A Novel Gesture-Based Control System for Fluorescence Volumetric Data in Virtual Reality
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
TJ02000243
Technology Agency of the Czech Republic
PubMed
34960422
PubMed Central
PMC8703643
DOI
10.3390/s21248329
PII: s21248329
Knihovny.cz E-zdroje
- Klíčová slova
- confocal microscopy, fluorescence microscopy, immersive visualization, microscopy images, touch control, touch sensor, virtual reality, volumetric data,
- MeSH
- gesta * MeSH
- konfokální mikroskopie MeSH
- software MeSH
- virtuální realita * MeSH
- Publikační typ
- časopisecké články MeSH
With the development of light microscopy, it is becoming increasingly easy to obtain detailed multicolor fluorescence volumetric data. The need for their appropriate visualization has become an integral part of fluorescence imaging. Virtual reality (VR) technology provides a new way of visualizing multidimensional image data or models so that the entire 3D structure can be intuitively observed, together with different object features or details on or within the object. With the need for imaging advanced volumetric data, demands for the control of virtual object properties are increasing; this happens especially for multicolor objects obtained by fluorescent microscopy. Existing solutions with universal VR controllers or software-based controllers with the need to define sufficient space for the user to manipulate data in VR are not usable in many practical applications. Therefore, we developed a custom gesture-based VR control system with a custom controller connected to the FluoRender visualization environment. A multitouch sensor disk was used for this purpose. Our control system may be a good choice for easier and more comfortable manipulation of virtual objects and their properties, especially using confocal microscopy, which is the most widely used technique for acquiring volumetric fluorescence data so far.
Zobrazit více v PubMed
Hell S.W., Wichmann J. Breaking the diffraction resolution limit by stimulated emission: Stimulated-emission-depletion fluorescence microscopy. Opt. Lett. 1994;19:780. doi: 10.1364/OL.19.000780. PubMed DOI
Schnorrenberg S., Ghareeb H., Frahm L., Grotjohann T., Jensen N., Teichmann T., Hell S.W., Lipka V., Jakobs S. Live-cell RESOLFT nanoscopy of transgenic Arabidopsis thaliana. Plant Direct. 2020;4:e00261. doi: 10.1002/pld3.261. PubMed DOI PMC
Saxena M., Eluru G., Gorthi S.S. Structured illumination microscopy. Adv. Opt. Photonics. 2015;7:241. doi: 10.1364/AOP.7.000241. DOI
Rust M.J., Bates M., Zhuang X. Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM) Nat. Methods. 2006;3:793–796. doi: 10.1038/nmeth929. PubMed DOI PMC
Betzig E., Patterson G.H., Sougrat R., Lindwasser O.W., Olenych S., Bonifacino J.S., Davidson M.W., Lippincott-Schwartz J., Hess H.F. Imaging intracellular fluorescent proteins at nanometer resolution. Science. 2006;313:1642–1645. doi: 10.1126/science.1127344. PubMed DOI
Hess S.T., Girirajan T.P.K., Mason M.D. Ultra-high resolution imaging by fluorescence photoactivation localization microscopy. Biophys. J. 2006;91:4258–4272. doi: 10.1529/biophysj.106.091116. PubMed DOI PMC
Gao L., Zhu L., Li C., Wang L.V. Nonlinear light-sheet fluorescence microscopy by photobleaching imprinting. J. R. Soc. Interface. 2014;11:20130851. doi: 10.1098/rsif.2013.0851. PubMed DOI PMC
Schumacher J., Bertrand L. THUNDER Technology Note, Leica Microsystems. 2019. [(accessed on 2 November 2020)]. Available online: https://www.leica-microsystems.com/index.php?id=24637.
Rueden C.T., Schindelin J., Hiner M.C., DeZonia B.E., Walter A.E., Arena E.T., Eliceiri K.W. ImageJ2: ImageJ for the next generation of scientific image data. BMC Bioinform. 2017;18:529. doi: 10.1186/s12859-017-1934-z. PubMed DOI PMC
Boudier T. 3D Processing and Analysis with ImageJ. [(accessed on 20 October 2021)]. Available online: https://imagejdocu.tudor.lu/_media/tutorial/working/workshop3d.pdf.
