Survival of Prosthodontic Restorations Luted with Resin-Based versus Composite-Based Cements: Retrospective Cohort Study
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
IGA_LF_2021_012
Palacký University, Olomouc
MUNI/A/1608/2020
Masaryk University
MUNI/IGA/1543/2020
Masaryk University
PubMed
35009458
PubMed Central
PMC8746030
DOI
10.3390/ma15010312
PII: ma15010312
Knihovny.cz E-zdroje
- Klíčová slova
- cohort studies, complications, dental cements, inlay, onlay, overlay, resin cements, survival rate,
- Publikační typ
- časopisecké články MeSH
The purpose of this study was to evaluate clinical performance, survival, and complications of indirect composite inlays, onlays, and overlays on posterior teeth. Digital records of 282 patients treated between 2014 and 2018 were accessed and analyzed retrospectively. The included patients received 469 composite restorations luted with seven different resin-based types of cement, i.e., Filtek Ultimate Flow, Enamel Plus, Relyx Ultimate, Harvard Premium Flow, Relyx Unicem, Filtek Bulk Fill Flowable, and Filtek Ultimate. The restorations had been clinically and radiographically evaluated annually. The mechanical and clinical complications, e.g., debonding, fracture, and secondary caries, were evaluated and recorded. The examined restorations exhibited a high survival rate (84.9%), and failure was found in only 71 cases. Fracture was the most common cause (n = 36), followed by prosthetic work release (n = 19) and secondary caries (n = 16). There was a statistically significant difference between failure and cement material (Sig. < 0.001); the composite-based cements (87.2%) had a high survival rate compared to the resin-based cement (72.7%). Similarly, the cements with high viscosity (90.2%) had significantly higher survival rates than the low-viscosity cements (78.9%). Moreover, onlays showed higher longevity compared to overlays (Sig. = 0.007), and patients aged under 55 years showed less complications (Sig. = 0.036). Indirect composite restoration was a successful solution to tooth structure loss. The material of the cementation is an important part of the success. Higher survival rate was found in our study when the fixation materials with high viscosity were used, thus suggesting using these materials with indirect restorations. Composite-based cements had significantly higher survival rate than resin-based cements.
Department of Public Health Faculty of Medicine Masaryk University 625 00 Brno Czech Republic
Zobrazit více v PubMed
Pjetursson B.E., Lang N.P. Prosthetic treatment planning on the basis of scientific evidence. J. Oral Rehabil. 2007;35:72–79. doi: 10.1111/j.1365-2842.2007.01824.x. PubMed DOI
Angeletaki F., Gkogkos A., Papazoglou E., Kloukos D. Direct versus indirect inlay/onlay composite restorations in posterior teeth. A systematic review and meta-analysis. J. Dent. 2016;53:12–21. doi: 10.1016/j.jdent.2016.07.011. PubMed DOI
Barone A., Derchi G., Rossi A., Marconcini S., Covani U. Longitudinal clinical evaluation of bonded composite inlays: A 3-year study. Quintessence Int. 2008;39:65–71. PubMed
Manhart J., Kunzelmann K.-H., Chen H., Hickel R. Mechanical properties and wear behavior of light-cured packable composite resins. Dent. Mater. 2000;16:33–40. doi: 10.1016/S0109-5641(99)00082-2. PubMed DOI
Gundawar S.M., Pande N.A., Jaiswal P., Radke U.M. “Split Cast Mounting: Review and New Technique”. J. Indian Prosthodont. Soc. 2014;14:345–347. doi: 10.1007/s13191-014-0380-0. PubMed DOI PMC
