Zimmermann-Laband syndrome in monozygotic twins with a mild neurobehavioral phenotype lacking gingival overgrowth-A case report of a novel KCNN3 gene variant
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu kazuistiky, časopisecké články, práce podpořená grantem
PubMed
34907639
DOI
10.1002/ajmg.a.62616
Knihovny.cz E-zdroje
- Klíčová slova
- KCNN3, Zimmermann-Laband syndrome, channelopathy, gingival fibromatosis, monozygotic twins,
- MeSH
- dvojčata monozygotní genetika MeSH
- fenotyp MeSH
- fibromatóza dásní * diagnóza genetika MeSH
- hyperplazie MeSH
- hypertrichóza * genetika MeSH
- kraniofaciální abnormality MeSH
- lidé MeSH
- malformované nehty vrozené MeSH
- mnohočetné abnormality MeSH
- nízkovodivostní draslíkové kanály aktivované vápníkem genetika MeSH
- vrozené deformity ruky MeSH
- Check Tag
- lidé MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- kazuistiky MeSH
- práce podpořená grantem MeSH
- Názvy látek
- KCNN3 protein, human MeSH Prohlížeč
- nízkovodivostní draslíkové kanály aktivované vápníkem MeSH
Zimmermann-Laband syndrome is a rare, heterogeneous disorder characterized by gingival hypertrophy or fibromatosis, aplastic/hypoplastic nails, hypoplasia of the distal phalanges, hypertrichosis, various degrees of intellectual disability, and distinctive facial features. Three genes are considered causative for ZLS: KCNH1, KCNN3, and ATP6V1B2. We report on a pair of female concordant monozygotic twins, both carrying a novel pathogenic variant in the KCNN3 gene, identified using exome sequencing. Only six ZLS patients with the KCNN3 pathogenic variant have been reported so far. The twins show facial dysmorphism, hypoplastic distal phalanges, aplasia or hypoplasia of nails, and hypertrichosis. During infancy, they showed mild developmental delays, mainly speech. They successfully completed secondary school education and are socio-economically independent. Gingival overgrowth is absent in both individuals. Our patients exhibited an unusually mild phenotype compared to published cases, which is an important diagnostic finding for proper genetic counseling for Zimmermann-Laband syndrome patients and their families.
Zobrazit více v PubMed
Adelman, J. P., Maylie, J., & Sah, P. (2012). Small-conductance Ca2+-activated K+ channels: Form and function. Annual Review of Physiology, 74, 245-269. https://doi.org/10.1146/annurev-physiol-020911-153336
Bauer, C. K., Calligari, P., Radio, F. C., Caputo, V., Dentici, M. L., Falah, N., High, F., Pantaleoni, F., Barresi, S., Ciolfi, A., Pizzi, S., Bruselles, A., Person, R., Richards, S., Cho, M. T., Sepulveda, D. J., Pro, S., Battini, R., Zampino, G., … Tartaglia, M. (2018). Mutations in KCNK4 that affect gating cause a recognizable neurodevelopmental syndrome. American Journal of Human Genetics, 103(4), 621-630. https://doi.org/10.1016/j.ajhg.2018.09.001
Bauer, C. K., Schneeberger, P. E., Kortüm, F., Altmüller, J., Santos-Simarro, F., Baker, L., Keller-Ramey, J., White, S. M., Campeau, P. M., Gripp, K. W., & Kutsche, K. (2019). Gain-of-function mutations in KCNN3 encoding the small-conductance Ca2+-activated K+ channel SK3 cause Zimmermann-Laband syndrome. American Journal of Human Genetics, 104(6), 1139-1157. https://doi.org/10.1016/j.ajhg.2019.04.012
Castori, M., Valiante, M., Pascolini, G., Leuzzi, V., Pizzuti, A., & Grammatico, P. (2013). Clinical and genetic study of two patients with Zimmermann-Laband syndrome and literature review. European Journal of Medical Genetics, 56(10), 570-576. https://doi.org/10.1016/j.ejmg.2013.08.004
Garneau, L., Klein, H., Banderali, U., Longpré-Lauzon, A., Parent, L., & Sauvé, R. (2009). Hydrophobic interactions as key determinants to the KCa3.1 channel closed configuration. An analysis of KCa3.1 mutants constitutively active in zero Ca2+. Journal of Biological Chemistry, 284(1), 389-403. https://doi.org/10.1074/jbc.M805700200
Gripp, K. W., Smithson, S. F., Scurr, I. J., Baptista, J., Majumdar, A., Pierre, G., … Kutsche, K. (2021). Syndromic disorders caused by gain-of-function variants in KCNH1, KCNK4, and KCNN3-A subgroup of K+ channelopathies. European Journal of Human Genetics, 29, 1384-1395. https://doi.org/10.1038/s41431-021-00818-9
Hamilton, M. J., & Suri, M. (2020). “Electrifying dysmorphology”: Potassium channelopathies causing dysmorphic syndromes. Advances in Genetics, 105, 137-174. https://doi.org/10.1016/bs.adgen.2020.03.002
Kortüm, F., Caputo, V., Bauer, C. K., Stella, L., Ciolfi, A., Alawi, M., Bocchinfuso, G., Flex, E., Paolacci, S., Dentici, M. L., Grammatico, P., Korenke, G. C., Leuzzi, V., Mowat, D., Nair, L. D. V., Nguyen, T. T. M., Thierry, P., White, S. M., Dallapiccola, B., … Kutsche, K. (2015). Mutations in KCNH1 and ATP6V1B2 cause Zimmermann-Laband syndrome. Nature Genetics, 47(6), 661-667. https://doi.org/10.1038/ng.3282
Laband, P. F., Habib, G., & Humphreys, G. S. (1964). Hereditary gingival fibromatosis: Report of an affected family with associated splenomegaly and skeletal and soft-tissue abnormalities. Oral Surgery, Oral Medicine, and Oral Pathology, 17, 339-351. https://doi.org/10.1016/0030-4220(64)90506-7
Reddy, M., Mehetre, V., Gir, P. J., & Ranmare, V. (2018). An extremely rare presentation of Zimmermann-Laband syndrome in a twin. Annals of Maxillofacial Surgery, 8(2), 352-354. https://doi.org/10.4103/ams.ams_203_17
Zimmermann, K. W. (1928). Ueber anomalien des ektoderms. VierteljahrsschriftfürZahnheilkunde, 1928(44), 419-434.