Schindelin J., Arganda-Carreras I., Frise E., Kaynig V., Longair M., Pietzsch T., Preibisch S., Rueden C., Saalfeld S., Schmid B., et al. Fiji: An open-source platform for biological-image analysis. Nat. Methods. 2012;9:676–682. doi: 10.1038/nmeth.2019. PubMed DOI PMC
Schroeder W.J., Martin K.M., Lorensen W.E. The design and implementation of an object-oriented toolkit for 3D graphics and visualization; Proceedings of the Seventh Annual IEEE Visualization ’96; San Francisco, CA, USA. 1 November 1996; pp. 93–100. DOI
Rosset A., Spadola L., Ratib O. OsiriX: An Open-Source Software for Navigating in Multidimensional DICOM Images. J. Digit. Imaging. 2004;17:205–216. doi: 10.1007/s10278-004-1014-6. PubMed DOI PMC
Pieper S., Halle M., Kikinis R. 3D Slicer; Proceedings of the 2004 2nd IEEE International Symposium on Biomedical Imaging: Nano to Macro (IEEE Cat No. 04EX821); Arlington, VA, USA. 18 April 2004; pp. 632–635.
Fedorov A., Beichel R., Kalpathy-Cramer J., Finet J., Fillion-Robin J.-C., Pujol S., Bauer C., Jennings D., Fennessy F., Sonka M., et al. 3D Slicer as an image computing platform for the Quantitative Imaging Network. Magn. Reson. Imaging. 2012;30:1323–1341. doi: 10.1016/j.mri.2012.05.001. PubMed DOI PMC
Wan Y., Otsuna H., Holman H.A., Bagley B., Ito M., Lewis A.K., Colasanto M., Kardon G., Ito K., Hansen C. FluoRender: Joint freehand segmentation and visualization for many-channel fluorescence data analysis. BMC Bioinform. 2017;18:280. doi: 10.1186/s12859-017-1694-9. PubMed DOI PMC
Legetth O., Rodhe J., Lang S., Dhapola P., Wallergård M., Soneji S. CellexalVR: A virtual reality platform to visualize and analyze single-cell omics data. IScience. 2021;24:103251. doi: 10.1016/j.isci.2021.103251. PubMed DOI PMC
Usher W., Klacansky P., Federer F., Bremer P.-T., Knoll A., Yarch J., Angelucci A., Pascucci V. A Virtual Reality Visualization Tool for Neuron Tracing. IEEE Trans. Vis. Comput. Graph. 2018;24:994–1003. doi: 10.1109/TVCG.2017.2744079. PubMed DOI PMC
Zhang J.F., Paciorkowski A.R., Craig P.A., Cui F. BioVR: A platform for virtual reality assisted biological data integration and visualization. BMC Bioinform. 2019;20:78. doi: 10.1186/s12859-019-2666-z. PubMed DOI PMC
Theart R.P., Loos B., Niesler T.R. Virtual reality assisted microscopy data visualization and colocalization analysis. BMC Bioinform. 2017;18:64. doi: 10.1186/s12859-016-1446-2. PubMed DOI PMC
Stefani C., Lacy-Hulbert A., Skillman T. ConfocalVR: Immersive Visualization for Confocal Microscopy. J. Mol. Biol. 2018;430:4028–4035. doi: 10.1016/j.jmb.2018.06.035. PubMed DOI PMC
ExMicroVR Application, Immersive Sci. LLC. [(accessed on 24 November 2021)]. Available online: https://www.immsci.com.
Arivis: Imaging Platform Solution. [(accessed on 20 October 2021)]. Available online: https://www.arivis.com.
Venkatesan M., Mohan H., Ryan J.R., Schürch C.M., Nolan G.P., Frakes D.H., Coskun A.F. Virtual and augmented reality for biomedical applications. Cell Rep. Med. 2021;2:100348. doi: 10.1016/j.xcrm.2021.100348. PubMed DOI PMC
3D Connexion. [(accessed on 20 October 2021)]. Available online: https://3dconnexion.com.