Different FreeSurfer versions might generate different statistical outcomes in case-control comparison studies

. 2022 Apr ; 64 (4) : 765-773. [epub] 20220106

Jazyk angličtina Země Německo Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid34988592

Grantová podpora
P41 EB027061 NIBIB NIH HHS - United States
R01DK099137 NIH HHS - United States
UL1TR000114 NIH HHS - United States
P30 NS076408 NINDS NIH HHS - United States
P30 NS076408 NIH HHS - United States
P41 EB015894 NIH HHS - United States
KL2TR000113 NIH HHS - United States
R56 DK099137 NIDDK NIH HHS - United States
P41 EB015894 NIBIB NIH HHS - United States
P41 EB027061 NIH HHS - United States
R01 DK099137 NIDDK NIH HHS - United States
R56DK099137 NIH HHS - United States
UL1 TR000114 NCATS NIH HHS - United States
KL2 TR000113 NCATS NIH HHS - United States

Odkazy

PubMed 34988592
PubMed Central PMC8916973
DOI 10.1007/s00234-021-02862-0
PII: 10.1007/s00234-021-02862-0
Knihovny.cz E-zdroje

PURPOSE: Neuroimaging pipelines have long been known to generate mildly differing results depending on various factors, including software version. While considered generally acceptable and within the margin of reasonable error, little is known about their effect in common research scenarios such as inter-group comparisons between healthy controls and various pathological conditions. The aim of the presented study was to explore the differences in the inferences and statistical significances in a model situation comparing volumetric parameters between healthy controls and type 1 diabetes patients using various FreeSurfer versions. METHODS: T1- and T2-weighted structural scans of healthy controls and type 1 diabetes patients were processed with FreeSurfer 5.3, FreeSurfer 5.3 HCP, FreeSurfer 6.0 and FreeSurfer 7.1, followed by inter-group statistical comparison using outputs of individual FreeSurfer versions. RESULTS: Worryingly, FreeSurfer 5.3 detected both cortical and subcortical volume differences out of the preselected regions of interest, but newer versions such as FreeSurfer 5.3 HCP and FreeSurfer 6.0 reported only subcortical differences of lower magnitude and FreeSurfer 7.1 failed to find any statistically significant inter-group differences. CONCLUSION: Since group averages of individual FreeSurfer versions closely matched, in keeping with previous literature, the main origin of this disparity seemed to lie in substantially higher within-group variability in the model pathological condition. Ergo, until validation in common research scenarios as case-control comparison studies is included into the development process of new software suites, confirmatory analyses utilising a similar software based on analogous, but not fully equivalent principles, might be considered as supplement to careful quality control.

Zobrazit více v PubMed

Bednarik P, Moheet AA, Grohn H, Kumar AF, Eberly LE, Seaquist ER, & Mangia S (2017). Type 1 Diabetes and Impaired Awareness of Hypoglycemia Are Associated with Reduced Brain Gray Matter Volumes. Frontiers in Neuroscience, 11, 529. 10.3389/fnins.2017.00529 PubMed DOI PMC

Bigler ED, Skiles M, Wade BSC, Abildskov TJ, Tustison NJ, Scheibel RS, et al. (2020). FreeSurfer 5.3 versus 6.0: are volumes comparable? A Chronic Effects of Neurotrauma Consortium study. Brain Imaging and Behavior, 14(5), 1318–1327. 10.1007/s11682-018-9994-x PubMed DOI

Buckner RL, Head D, Parker J, Fotenos AF, Marcus D, Morris JC, & Snyder AZ (2004). A unified approach for morphometric and functional data analysis in young, old, and demented adults using automated atlas-based head size normalization: reliability and validation against manual measurement of total intracranial volume. Neuroimage, 23(2), 724–738. PubMed

Cardinale F, Chinnici G, Bramerio M, Mai R, Sartori I, Cossu M, et al. (2014). Validation of FreeSurfer-estimated brain cortical thickness: comparison with histologic measurements. Neuroinformatics, 12(4), 535–542. PubMed

Chepkoech J-L, Walhovd KB, Grydeland H, Fjell AM, & Initiative ADN (2016). Effects of change in FreeSurfer version on classification accuracy of patients with Alzheimer’s disease and mild cognitive impairment. Human brain mapping, 37(5), 1831–1841. PubMed PMC

Dice LR (1945). Measures of the amount of ecologic association between species. Ecology, 26(3), 297–302.

Filip P, Canna A, Moheet A, Bednarik P, Grohn H, Li X, et al. (2020). Structural Alterations in Deep Brain Structures in Type 1 Diabetes. Diabetes. 10.2337/db19-1100 PubMed DOI PMC

Fischl B (2012). FreeSurfer. NeuroImage, 62(2), 774–781. 10.1016/j.neuroimage.2012.01.021 PubMed DOI PMC

Glasser MF, Sotiropoulos SN, Wilson JA, Coalson TS, Fischl B, Andersson JL, et al. (2013). The minimal preprocessing pipelines for the Human Connectome Project. Neuroimage, 80, 105–124. PubMed PMC

Glatard T, Lewis LB, Ferreira da Silva R, Adalat R, Beck N, Lepage C, et al. (2015). Reproducibility of neuroimaging analyses across operating systems. Frontiers in Neuroinformatics, 9. 10.3389/fninf.2015.00012 PubMed DOI PMC

