. Biol. 2011;21:651–657. doi: 10.1016/j.cub.2011.03.003. PubMed DOI PMC
Nagaoka S.I., Hassold T.J., Hunt P.A. Human aneuploidy: Mechanisms and new insights into an age-old problem. Nat. Rev. Genet. 2012;13:493–504. doi: 10.1038/nrg3245. PubMed DOI PMC
Tyler C.R., Sumpter J.P. Oocyte growth and development in teleosts. Rev. Fish Biol. Fish. 1996;6:287–318. doi: 10.1007/BF00122584. DOI
Nakamura S., Kobayashi K., Nishimura T., Tanaka M. Ovarian germline stem cells in the teleost fish, medaka (Oryzias latipes) Int. J. Biol. Sci. 2011;7:403–409. doi: 10.7150/ijbs.7.403. PubMed DOI PMC
Wildner D.D., Grier H., Quagio-Grassiotto I. Female germ cell renewal during the annual reproductive cycle in ostariophysians fish. Theriogenology. 2013;79:709–724. doi: 10.1016/j.theriogenology.2012.11.028. PubMed DOI
Yoshikawa H., Morishima K., Kusuda S., Yamaha E., Arai K. Diploid sperm produced by artificially sex-reversed clone loaches. J. Exp. Zool. Part A Ecol. Genet. Physiol. 2007;307:75–83. doi: 10.1002/jez.a.337. PubMed DOI
Lee H.O., Davidson J.M., Duronio R.J. Endoreplication: Polyploidy with purpose. Genes Dev. 2009;23:2461–2477. doi: 10.1101/gad.1829209. PubMed DOI PMC
Calvi B.R. Making big cells: One size does not fit all. Proc. Natl. Acad. Sci. USA. 2013;110:9621–9622. doi: 10.1073/pnas.1306908110. PubMed DOI PMC
Fox D.T., Duronio R.J. Endoreplication and polyploidy: Insights into development and disease. Development. 2013;140:3–12. doi: 10.1242/dev.080531. PubMed DOI PMC
Orr-Weaver T.L. When bigger is better: The role of polyploidy in organogenesis. Trends Genet. 2015;31:307–315. doi: 10.1016/j.tig.2015.03.011. PubMed DOI PMC
Losick V.P., Fox D.T., Spradling A.C. Polyploidization and cell fusion contribute to wound healing in the adult Drosophila epithelium. Curr. Biol. 2013;23:2224–2232. doi: 10.1016/j.cub.2013.09.029. PubMed DOI PMC
Cao J., Wang J., Jackman C.P., Cox A.H., Trembley M.A., Balowski J.J., Cox B.D., De Simone A., Dickson A.L., Di Talia S., et al. Tension creates an endoreplication wavefront that leads regeneration of epicardial tissue. Dev. Cell. 2017;42:600–615. doi: 10.1016/j.devcel.2017.08.024. PubMed DOI PMC
González-Rosa J.M., Sharpe M., Field D., Soonpaa M.H., Field L.J., Burns C.E., Burns C.G. Myocardial polyploidization creates a barrier to heart regeneration in zebrafish. Dev. Cell. 2018;44:433–446. doi: 10.1016/j.devcel.2018.01.021. PubMed DOI PMC
Sauer K., Knoblich J.A., Richardson H., Lehner C.F. Distinct modes of cyclin E/Cdc2c kinase regulation and S-phase control in mitotic and endoreduplication cycles of Drosophila embryogenesis. Genes Dev. 1995;9:1327–1339. doi: 10.1101/gad.9.11.1327. PubMed DOI
Diril M.K., Ratnacaram C.K., Padmakumar V.C., Du T., Wasser M., Coppola V., Tessarollo L., Kaldis P. Cyclin-dependent kinase 1 (Cdk1) is essential for cell division and suppression of DNA re-replication but not for liver regeneration. Proc. Natl. Acad. Sci. USA. 2012;109:3826–3831. doi: 10.1073/pnas.1115201109. PubMed DOI PMC
Nannas N.J., Murray A.W. Complications dawn for kinetochore regulation by Aurora. Proc. Natl. Acad. Sci. USA. 2012;109:15972–15973. doi: 10.1073/pnas.1214115109. PubMed DOI PMC
Rotelli M.D., Policastro R.A., Bolling A.M., Killion A.W., Weinberg A.J., Dixon M.J., Zentner G.E., Walczak C.E., Lilly M.A., Calvi B.R. A Cyclin A-Myb-MuvB-Aurora B network regulates the choice between mitotic cycles and polyploid endoreplication cycles. PLoS Genet. 2019;15:e1008253. doi: 10.1371/journal.pgen.1008253. PubMed DOI PMC
Adams R.R., Maiato H., Earnshaw W.C., Carmena M. Essential roles of Drosophila inner centromere protein (INCENP) and Aurora B in Histone H3 phosphorylation, metaphase chromosome alignment, kinetochore disjunction, and chromosome segregation. J. Cell Biol. 2001;153:865–880. doi: 10.1083/jcb.153.4.865. PubMed DOI PMC
Giet R., Glover D.M. Drosophila Aurora B kinase is required for histone H3 phosphorylation and condensin recruitment during chromosome condensation and to organize the central spindle during cytokinesis. J. Cell Biol. 2001;152:669–682. doi: 10.1083/jcb.152.4.669. PubMed DOI PMC
Chen S., Stout J.R., Dharmaiah S., Yde S., Calvi B.R., Walczak C.E. Transient endoreplication down-regulates the kinesin-14 HSET and contributes to genomic instability. Mol. Biol. Cell. 2016;27:2911–2923. doi: 10.1091/mbc.E16-03-0159. PubMed DOI PMC
Schultz R.J. Hybridization, unisexuality, and polyploidy in the teleost Poeciliopsis (Poeciliidae) and other vertebrates. Am. Nat. 1969;103:605–619. doi: 10.1086/282629. DOI
Cuellar O. On the origin of parthenogenesis in vertebrates: The cytogenetic factors. Am. Nat. 1974;108:625–648. doi: 10.1086/282940. DOI
Sinclair E.A., Pramuk J.B., Bezy R.L., Crandall K.A., Sites J.W., Jr. DNA evidence for nonhybrid origins of parthenogenesis in natural populations of vertebrates. Evol. Int. J. Org. Evol. 2010;64:1346–1357. doi: 10.1111/j.1558-5646.2009.00893.x. PubMed DOI
Maciak S., Janko K., Kotusz J., Choleva L., Boroń A., Juchno D., Kujawa R., Kozłowski J., Konarzewski M. Standard metabolic rate (SMR) is inversely related to erythrocyte and genome size in allopolyploid fish of the Cobitis taenia hybrid complex. Funct. Ecol. 2011;25:1072–1078. doi: 10.1111/j.1365-2435.2011.01870.x. DOI
Juchno D., Boroń A., Kujawa R., Szlachciak J., Szacherski S., Spóz A., Grabowska A. Comparison of egg and offspring size of karyologically identified spined loach, Cobitis taenia L., and hybrid triploid Cobitis females (Pisces, Cobitidae) Fish. Aquat. Life. 2013;21:293–299.
Juchno D., Jabłońska O., Boroń A., Kujawa R., Leska A., Grabowska A., Nynca A., Świgońska S., Król M., Spóz A., et al. Ploidy-dependent survival of progeny arising from crosses between natural allotriploid Cobitis females and diploid C. taenia males (Pisces, Cobitidae) Genetica. 2014;142:351–359. doi: 10.1007/s10709-014-9779-0. PubMed DOI
Sogard S.M. Size-selective mortality in the juvenile stage of teleost fishes: A review. Bull. Mar. Sci. 1997;60:1129–1157.
Schlupp I., Plath M. Male mate choice and sperm allocation in a sexual/asexual mating complex of Poecilia (Poeciliidae, Teleostei) Biol. Lett. 2005;1:169–171. doi: 10.1098/rsbl.2005.0306. PubMed DOI PMC
Mee J.A., Otto S.P. Variation in the strength of male mate choice allows long-term coexistence of sperm-dependent asexuals and their sexual hosts. Evolution. 2010;64:2808–2819. doi: 10.1111/j.1558-5646.2010.01047.x. PubMed DOI
Morgado-Santos M., Pereira H.M., Vicente L., Collares-Pereira M.J. Mate choice drives evolutionary stability in a hybrid complex. PLoS ONE. 2015;10:e0132760. doi: 10.1371/journal.pone.0132760. PubMed DOI PMC
Bobyrev A., Burmensky V., Vasil’ev V., Kriksunov E., Lebedeva E. Coexistence of triploid and diploid forms of spined loach, Cobitis taenia: A model-based approach. Folia Biol. 2003;51:55–60. PubMed
Leung C., Angers B. Imitating the cost of males: A hypothesis for coexistence of all-female sperm-dependent species and their sexual host. Ecol. Evol. 2018;8:266–272. doi: 10.1002/ece3.3681. PubMed DOI PMC
Juchno D., Boroń A. Fecundity of the spined loach, Cobitis taenia (Pisces, Cobitidae) and natural allopolyploids of Cobitis from a diploid-polyploid population. Folia Zool. 2010;59:35–43. doi: 10.25225/fozo.v59.i1.a6.2010. DOI
Kočí J., Röslein J., Pačes J., Kotusz J., Halačka K., Koščo J., Fedorčák J., Iakovenko N., Janko K. No evidence for accumulation of deleterious mutations and fitness degradation in clonal fish hybrids: Abandoning sex without regrets. Mol. Ecol. 2020;29:3038–3055. doi: 10.1111/mec.15539. PubMed DOI PMC
A cyclical switch of gametogenic pathways in hybrids depends on the ploidy level
Genetic and karyotype divergence between parents affect clonality and sterility in hybrids
Sperm-dependent asexual species and their role in ecology and evolution
Achiasmatic meiosis in the unisexual Amazon molly, Poecilia formosa