Baldi A., Comba A., Ferrero G., Italia E., Tempesta R.M., Paolone G., Mazzoni A., Breschi L., Scotti N. External gap progression after cyclic fatigue of adhesive overlays and crowns made with high translucency zirconia or lithium silicate. J. Esthet. Restor. Dent. 2021 doi: 10.1111/jerd.12837. Early View . PubMed DOI PMC
Baldi A., Comba A., Tempesta R.M., Carossa M., Pereira G.K.R., Valandro L.F., Paolone G., Vichi A., Goracci C., Scotti N. External Marginal Gap Variation and Residual Fracture Resistance of Composite and Lithium-Silicate CAD/CAM Overlays after Cyclic Fatigue over Endodontically-Treated Molars. Polymer. 2021;13:3002. doi: 10.3390/polym13173002. PubMed DOI PMC
Cappare P., Sannino G., Minoli M., Montemezzi P., Ferrini F. Conventional versus Digital Impressions for Full Arch Screw-Retained Maxillary Rehabilitations: A Randomized Clinical Trial. Int. J. Environ. Res. Public Health. 2019;16:829. doi: 10.3390/ijerph16050829. PubMed DOI PMC
Mangani F., Marini S., Barabanti N., Preti A., Cerutti A. The success of indirect restorations in posterior teeth: A systematic review of the literature. Minerva Stomatol. 2015;64:231–240. PubMed
Santos G.C., Santos M.J.M.C., Rizkalla A.S., Madani D., El-Mowafy O. Overview of CEREC CAD/CAM chairside system. Gen. Dent. 2013;61:36–40. PubMed
Morimoto S., De Sampaio F.R., Braga M.M., Sesma N., Özcan M. Survival Rate of Resin and Ceramic Inlays, Onlays, and Overlays. J. Dent. Res. 2016;95:985–994. doi: 10.1177/0022034516652848. PubMed DOI
Amesti-Garaizabal A., Agustín-Panadero R., Verdejo-Solá B., Fons-Font A., Fernández-Estevan L., Montiel-Company J., Solá-Ruíz M.F. Fracture Resistance of Partial Indirect Restorations Made With CAD/CAM Technology. A Systematic Review and Meta-analysis. J. Clin. Med. 2019;8:1932. doi: 10.3390/jcm8111932. PubMed DOI PMC
Chabouis H.F., Smaïl-Faugeron V., Attal J.-P. Clinical efficacy of composite versus ceramic inlays and onlays: A systematic review. Dent. Mater. 2013;29:1209–1218. doi: 10.1016/j.dental.2013.09.009. PubMed DOI
Tsitrou E.A., Northeast S.E., van Noort R. Brittleness index of machinable dental materials and its relation to the marginal chipping factor. J. Dent. 2007;35:897–902. doi: 10.1016/j.jdent.2007.07.002. PubMed DOI
Edelhoff D., Güth J., Erdelt K., Brix O., Liebermann A. Clinical performance of occlusal onlays made of lithium disilicate ceramic in patients with severe tooth wear up to 11 years. Dent. Mater. 2019;35:1319–1330. doi: 10.1016/j.dental.2019.06.001. PubMed DOI
Coşkun E., Aslan Y.U., Özkan Y.K. Evaluation of two different CAD-CAM inlay-onlays in a split-mouth study: 2-year clinical follow-up. J. Esthet. Restor. Dent. 2019;32:244–250. doi: 10.1111/jerd.12541. PubMed DOI
Frankenberger R., Taschner M., Garcia-Godoy F., Petschelt A., Krämer N. Leucite-reinforced glass ceramic inlays and onlays after 12 years. J. Adhes. Dent. 2008;10:393–398. PubMed
Krämer N., Frankenberger R., Pelka M., Petschelt A. IPS Empress inlays and onlays after four years—A clinical study. J. Dent. 1999;27:325–331. doi: 10.1016/S0300-5712(98)00059-1. PubMed DOI
Al-Fouzan A.F., Tashkandi E. Volumetric Measurements of Removed Tooth Structure Associated with Various Preparation Designs. Int. J. Prosthodont. 2013;26:545–548. doi: 10.11607/ijp.3221. PubMed DOI
Raedel M., Hartmann A., Priess H.-W., Bohm S., Samietz S., Konstantinidis I., Walter M.H. Re-interventions after restoring teeth—Mining an insurance database. J. Dent. 2017;57:14–19. doi: 10.1016/j.jdent.2016.11.011. PubMed DOI
Mante F.K., Ozer F., Walter R., Atlas A.M., Saleh N., Dietschi D., Blatz M.B. The current state of adhesive dentistry: A guide for clinical practice. Compend. Contin. Educ. Dent. 2014;34:2–8. PubMed
Baader K., Hiller K.-A., Buchalla W., Schmalz G., Federlin M. Self-adhesive Luting of Partial Ceramic Crowns: Selective Enamel Etching Leads to Higher Survival after 6.5 Years In Vivo. J. Adhes. Dent. 2016;18:69–79. doi: 10.3290/J.JAD.A35549. PubMed DOI
Tolidis K., Papadogiannis D., Gerasimou P. Dynamic and static mechanical analysis of resin luting cements. J. Mech. Behav. Biomed. Mater. 2012;6:1–8. doi: 10.1016/j.jmbbm.2011.10.002. PubMed DOI
Kern M. Bonding to oxide ceramics—Laboratory testing versus clinical outcome. Dent. Mater. 2015;31:8–14. doi: 10.1016/j.dental.2014.06.007. PubMed DOI
Passos S.P., Kimpara E.T., Bottino M.A., Júnior G.C., Rizkalla A.S. Bond Strength of Different Resin Cement and Ceramic Shades Bonded to Dentin. J. Adhes. Dent. 2013;15:461–466. doi: 10.3290/J.JAD.A29591. PubMed DOI
Migliau G. Classification review of dental adhesive systems: From the IV generation to the universal type. Ann. di Stomatol. 2017;8:1–17. doi: 10.11138/ads/2017.8.1.001. PubMed DOI PMC
Myers M.L., Caughman W.F., Rueggeberg F. Effect of Restoration Composition, Shade, and Thickness on the Cure of a Photoactivated Resin Cement. J. Prosthodont. 1994;3:149–157. doi: 10.1111/j.1532-849X.1994.tb00146.x. PubMed DOI
van Noort R., Barbour M.E. Introduction to Dental Materials. 4th ed. Elsevier; Mosby, St. Louis, MO, USA: 2013.
Powers J., O’Keefe K. Cements: How to select the right one. Dent. Prod. Rep. 2005;39:76–78.
Craig R.G., Powers J.M., Sakaguchi R.L. Craig’s Restorative Dental Materials. 12th ed. Elsevier; Mosby, St. Louis, MO, USA: 2006.
Simon J.F., Darnell L. Considerations for proper selection of dental cements. Compend. Contin. Educ. Dent. 2012;33:28–30. PubMed
Burgess J.O., Ghuman T., Cakir D., Swift E.J., Jr. Self-Adhesive Resin Cements. J. Esthet. Restor. Dent. 2010;22:412–419. doi: 10.1111/j.1708-8240.2010.00378.x. PubMed DOI
Ferracane J.L., Stansbury J.W., Burke F.J.T. Self-adhesive resin cements—Chemistry, properties and clinical considerations. J. Oral Rehabil. 2010;38:295–314. doi: 10.1111/j.1365-2842.2010.02148.x. PubMed DOI
Swift E.J., Bayne S.C. Shear bond strength of a new one-bottle dentin adhesive. Am. J. Dent. 1997;10:184–188. PubMed
Zidan O., Ferguson G.C. The retention of complete crowns prepared with three different tapers and luted with four different cements. J. Prosthet. Dent. 2003;89:565–571. doi: 10.1016/S0022-3913(03)00182-3. PubMed DOI
Cekic I., Ergun G., Lassila L.V.J., Vallittu P.K. Ceramic-dentin bonding: Effect of adhesive systems and light-curing units. J. Adhes. Dent. 2007;9:17–23. PubMed
Youm S.-H., Jung K.-H., Son S.-A., Kwon Y.-H., Park J.-K. Effect of dentin pretreatment and curing mode on the microtensile bond strength of self-adhesive resin cements. J. Adv. Prosthodont. 2015;7:317–322. doi: 10.4047/jap.2015.7.4.317. PubMed DOI PMC
Hammal M., Chlup Z., Ingr T., Staněk J., Mounajjed R. Effectiveness of dentin pre-treatment on bond strength of two self-adhesive resin cements compared to an etch-and-rinse system: An in vitro study. PeerJ. 2021;9:e11736. doi: 10.7717/peerj.11736. PubMed DOI PMC
De Munck J., Vargas M., Van Landuyt K., Hikita K., Lambrechts P., Van Meerbeek B. Bonding of an auto-adhesive luting material to enamel and dentin. Dent. Mater. 2004;20:963–971. doi: 10.1016/j.dental.2004.03.002. PubMed DOI
Simon J.F., de Rijl W. Shear bond strength of Empress to dentin using four resin cements; Proceedings of the AADR Oral Presentations; Orlando, FL, USA. 31 March 2006; p. 886.
