• This record comes from PubMed

Proteome changes of plasma-derived extracellular vesicles in patients with myelodysplastic syndrome

. 2022 ; 17 (1) : e0262484. [epub] 20220110

Language English Country United States Media electronic-ecollection

Document type Journal Article, Research Support, Non-U.S. Gov't

BACKGROUND: Extracellular vesicles are released into body fluids from the majority of, if not all, cell types. Because their secretion and specific cargo (e.g., proteins) varies according to pathology, extracellular vesicles may prove a rich source of biomarkers. However, their biological and pathophysiological functions are poorly understood in hematological malignancies. OBJECTIVE: Here, we investigated proteome changes in the exosome-rich fraction of the plasma of myelodysplastic syndrome patients and healthy donors. METHODS: Exosome-rich fraction of the plasma was isolated using ExoQuick™: proteomes were compared and statistically processed; proteins were identified by nanoLC-MS/MS and verified using the ExoCarta and QuickGO databases. Mann-Whitney and Spearman analyses were used to statistically analyze the data. 2D western blot was used to monitor clusterin proteoforms. RESULTS: Statistical analyses of the data highlighted clusterin alterations as the most significant. 2D western blot showed that the clusterin changes were caused by posttranslational modifications. Moreover, there was a notable increase in the clusterin proteoform in the exosome-rich fraction of plasma of patients with more severe myelodysplastic syndrome; this corresponded with a simultaneous decrease in their plasma. CONCLUSIONS: This specific clusterin proteoform seems to be a promising biomarker for myelodysplastic syndrome progression.

See more in PubMed

Vardiman JW, Thiele J, Arber DA, Brunning RD, Borowitz MJ, Porwit A, et al.. The 2008 revision of the World Health Organization (WHO) classification of myeloid neoplasms and acute leukemia: Rationale and important changes. Blood. 2009. pp. 937–951. doi: 10.1182/blood-2009-03-209262 PubMed DOI

Brunning RD, Bennett JM, Flandrin G, Matutes E, Head D, Vardiman JW, et al.. Myelodysplastic syndromes and acute myeloid leukemias. 1st ed. In: Jaffe ES, Harris NL, Stein H, Vardiman JW, editors. World Health Organization Classification of Tumours Pathology and Genetics of Tumours of Haematopoietic and Lymphoid Tissues. 1st ed. Lyon: IARC Press; 2001. pp. 61–106.

Robbins PD, Morelli AE. Regulation of immune responses by extracellular vesicles. Nat Rev Immunol. 2014;14: 195–208. doi: 10.1038/nri3622 PubMed DOI PMC

Utleg AG, Yi EC, Xie T, Shannon P, White JT, Goodlett DR, et al.. Proteomic analysis of human prostasomes. Prostate. 2003;56: 150–161. doi: 10.1002/pros.10255 PubMed DOI

Pisitkun T, Shen R-F, Knepper MA. Identification and proteomic profiling of exosomes in human urine. Proc Natl Acad Sci U S A. 2004;101: 13368–13373. doi: 10.1073/pnas.0403453101 PubMed DOI PMC

Caby M-P, Lankar D, Vincendeau-Scherrer C, Raposo G, Bonnerot C. Exosomal-like vesicles are present in human blood plasma. Int Immunol. 2005;17: 879–887. doi: 10.1093/intimm/dxh267 PubMed DOI

Admyre C, Johansson SM, Qazi KR, Filén J-J, Lahesmaa R, Norman M, et al.. Exosomes with immune modulatory features are present in human breast milk. J Immunol. 2007;179: 1969–1978. doi: 10.4049/jimmunol.179.3.1969 PubMed DOI

Keller S, Rupp C, Stoeck A, Runz S, Fogel M, Lugert S, et al.. CD24 is a marker of exosomes secreted into urine and amniotic fluid. Kidney Int. 2007;72: 1095–1102. doi: 10.1038/sj.ki.5002486 PubMed DOI

Ogawa Y, Kanai-Azuma M, Akimoto Y, Kawakami H, Yanoshita R. Exosome-like vesicles with dipeptidyl peptidase IV in human saliva. Biol Pharm Bull. 2008;31: 1059–1062. doi: 10.1248/bpb.31.1059 PubMed DOI

Choi D-S, Park JO, Jang SC, Yoon YJ, Jung JW, Choi D-Y, et al.. Proteomic analysis of microvesicles derived from human colorectal cancer ascites. Proteomics. 2011;11: 2745–2751. doi: 10.1002/pmic.201100022 PubMed DOI

Robert Taylor JB, Gadam SR, Perez L. 3249 Defining the Extracellular Vesicle Content of Interstitial Fluid for Blood-Free Diagnostics; Extraction Methods and Initial Characterization. J Clin Transl Sci. 2019;3: 7–7. doi: 10.1017/cts.2019.20 DOI

Crescitelli R, Lässer C, Lötvall J. Isolation and characterization of extracellular vesicle subpopulations from tissues. Nat Protoc. 2021;16: 1548–1580. doi: 10.1038/s41596-020-00466-1 PubMed DOI

Lewin S, Hunt S, Lambert DW. Extracellular vesicles and the extracellular matrix: A new paradigm or old news? Biochem Soc Trans. 2020;48: 2335–2345. doi: 10.1042/BST20200717 PubMed DOI

Théry C, Zitvogel L, Amigorena S. Exosomes: Composition, biogenesis and function. Nat Rev Immunol. 2002;2: 569–579. doi: 10.1038/nri855 PubMed DOI

Théry C, Ostrowski M, Segura E. Membrane vesicles as conveyors of immune responses. Nat Rev Immunol. 2009;9: 581–593. doi: 10.1038/nri2567 PubMed DOI

Yang C, Robbins PD. Immunosuppressive exosomes: A new approach for treating arthritis. Int J Rheumatol. 2012;2012. doi: 10.1155/2012/573528 PubMed DOI PMC

El Andaloussi S, Mäger I, Breakefield XO, Wood MJA. Extracellular vesicles: Biology and emerging therapeutic opportunities. Nat Rev Drug Discov. 2013;12: 347–357. doi: 10.1038/nrd3978 PubMed DOI

Kumar B, Garcia M, Murakami JL, Chen C-C. Exosome-mediated microenvironment dysregulation in leukemia. Biochim Biophys Acta—Mol Cell Res. 2016;1863: 464–470. doi: 10.1016/j.bbamcr.2015.09.017 PubMed DOI

Maas SLN, Breakefield XO, Weaver AM. Extracellular Vesicles: Unique Intercellular Delivery Vehicles. Trends Cell Biol. 2017;27: 172–188. doi: 10.1016/j.tcb.2016.11.003 PubMed DOI PMC

Yoon YJ, Kim OY, Gho YS. Extracellular vesicles as emerging intercellular communicasomes. BMB Rep. 2014;47: 531–539. doi: 10.5483/bmbrep.2014.47.10.164 PubMed DOI PMC

Raposo G, Nijman HW, Stoorvogel W, Leijendekker R, Harding CV, Melief CJM, et al.. B lymphocytes secrete antigen-presenting vesicles. J Exp Med. 1996;183: 1161–1172. doi: 10.1084/jem.183.3.1161 PubMed DOI PMC

Ratajczak J, Miekus K, Kucia M, Zhang J, Reca R, Dvorak P, et al.. Embryonic stem cell-derived microvesicles reprogram hematopoietic progenitors: Evidence for horizontal transfer of mRNA and protein delivery. Leukemia. 2006;20: 847–856. doi: 10.1038/sj.leu.2404132 PubMed DOI

Gatti S, Bruno S, Deregibus MC, Sordi A, Cantaluppi V, Tetta C, et al.. Microvesicles derived from human adult mesenchymal stem cells protect against ischaemia-reperfusion-induced acute and chronic kidney injury. Nephrol Dial Transplant. 2011;26: 1474–1483. doi: 10.1093/ndt/gfr015 PubMed DOI

Del Conde I, Shrimpton CN, Thiagarajan P, López JA. Tissue-factor-bearing microvesicles arise from lipid rafts and fuse with activated platelets to initiate coagulation. Blood. 2005;106: 1604–1611. doi: 10.1182/blood-2004-03-1095 PubMed DOI

Aharon A, Rebibo-Sabbah A, Tzoran I, Levin C. Extracellular vesicles in hematological disorders. Rambam Maimonides Med J. 2014;5: e0032. doi: 10.5041/RMMJ.10166 PubMed DOI PMC

Ghosh AK, Secreto CR, Knox TR, Ding W, Mukhopadhyay D, Kay NE. Circulating microvesicles in B-cell chronic lymphocytic leukemia can stimulate marrow stromal cells: Implications for disease progression. Blood. 2010;115: 1755–1764. doi: 10.1182/blood-2009-09-242719 PubMed DOI PMC

Corrado C, Raimondo S, Saieva L, Flugy AM, De Leo G, Alessandro R. Exosome-mediated crosstalk between chronic myelogenous leukemia cells and human bone marrow stromal cells triggers an Interleukin 8-dependent survival of leukemia cells. Cancer Lett. 2014;348: 71–76. doi: 10.1016/j.canlet.2014.03.009 PubMed DOI

Milane L, Singh A, Mattheolabakis G, Suresh M, Amiji MM. Exosome mediated communication within the tumor microenvironment. J Control Release. 2015;219: 278–294. doi: 10.1016/j.jconrel.2015.06.029 PubMed DOI

Choi D-S, Kim D-K, Kim Y-K, Gho YS. Proteomics, transcriptomics and lipidomics of exosomes and ectosomes. Proteomics. 2013;13: 1554–1571. doi: 10.1002/pmic.201200329 PubMed DOI

Looze C, Yui D, Leung L, Ingham M, Kaler M, Yao X, et al.. Proteomic profiling of human plasma exosomes identifies PPARγ as an exosome-associated protein. Biochem Biophys Res Commun. 2009;378: 433–438. doi: 10.1016/j.bbrc.2008.11.050 PubMed DOI PMC

Ramacciotti E, Hawley AE, Wrobleski SK, Myers DD Jr., Strahler JR, Andrews PC, et al.. Proteomics of microparticles after deep venous thrombosis. Thromb Res. 2010;125. doi: 10.1016/j.thromres.2010.01.019 PubMed DOI PMC

Raimondo F, Morosi L, Chinello C, Magni F, Pitto M. Advances in membranous vesicle and exosome proteomics improving biological understanding and biomarker discovery. Proteomics. 2011;11: 709–720. doi: 10.1002/pmic.201000422 PubMed DOI

Roccaro AM, Sacco A, Maiso P, Azab AK, Tai Y-T, Reagan M, et al.. BM mesenchymal stromal cell-derived exosomes facilitate multiple myeloma progression. J Clin Invest. 2013;123: 1542–1555. doi: 10.1172/JCI66517 PubMed DOI PMC

Yao Y, Wei W, Sun J, Chen L, Deng X, Ma L, et al.. Proteomic analysis of exosomes derived from human lymphoma cells. Eur J Med Res. 2015;20. doi: 10.1186/s40001-014-0082-4 PubMed DOI PMC

Paggetti J, Haderk F, Seiffert M, Janji B, Distler U, Ammerlaan W, et al.. Exosomes released by chronic lymphocytic leukemia cells induce the transition of stromal cells into cancer-associated fibroblasts. Blood. 2015;126: 1106–1117. doi: 10.1182/blood-2014-12-618025 PubMed DOI PMC

Kumar B, Zhang L, Miao Y, Wuenschell G, Lin A, Pullarkat V, et al.. Proteomics Profiling of Leukemia Derived Exosomes: A Potential Role in Leukemic Transformation. Blood. 2015;100: 2292–2302. doi: 10.1182/blood.V126.23.3857.3857 DOI

Vardiman JW, Harris NL, Brunning RD. The World Health Organization (WHO) classification of the myeloid neoplasms. Blood. 2002;100: 2292–2302. doi: 10.1182/blood-2002-04-1199 PubMed DOI

Hrustincova A, Krejcik Z, Kundrat D, Szikszai K, Belickova M, Pecherkova P, et al.. Circulating Small Noncoding RNAs Have Specific Expression Patterns in Plasma and Extracellular Vesicles in Myelodysplastic Syndromes and Are Predictive of Patient Outcome. Cells. 2020;9. doi: 10.3390/cells9040794 PubMed DOI PMC

Májek P, Reicheltová Z, Štikarová J, Suttnar J, Sobotková A, Dyr JE. Proteome changes in platelets activated by arachidonic acid, collagen, and thrombin. Proteome Sci. 2010;8. doi: 10.1186/1477-5956-8-56 PubMed DOI PMC

Chevallet M, Luche S, Diemer H, Strub J-M, Van Dorsselaer A, Rabilloud T. Sweet silver: A formaldehyde-free silver staining using aldoses as developing agents, with enhanced compatibility with mass spectrometry. Proteomics. 2008;8: 4853–4861. doi: 10.1002/pmic.200800321 PubMed DOI

Breuza L, Poux S, Estreicher A, Famiglietti ML, Magrane M, Tognolli M, et al.. The UniProtKB guide to the human proteome. Database. 2016;2016. doi: 10.1093/database/bav120 PubMed DOI PMC

Mathivanan S, Simpson RJ. ExoCarta: A compendium of exosomal proteins and RNA. Proteomics. 2009;9: 4997–5000. doi: 10.1002/pmic.200900351 PubMed DOI

Mathivanan S, Fahner CJ, Reid GE, Simpson RJ. ExoCarta 2012: Database of exosomal proteins, RNA and lipids. Nucleic Acids Res. 2012;40. doi: 10.1093/nar/gkr828 PubMed DOI PMC

Simpson RJ, Kalra H, Mathivanan S. Exocarta as a resource for exosomal research. J Extracell Vesicles. 2012;1. doi: 10.3402/jev.v1i0.18374 PubMed DOI PMC

Keerthikumar S, Chisanga D, Ariyaratne D, Al Saffar H, Anand S, Zhao K, et al.. ExoCarta: A Web-Based Compendium of Exosomal Cargo. J Mol Biol. 2016;428: 688–692. doi: 10.1016/j.jmb.2015.09.019 PubMed DOI PMC

Binns D, Dimmer E, Huntley R, Barrell D, O’Donovan C, Apweiler R. QuickGO: A web-based tool for Gene Ontology searching. Bioinformatics. 2009;25: 3045–3046. doi: 10.1093/bioinformatics/btp536 PubMed DOI PMC

Zielinska DF, Gnad F, Wiśniewski JR, Mann M. Precision mapping of an in vivo N-glycoproteome reveals rigid topological and sequence constraints. Cell. 2010;141: 897–907. doi: 10.1016/j.cell.2010.04.012 PubMed DOI

Boyiadzis M, Whiteside TL. Plasma-derived exosomes in acute myeloid leukemia for detection of minimal residual disease: are we ready? Expert Rev Mol Diagn. 2016;16: 623–629. doi: 10.1080/14737159.2016.1174578 PubMed DOI PMC

Pandey KB, Rizvi SI. Biomarkers of oxidative stress in red blood cells. Biomed Pap. 2011;155: 131–136. doi: 10.5507/bp.2011.027 PubMed DOI

Westerman M, Porter JB. Red blood cell-derived microparticles: An overview. Blood Cells, Mol Dis. 2016;59: 134–139. doi: 10.1016/j.bcmd.2016.04.003 PubMed DOI

Halim ATA, Ariffin NAFM, Azlan M. Review: the Multiple Roles of Monocytic Microparticles. Inflammation. 2016;39: 1277–1284. doi: 10.1007/s10753-016-0381-8 PubMed DOI

Panteleev MA, Abaeva AA, Balandina AN, Belyaev AV, Nechipurenko DY, Obydennyi SI, et al.. Extracellular vesicles of blood plasma: content, origin, and properties. Biochem Suppl Ser A Membr Cell Biol. 2017;11: 187–192. doi: 10.1134/S1990747817030060 DOI

Abello J, Nguyen TDT, Marasini R, Aryal S, Weiss ML. Biodistribution of gadolinium- and near infrared-labeled human umbilical cord mesenchymal stromal cell-derived exosomes in tumor bearing mice. Theranostics. 2019;9: 2325–2345. doi: 10.7150/thno.30030 PubMed DOI PMC

Giassafaki L-PN, Siqueira S, Panteris E, Psatha K, Chatzopoulou F, Aivaliotis M, et al.. Towards analyzing the potential of exosomes to deliver microRNA therapeutics. J Cell Physiol. 2021;236: 1529–1544. doi: 10.1002/jcp.29991 PubMed DOI

McLellan A.D. Exosome release by primary B cells. Crit Rev Immunol. 2009;29: 203–217. doi: 10.1615/critrevimmunol.v29.i3.20 PubMed DOI

Villarroya-Beltri C, Baixauli F, Gutiérrez-Vázquez C, Sánchez-Madrid F, Mittelbrunn M. Sorting it out: Regulation of exosome loading. Semin Cancer Biol. 2014;28: 3–13. doi: 10.1016/j.semcancer.2014.04.009 PubMed DOI PMC

Sódar BW, Kittel Á, Pálóczi K, Vukman KV, Osteikoetxea X, Szabó-Taylor K, et al.. Low-density lipoprotein mimics blood plasma-derived exosomes and microvesicles during isolation and detection. Sci Rep. 2016;6. doi: 10.1038/srep24316 PubMed DOI PMC

Karimi N, Cvjetkovic A, Jang SC, Crescitelli R, Hosseinpour Feizi MA, Nieuwland R, et al.. Detailed analysis of the plasma extracellular vesicle proteome after separation from lipoproteins. Cell Mol Life Sci. 2018;75: 2873–2886. doi: 10.1007/s00018-018-2773-4 PubMed DOI PMC

Onódi Z, Pelyhe C, Nagy CT, Brenner GB, Almási L, Kittel Á, et al.. Isolation of high-purity extracellular vesicles by the combination of iodixanol density gradient ultracentrifugation and bind-elute chromatography from blood plasma. Front Physiol. 2018;9. doi: 10.3389/fphys.2018.01479 PubMed DOI PMC

Record M, Carayon K, Poirot M, Silvente-Poirot S. Exosomes as new vesicular lipid transporters involved in cell-cell communication and various pathophysiologies. Biochim Biophys Acta—Mol Cell Biol Lipids. 2014;1841: 108–120. doi: 10.1016/j.bbalip.2013.10.004 PubMed DOI

Zipfel PF, Skerka C. Complement regulators and inhibitory proteins. Nat Rev Immunol. 2009;9: 729–740. doi: 10.1038/nri2620 PubMed DOI

Tschopp J, Chonn A, Hertig S, French LE. Clusterin, the human apolipoprotein and complement inhibitor, binds to complement C7, C8β, and the b domain of C9. J Immunol. 1993;151: 2159–2165. PubMed

Kurosu T, Chaichana P, Yamate M, Anantapreecha S, Ikuta K. Secreted complement regulatory protein clusterin interacts with dengue virus nonstructural protein 1. Biochem Biophys Res Commun. 2007;362: 1051–1056. doi: 10.1016/j.bbrc.2007.08.137 PubMed DOI

Rodríguez-Piñeiro AM, Páez de la Cadena M, López-Saco Á, Rodríguez-Berrocal FJ. Differential expression of serum clusterin isoforms in colorectal cancer. Mol Cell Proteomics. 2006;5: 1647–1657. doi: 10.1074/mcp.M600143-MCP200 PubMed DOI

Rizzi F, Caccamo AE, Belloni L, Bettuzzi S. Clusterin is a short half-life, poly-ubiquitinated protein, which controls the fate of prostate cancer cells. J Cell Physiol. 2009;219: 314–323. doi: 10.1002/jcp.21671 PubMed DOI

Matukumalli SR, Tangirala R, Rao CM. Clusterin: Full-length protein and one of its chains show opposing effects on cellular lipid accumulation. Sci Rep. 2017;7. doi: 10.1038/srep41235 PubMed DOI PMC

Wilson MR, Easterbrook-Smith SB. Clusterin is a secreted mammalian chaperone. Trends Biochem Sci. 2000;25: 95–98. doi: 10.1016/s0968-0004(99)01534-0 PubMed DOI

Poon S, Treweek TM, Wilson MR, Easterbrook-Smith SB, Carver JA. Clusterin is an extracellular chaperone that specifically interacts with slowly aggregating proteins on their off-folding pathway. FEBS Lett. 2002;513: 259–266. doi: 10.1016/s0014-5793(02)02326-8 PubMed DOI

Soti C, Pál C, Papp B, Csermely P. Molecular chaperones as regulatory elements of cellular networks. Curr Opin Cell Biol. 2005;17: 210–215. doi: 10.1016/j.ceb.2005.02.012 PubMed DOI

Wilson MR, Zoubeidi A. Clusterin as a therapeutic target. Expert Opin Ther Targets. 2017;21: 201–213. doi: 10.1080/14728222.2017.1267142 PubMed DOI

Gonçalves AC, Cortesão E, Oliveiros B, Alves V, Espadana AI, Rito L, et al.. Oxidative stress and mitochondrial dysfunction play a role in myelodysplastic syndrome development, diagnosis, and prognosis: A pilot study. Free Radic Res. 2015;49: 1081–1094. doi: 10.3109/10715762.2015.1035268 PubMed DOI

Kim JH, Kim JH, Jun HO, Yu YS, Min BH, Park KH, et al.. Protective effect of clusterin from oxidative stress-induced apoptosis in human retinal pigment epithelial cells. Investig Ophthalmol Vis Sci. 2010;51: 561–566. doi: 10.1167/iovs.09-3774 PubMed DOI

Trougakos IP. The molecular chaperone apolipoprotein J/Clusterin as a sensor of oxidative stress: Implications in therapeutic approaches—A mini-review. Gerontology. 2013;59: 514–523. doi: 10.1159/000351207 PubMed DOI

Trougakos IP, Gonos ES. Oxidative stress in malignant progression: The role of clusterin, a sensitive cellular biosensor of free radicals. Advances in Cancer Research. 2009. doi: 10.1016/S0065-230X(09)04009-3 PubMed DOI

Pilzer D, Gasser O, Moskovich O, Schifferli JA, Fishelson Z. Emission of membrane vesicles: Roles in complement resistance, immunity and cancer. Springer Semin Immunopathol. 2005;27: 375–387. doi: 10.1007/s00281-005-0004-1 PubMed DOI

Abid Hussein MN, Böing AN, Sturk A, Hau CM, Nieuwland R. Inhibition of microparticle release triggers endothelial cell apoptosis and detachment. Thromb Haemost. 2007;98: 1096–1107. doi: 10.1160/th05-04-0231 PubMed DOI

Lemansky P, Brix K, Herzog V. Subcellular distribution, secretion, and posttranslational modifications of clusterin in thyrocytes. Exp Cell Res. 1999;251: 147–155. doi: 10.1006/excr.1999.4555 PubMed DOI

O’Sullivan J, Whyte L, Drake J, Tenniswood M. Alterations in the post-translational modification and intracellular trafficking of clusterin in MCF-7 cells during apoptosis. Cell Death Differ. 2003;10: 914–927. doi: 10.1038/sj.cdd.4401254 PubMed DOI

Bian Y, Song C, Cheng K, Dong M, Wang F, Huang J, et al.. An enzyme assisted RP-RPLC approach for in-depth analysis of human liver phosphoproteome. J Proteomics. 2014;96: 253–262. doi: 10.1016/j.jprot.2013.11.014 PubMed DOI

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...