Gronenschild EHBM, Habets P, Jacobs HIL, Mengelers R, Rozendaal N, van Os J, & Marcelis M (2012). The effects of FreeSurfer version, workstation type, and Macintosh operating system version on anatomical volume and cortical thickness measurements. PloS One, 7(6), e38234. 10.1371/journal.pone.0038234 PubMed DOI PMC

Hammers A, Heckemann R, Koepp MJ, Duncan JS, Hajnal JV, Rueckert D, & Aljabar P (2007). Automatic detection and quantification of hippocampal atrophy on MRI in temporal lobe epilepsy: a proof-of-principle study. Neuroimage, 36(1), 38–47. PubMed

Han X, Jovicich J, Salat D, van der Kouwe A, Quinn B, Czanner S, et al. (2006). Reliability of MRI-derived measurements of human cerebral cortical thickness: the effects of field strength, scanner upgrade and manufacturer. Neuroimage, 32(1), 180–194. PubMed

Hlavatá P, Linhartová P, Šumec R, Filip P, Světlák M, Baláž M, et al. (2020). Behavioral and Neuroanatomical Account of Impulsivity in Parkinson’s Disease. Frontiers in Neurology, 10. 10.3389/fneur.2019.01338 PubMed DOI PMC

Hughes TM, Ryan CM, Aizenstein HJ, Nunley K, Gianaros PJ, Miller R, et al. (2013). Frontal gray matter atrophy in middle aged adults with type 1 diabetes is independent of cardiovascular risk factors and diabetes complications. Journal of Diabetes and Its Complications, 27(6), 558–564. 10.1016/j.jdiacomp.2013.07.001 PubMed DOI PMC

Jovicich J, Czanner S, Han X, Salat D, van der Kouwe A, Quinn B, et al. (2009). MRI-derived measurements of human subcortical, ventricular and intracranial brain volumes: reliability effects of scan sessions, acquisition sequences, data analyses, scanner upgrade, scanner vendors and field strengths. Neuroimage, 46(1), 177–192. PubMed PMC

Messina D, Cerasa A, Condino F, Arabia G, Novellino F, Nicoletti G, et al. (2011). Patterns of brain atrophy in Parkinson’s disease, progressive supranuclear palsy and multiple system atrophy. Parkinsonism & Related Disorders, 17(3), 172–176. 10.1016/j.parkreldis.2010.12.010 PubMed DOI

Morey RA, Petty CM, Xu Y, Hayes JP, Wagner II HR, Lewis DV, et al. (2009). A comparison of automated segmentation and manual tracing for quantifying hippocampal and amygdala volumes. Neuroimage, 45(3), 855–866. PubMed PMC

Morey RA, Selgrade ES, Wagner HR, Huettel SA, Wang L, & McCarthy G (2010). Scan–rescan reliability of subcortical brain volumes derived from automated segmentation. Human brain mapping, 31(11), 1751–1762. PubMed PMC

Moulton CD, Costafreda SG, Horton P, Ismail K, & Fu CHY (2015). Meta-analyses of structural regional cerebral effects in type 1 and type 2 diabetes. Brain Imaging and Behavior, 9(4), 651–662. 10.1007/s11682-014-9348-2 PubMed DOI

Musen G, Lyoo IK, Sparks CR, Weinger K, Hwang J, Ryan CM, et al. (2006). Effects of type 1 diabetes on gray matter density as measured by voxel-based morphometry. Diabetes, 55(2), 326–333. PubMed

Nordenskjöld R, Malmberg F, Larsson E-M, Simmons A, Brooks SJ, Lind L, et al. (2013). Intracranial volume estimated with commonly used methods could introduce bias in studies including brain volume measurements. NeuroImage, 83, 355–360. 10.1016/j.neuroimage.2013.06.068 PubMed DOI

Rajagopalan V, & Pioro EP (2015). Disparate voxel based morphometry (VBM) results between SPM and FSL softwares in ALS patients with frontotemporal dementia: which VBM results to consider? BMC Neurology, 15(1), 32. 10.1186/s12883-015-0274-8 PubMed DOI PMC

Rosas HD, Liu AK, Hersch S, Glessner M, Ferrante RJ, Salat DH, et al. (2002). Regional and progressive thinning of the cortical ribbon in Huntington’s disease. Neurology, 58(5), 695–701. PubMed

Sargolzaei S, Sargolzaei A, Cabrerizo M, Chen G, Goryawala M, Noei S, et al. (2015). A practical guideline for intracranial volume estimation in patients with Alzheimer’s disease. BMC Bioinformatics, 16(Suppl 7), S8. 10.1186/1471-2105-16-S7-S8 PubMed DOI PMC

Tae WS, Kim SS, Lee KU, Nam E-C, & Kim KW (2008). Validation of hippocampal volumes measured using a manual method and two automated methods (FreeSurfer and IBASPM) in chronic major depressive disorder. Neuroradiology, 50(7), 569. PubMed

Vasconcellos LF, Pereira JS, Adachi M, Greca D, Cruz M, Malak AL, & Charchat-Fichman H (2018). Volumetric brain analysis as a predictor of a worse cognitive outcome in Parkinson’s disease. Journal of Psychiatric Research, 102, 254–260. 10.1016/j.jpsychires.2018.04.016 PubMed DOI

Wessels AM, Simsek S, Remijnse PL, Veltman DJ, Biessels GJ, Barkhof F, et al. (2006). Voxel-based morphometry demonstrates reduced grey matter density on brain MRI in patients with diabetic retinopathy. Diabetologia, 49(10), 2474–2480. 10.1007/s00125-006-0283-7 PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...