Acquaviva P.A., Cerutti F., Adami G., Gagliani M., Ferrari M., Gherlone E., Cerutti A. Degree of conversion of three composite materials employed in the adhesive cementation of indirect restorations: A micro-Raman analysis. J. Dent. 2009;37:610–615. doi: 10.1016/j.jdent.2009.04.001. PubMed DOI
Mounajjed R., Salinas T.J., Ingr T., Azar B. Effect of different resin luting cements on the marginal fit of lithium disilicate pressed crowns. J. Prosthet. Dent. 2018;119:975–980. doi: 10.1016/j.prosdent.2017.08.001. PubMed DOI
Sumino N., Tsubota K., Takamizawa T., Shiratsuchi K., Miyazaki M., Latta M.A. Comparison of the wear and flexural characteristics of flowable resin composites for posterior lesions. Acta Odontol. Scand. 2013;71:820–827. doi: 10.3109/00016357.2012.734405. PubMed DOI
Nikaido T., Tagami J., Yatani H., Ohkubo C., Nihei T., Koizumi H., Maseki T., Nishiyama Y., Takigawa T., Tsubota Y. Concept and clinical application of the resin-coating technique for indirect restorations. Dent. Mater. J. 2018;37:192–196. doi: 10.4012/dmj.2017-253. PubMed DOI
Baroudi K. Flowable Resin Composites: A Systematic Review and Clinical Considerations. J. Clin. Diagn. Res. 2015;9:ZE18–ZE24. doi: 10.7860/JCDR/2015/12294.6129. PubMed DOI PMC
Peumans M., Van Meerbeek B., Lambrechts P., Vanherle G. Porcelain veneers: A review of the literature. J. Dent. 2000;28:163–177. doi: 10.1016/S0300-5712(99)00066-4. PubMed DOI
Barceleiro M.D.O., Miranda M., Dias K.R.H.C., Sekito T. Shear bond strength of porcelain laminate veneer bonded with flowable composite. Oper. Dent. 2003;28:423–428. PubMed
Munksgaard E.C., Hansen E.K., Kato H. Wall-to-wall polymerization contraction of composite resins versus filler content. Eur. J. Oral Sci. 1987;95:526–531. doi: 10.1111/j.1600-0722.1987.tb01970.x. PubMed DOI
Helvey G.A. Creating super dentin: Using flowable composites as luting agents to help prevent secondary caries. Compend. Contin. Educ. Dent. 2013;34:288–300. PubMed
Attar N., Tam L., McComb D. Flow, strength, stiffness and radiopacity of flowable resin composites. J. Can. Dent. Assoc. 2003;69:516–521. PubMed
Ayub K.V., Santos G., Rizkalla A.S., Bohay R., Pegoraro L.F., Rubo J.H., Santos M.J. Effect of preheating on microhardness and viscosity of 4 resin composites. J Can Dent. Assoc. 2014;80:12. PubMed
Mundim F.M., Garcia L.D.F.R., Cruvinel D.R., Lima F.A., Bachmann L., Pires-De-Souza F.C.P. Color stability, opacity and degree of conversion of pre-heated composites. J. Dent. 2011;39:e25–e29. doi: 10.1016/j.jdent.2010.12.001. PubMed DOI
Walter R., Swift E.J., Sheikh H., Ferracane J. Effects of temperature on composite resin shrinkage. Quintessence Int. 2009;40:843–847. PubMed
Blalock J.S., Holmes R.G., Rueggeberg F. Effect of temperature on unpolymerized composite resin film thickness. J. Prosthet. Dent. 2006;96:424–432. doi: 10.1016/j.prosdent.2006.09.022. PubMed DOI
Sampaio C.S., Barbosa J.M., Cáceres E., Rigo L.C., Coelho P.G., Bonfante E.A., Hirata R. Volumetric shrinkage and film thickness of cementation materials for veneers: An in vitro 3D microcomputed tomography analysis. J. Prosthet. Dent. 2017;117:784–791. doi: 10.1016/j.prosdent.2016.08.029. PubMed DOI
Özcan M., Meşe A. Adhesion of conventional and simplified resin-based luting cements to superficial and deep dentin. Clin. Oral Investig. 2011;16:1081–1088. doi: 10.1007/s00784-011-0594-z. PubMed DOI
Von Elm E., Altman D.G., Egger M., Pocock S.J., Gøtzsche P.C., Vandenbroucke J.P. Strengthening the reporting of observational studies in epidemiology (STROBE) statement: Guidelines for reporting observational studies. Int. J. Surg. 2014;12:1495–1499. doi: 10.1016/j.ijsu.2014.07.013. PubMed DOI
D’Arcangelo C., Vanini L. Effect of three surface treatments on the adhesive properties of indirect composite restorations. J. Adhes. Dent. 2007;9:319–326. PubMed
Hagino R., Mine A., Kawaguchi-Uemura A., Tajiri-Yamada Y., Yumitate M., Ban S., Miura J., Matsumoto M., Yatani H., Nakatani H. Adhesion procedures for CAD/CAM indirect resin composite block: A new resin primer versus a conventional silanizing agent. J. Prosthodont. Res. 2020;64:319–325. doi: 10.1016/j.jpor.2019.09.004. PubMed DOI
Epi InfoTM for Windows, Centers for Disease Control and Prevention. [(accessed on 25 December 2020)]; Available online: https://www.cdc.gov/epiinfo/pc.html.
