PURPOSE: Neuroimaging pipelines have long been known to generate mildly differing results depending on various factors, including software version. While considered generally acceptable and within the margin of reasonable error, little is known about their effect in common research scenarios such as inter-group comparisons between healthy controls and various pathological conditions. The aim of the presented study was to explore the differences in the inferences and statistical significances in a model situation comparing volumetric parameters between healthy controls and type 1 diabetes patients using various FreeSurfer versions. METHODS: T1- and T2-weighted structural scans of healthy controls and type 1 diabetes patients were processed with FreeSurfer 5.3, FreeSurfer 5.3 HCP, FreeSurfer 6.0 and FreeSurfer 7.1, followed by inter-group statistical comparison using outputs of individual FreeSurfer versions. RESULTS: Worryingly, FreeSurfer 5.3 detected both cortical and subcortical volume differences out of the preselected regions of interest, but newer versions such as FreeSurfer 5.3 HCP and FreeSurfer 6.0 reported only subcortical differences of lower magnitude and FreeSurfer 7.1 failed to find any statistically significant inter-group differences. CONCLUSION: Since group averages of individual FreeSurfer versions closely matched, in keeping with previous literature, the main origin of this disparity seemed to lie in substantially higher within-group variability in the model pathological condition. Ergo, until validation in common research scenarios as case-control comparison studies is included into the development process of new software suites, confirmatory analyses utilising a similar software based on analogous, but not fully equivalent principles, might be considered as supplement to careful quality control.
Even though well known in type 2 diabetes, the existence of brain changes in type 1 diabetes (T1D) and both their neuroanatomical and clinical features are less well characterized. To fill the void in the current understanding of this disease, we sought to determine the possible neural correlate in long-duration T1D at several levels, including macrostructural, microstructural cerebral damage, and blood flow alterations. In this cross-sectional study, we compared a cohort of 61 patients with T1D with an average disease duration of 21 years with 54 well-matched control subjects without diabetes in a multimodal MRI protocol providing macrostructural metrics (cortical thickness and structural volumes), microstructural measures (T1-weighted/T2-weighted [T1w/T2w] ratio as a marker of myelin content, inflammation, and edema), and cerebral blood flow. Patients with T1D had higher T1w/T2w ratios in the right parahippocampal gyrus, the executive part of both putamina, both thalami, and the cerebellum. These alterations were reflected in lower putaminal and thalamic volume bilaterally. No cerebral blood flow differences between groups were found in any of these structures, suggesting nonvascular etiologies of these changes. Our findings implicate a marked nonvascular disruption in T1D of several essential neural nodes engaged in both cognitive and motor processing.
- MeSH
- diabetes mellitus 1. typu patologie MeSH
- dospělí MeSH
- lidé středního věku MeSH
- lidé MeSH
- mladiství MeSH
- mladý dospělý MeSH
- mozek patologie MeSH
- retrospektivní studie MeSH
- studie případů a kontrol MeSH
- Check Tag
- dospělí MeSH
- lidé středního věku MeSH
- lidé MeSH
- mladiství MeSH
- mladý dospělý MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH