Survival of Prosthodontic Restorations Luted with Resin-Based versus Composite-Based Cements: Retrospective Cohort Study

. 2022 Jan 02 ; 15 (1) : . [epub] 20220102

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid35009458

Grantová podpora
IGA_LF_2021_012 Palacký University, Olomouc
MUNI/A/1608/2020 Masaryk University
MUNI/IGA/1543/2020 Masaryk University

The purpose of this study was to evaluate clinical performance, survival, and complications of indirect composite inlays, onlays, and overlays on posterior teeth. Digital records of 282 patients treated between 2014 and 2018 were accessed and analyzed retrospectively. The included patients received 469 composite restorations luted with seven different resin-based types of cement, i.e., Filtek Ultimate Flow, Enamel Plus, Relyx Ultimate, Harvard Premium Flow, Relyx Unicem, Filtek Bulk Fill Flowable, and Filtek Ultimate. The restorations had been clinically and radiographically evaluated annually. The mechanical and clinical complications, e.g., debonding, fracture, and secondary caries, were evaluated and recorded. The examined restorations exhibited a high survival rate (84.9%), and failure was found in only 71 cases. Fracture was the most common cause (n = 36), followed by prosthetic work release (n = 19) and secondary caries (n = 16). There was a statistically significant difference between failure and cement material (Sig. < 0.001); the composite-based cements (87.2%) had a high survival rate compared to the resin-based cement (72.7%). Similarly, the cements with high viscosity (90.2%) had significantly higher survival rates than the low-viscosity cements (78.9%). Moreover, onlays showed higher longevity compared to overlays (Sig. = 0.007), and patients aged under 55 years showed less complications (Sig. = 0.036). Indirect composite restoration was a successful solution to tooth structure loss. The material of the cementation is an important part of the success. Higher survival rate was found in our study when the fixation materials with high viscosity were used, thus suggesting using these materials with indirect restorations. Composite-based cements had significantly higher survival rate than resin-based cements.

Zobrazit více v PubMed

Pjetursson B.E., Lang N.P. Prosthetic treatment planning on the basis of scientific evidence. J. Oral Rehabil. 2007;35:72–79. doi: 10.1111/j.1365-2842.2007.01824.x. PubMed DOI

Angeletaki F., Gkogkos A., Papazoglou E., Kloukos D. Direct versus indirect inlay/onlay composite restorations in posterior teeth. A systematic review and meta-analysis. J. Dent. 2016;53:12–21. doi: 10.1016/j.jdent.2016.07.011. PubMed DOI

Barone A., Derchi G., Rossi A., Marconcini S., Covani U. Longitudinal clinical evaluation of bonded composite inlays: A 3-year study. Quintessence Int. 2008;39:65–71. PubMed

Manhart J., Kunzelmann K.-H., Chen H., Hickel R. Mechanical properties and wear behavior of light-cured packable composite resins. Dent. Mater. 2000;16:33–40. doi: 10.1016/S0109-5641(99)00082-2. PubMed DOI

Gundawar S.M., Pande N.A., Jaiswal P., Radke U.M. “Split Cast Mounting: Review and New Technique”. J. Indian Prosthodont. Soc. 2014;14:345–347. doi: 10.1007/s13191-014-0380-0. PubMed DOI PMC

Baldi A., Comba A., Ferrero G., Italia E., Tempesta R.M., Paolone G., Mazzoni A., Breschi L., Scotti N. External gap progression after cyclic fatigue of adhesive overlays and crowns made with high translucency zirconia or lithium silicate. J. Esthet. Restor. Dent. 2021 doi: 10.1111/jerd.12837. Early View . PubMed DOI PMC

Baldi A., Comba A., Tempesta R.M., Carossa M., Pereira G.K.R., Valandro L.F., Paolone G., Vichi A., Goracci C., Scotti N. External Marginal Gap Variation and Residual Fracture Resistance of Composite and Lithium-Silicate CAD/CAM Overlays after Cyclic Fatigue over Endodontically-Treated Molars. Polymer. 2021;13:3002. doi: 10.3390/polym13173002. PubMed DOI PMC

Cappare P., Sannino G., Minoli M., Montemezzi P., Ferrini F. Conventional versus Digital Impressions for Full Arch Screw-Retained Maxillary Rehabilitations: A Randomized Clinical Trial. Int. J. Environ. Res. Public Health. 2019;16:829. doi: 10.3390/ijerph16050829. PubMed DOI PMC

Mangani F., Marini S., Barabanti N., Preti A., Cerutti A. The success of indirect restorations in posterior teeth: A systematic review of the literature. Minerva Stomatol. 2015;64:231–240. PubMed