Hikasa T., Matsuka Y., Mine A., Minakuchi H., Hara E.S., Van Meerbeek B., Yatani H., Kuboki T. A 15-year clinical comparative study of the cumulative survival rate of cast metal core and resin core restorations luted with adhesive resin cement. Int. J. Prosthodont. 2010;23:397–405. PubMed
Schmalz G., Ryge G. Reprint of Criteria for the clinical evaluation of dental restorative materials. Clin. Oral Investig. 2005;9:215–232. doi: 10.1007/s00784-005-0018-z. PubMed DOI
IBM SPSS Statistics 28, SPSS Inc. [(accessed on 14 March 2021)]. Available online: https://www.ibm.com/support/pages/ibm-spss-statistics-28-documentation.
Fan J., Xu Y., Si L., Li X., Fu B., Hannig M. Long-term Clinical Performance of Composite Resin or Ceramic Inlays, Onlays, and Overlays: A Systematic Review and Meta-analysis. Oper. Dent. 2021;46:25–44. doi: 10.2341/19-107-LIT. PubMed DOI
Bustamante-Hernández N., Montiel-Company J.M., Bellot-Arcís C., Mañes-Ferrer J.F., Solá-Ruíz M.F., Agustín-Panadero R., Fernández-Estevan L. Clinical Behavior of Ceramic, Hybrid and Composite Onlays. A Systematic Review and Meta-Analysis. Int. J. Environ. Res. Public Health. 2020;17:7582. doi: 10.3390/ijerph17207582. PubMed DOI PMC
Signore A., Benedicenti S., Covani U., Ravera G. A 4- to 6-year retrospective clinical study of cracked teeth restored with bonded indirect resin composite onlays. Int. J. Prosthodont. 2007;20:609–616. doi: 10.1308/135576108785891169. PubMed DOI
Chrepa V., Konstantinidis I., Kotsakis G.A., Mitsias M.E. The survival of indirect composite resin onlays for the restoration of root filled teeth: A retrospective medium-term study. Int. Endod. J. 2014;47:967–973. doi: 10.1111/iej.12242. PubMed DOI
Fennis W., Kuijs R., Roeters F., Creugers N., Kreulen C. Randomized Control Trial of Composite Cuspal Restorations. J. Dent. Res. 2014;93:36–41. doi: 10.1177/0022034513510946. PubMed DOI PMC
Dias M.C.R., Martins J.N., Chen A., Quaresma S.A., Luis H., Caramês J. Prognosis of Indirect Composite Resin Cuspal Coverage on Endodontically Treated Premolars and Molars: An In Vivo Prospective Study. J. Prosthodont. 2018;27:598–604. doi: 10.1111/jopr.12545. PubMed DOI
Kaytan B., Onal B., Pamir T., Tezel H. Clinical evaluation of indirect resin composite and ceramic onlays over a 24-month period. Gen. Dent. 2005;53:329–334. PubMed
D’Arcangelo C., Zarow M., DE Angelis F., Vadini M., Paolantonio M., Giannoni M., D’Amario M. Five-year retrospective clinical study of indirect composite restorations luted with a light-cured composite in posterior teeth. Clin. Oral Investig. 2013;18:615–624. doi: 10.1007/s00784-013-1001-8. PubMed DOI
Schulte A.G., Vöckler A., Reinhardt R. Longevity of ceramic inlays and onlays luted with a solely light-curing composite resin. J. Dent. 2005;33:433–442. doi: 10.1016/j.jdent.2004.10.026. PubMed DOI
Zimmer S., Göhlich O., Rüttermann S., Lang H., Raab W.H.-M., Barthel C.R. Long-term Survival of Cerec Restorations: A 10-year Study. Oper. Dent. 2008;33:484–487. doi: 10.2341/07-142. PubMed DOI
Malament K.A., Margvelashvili-Malament M., Natto Z.S., Thompson V., Rekow D., Att W. 10.9-year survival of pressed acid etched monolithic e.max lithium disilicate glass-ceramic partial coverage restorations: Performance and outcomes as a function of tooth position, age, sex, and the type of partial coverage restoration (inlay or onlay) J. Prosthet. Dent. 2021;126:523–532. doi: 10.1016/j.prosdent.2020.07.015. PubMed DOI
Hahn P., Attin T., Gröfke M., Hellwig E. Influence of resin cement viscosity on microleakage of ceramic inlays. Dent. Mater. 2001;17:191–196. doi: 10.1016/S0109-5641(00)00067-1. PubMed DOI
Bortolotto T., Guillarme D., Gutemberg D., Veuthey J.-L., Krejci I. Composite resin vs resin cement for luting of indirect restorations: Comparison of solubility and shrinkage behavior. Dent. Mater. J. 2013;32:834–838. doi: 10.4012/dmj.2013-153. PubMed DOI
Zeller D.K., Fischer J., Rohr N. Viscous behavior of resin composite cements. Dent. Mater. J. 2021;40:253–259. doi: 10.4012/dmj.2019-313. PubMed DOI
Di Francescantonio M., Aguiar T.R., Arrais C.A.G., Cavalcanti A.N., Davanzo C.U., Giannini M. Influence of viscosity and curing mode on degree of conversion of dual-cured resin cements. Eur. J. Dent. 2013;7:81–85. PubMed PMC
Marcondes R.L., Lima V.P., Barbon F.J., Isolan C.P., Carvalho M.A., Salvador M.V., Lima A.F., Moraes R.R. Viscosity and thermal kinetics of 10 preheated restorative resin composites and effect of ultrasound energy on film thickness. Dent. Mater. 2020;36:1356–1364. doi: 10.1016/j.dental.2020.08.004. PubMed DOI
Cantoro A., Goracci C., Coniglio I., Magni E., Polimeni A., Ferrari M. Influence of ultrasound application on inlays luting with self-adhesive resin cements. Clin. Oral Investig. 2010;15:617–623. doi: 10.1007/s00784-010-0451-5. PubMed DOI
Sato M., Fujishima A., Shibata Y., Miyazaki T., Inoue M. Nanoindentation tests to assess polymerization of resin-based luting cement. Dent. Mater. 2014;30:1021–1028. doi: 10.1016/j.dental.2014.05.034. PubMed DOI
Zhang X., Zhang Q., Meng X., Ye Y., Feng D., Xue J., Wang H., Huang H., Wang M., Wang J. Rheological and Mechanical Properties of Resin-Based Materials Applied in Dental Restorations. Polymer. 2021;13:2975. doi: 10.3390/polym13172975. PubMed DOI PMC
Yoshikawa T., Morigami M., Sadr A., Tagami J. Environmental SEM and dye penetration observation on resin-tooth interface using different light curing method. Dent. Mater. J. 2016;35:89–96. doi: 10.4012/dmj.2015-196. PubMed DOI
Bacchi A., Consani R.L., Martim G.C., Pfeifer C.S. Thio-urethane oligomers improve the properties of light-cured resin cements. Dent. Mater. 2015;31:565–574. doi: 10.1016/j.dental.2015.02.008. PubMed DOI PMC
Bacchi A., Dobson A., Ferracane J., Consani R., Pfeifer C. Thio-urethanes Improve Properties of Dual-cured Composite Cements. J. Dent. Res. 2014;93:1320–1325. doi: 10.1177/0022034514551768. PubMed DOI PMC
Faria E., Silva A.L., Pfeifer C.S. Development of dual-cured resin cements with long working time, high conversion in absence of light and reduced polymerization stress. Dent. Mater. 2020;36:e293–e301. doi: 10.1016/j.dental.2020.06.005. PubMed DOI PMC
Bacchi A., Caldas R.A., Cesar P.F., Pfeifer C.S. Optical properties and colorimetric evaluation of resin cements formulated with thio-urethane oligomers. J. Esthet. Restor. Dent. 2018;31:153–159. doi: 10.1111/jerd.12437. PubMed DOI PMC