Santos G.C., Santos M.J.M.C., Rizkalla A.S., Madani D., El-Mowafy O. Overview of CEREC CAD/CAM chairside system. Gen. Dent. 2013;61:36–40. PubMed

Morimoto S., De Sampaio F.R., Braga M.M., Sesma N., Özcan M. Survival Rate of Resin and Ceramic Inlays, Onlays, and Overlays. J. Dent. Res. 2016;95:985–994. doi: 10.1177/0022034516652848. PubMed DOI

Amesti-Garaizabal A., Agustín-Panadero R., Verdejo-Solá B., Fons-Font A., Fernández-Estevan L., Montiel-Company J., Solá-Ruíz M.F. Fracture Resistance of Partial Indirect Restorations Made With CAD/CAM Technology. A Systematic Review and Meta-analysis. J. Clin. Med. 2019;8:1932. doi: 10.3390/jcm8111932. PubMed DOI PMC

Chabouis H.F., Smaïl-Faugeron V., Attal J.-P. Clinical efficacy of composite versus ceramic inlays and onlays: A systematic review. Dent. Mater. 2013;29:1209–1218. doi: 10.1016/j.dental.2013.09.009. PubMed DOI

Tsitrou E.A., Northeast S.E., van Noort R. Brittleness index of machinable dental materials and its relation to the marginal chipping factor. J. Dent. 2007;35:897–902. doi: 10.1016/j.jdent.2007.07.002. PubMed DOI

Edelhoff D., Güth J., Erdelt K., Brix O., Liebermann A. Clinical performance of occlusal onlays made of lithium disilicate ceramic in patients with severe tooth wear up to 11 years. Dent. Mater. 2019;35:1319–1330. doi: 10.1016/j.dental.2019.06.001. PubMed DOI

Coşkun E., Aslan Y.U., Özkan Y.K. Evaluation of two different CAD-CAM inlay-onlays in a split-mouth study: 2-year clinical follow-up. J. Esthet. Restor. Dent. 2019;32:244–250. doi: 10.1111/jerd.12541. PubMed DOI

Frankenberger R., Taschner M., Garcia-Godoy F., Petschelt A., Krämer N. Leucite-reinforced glass ceramic inlays and onlays after 12 years. J. Adhes. Dent. 2008;10:393–398. PubMed

Krämer N., Frankenberger R., Pelka M., Petschelt A. IPS Empress inlays and onlays after four years—A clinical study. J. Dent. 1999;27:325–331. doi: 10.1016/S0300-5712(98)00059-1. PubMed DOI

Al-Fouzan A.F., Tashkandi E. Volumetric Measurements of Removed Tooth Structure Associated with Various Preparation Designs. Int. J. Prosthodont. 2013;26:545–548. doi: 10.11607/ijp.3221. PubMed DOI

Raedel M., Hartmann A., Priess H.-W., Bohm S., Samietz S., Konstantinidis I., Walter M.H. Re-interventions after restoring teeth—Mining an insurance database. J. Dent. 2017;57:14–19. doi: 10.1016/j.jdent.2016.11.011. PubMed DOI

Mante F.K., Ozer F., Walter R., Atlas A.M., Saleh N., Dietschi D., Blatz M.B. The current state of adhesive dentistry: A guide for clinical practice. Compend. Contin. Educ. Dent. 2014;34:2–8. PubMed

Baader K., Hiller K.-A., Buchalla W., Schmalz G., Federlin M. Self-adhesive Luting of Partial Ceramic Crowns: Selective Enamel Etching Leads to Higher Survival after 6.5 Years In Vivo. J. Adhes. Dent. 2016;18:69–79. doi: 10.3290/J.JAD.A35549. PubMed DOI

Tolidis K., Papadogiannis D., Gerasimou P. Dynamic and static mechanical analysis of resin luting cements. J. Mech. Behav. Biomed. Mater. 2012;6:1–8. doi: 10.1016/j.jmbbm.2011.10.002. PubMed DOI

Kern M. Bonding to oxide ceramics—Laboratory testing versus clinical outcome. Dent. Mater. 2015;31:8–14. doi: 10.1016/j.dental.2014.06.007. PubMed DOI

Passos S.P., Kimpara E.T., Bottino M.A., Júnior G.C., Rizkalla A.S. Bond Strength of Different Resin Cement and Ceramic Shades Bonded to Dentin. J. Adhes. Dent. 2013;15:461–466. doi: 10.3290/J.JAD.A29591. PubMed DOI

Migliau G. Classification review of dental adhesive systems: From the IV generation to the universal type. Ann. di Stomatol. 2017;8:1–17. doi: 10.11138/ads/2017.8.1.001. PubMed DOI PMC

Myers M.L., Caughman W.F., Rueggeberg F. Effect of Restoration Composition, Shade, and Thickness on the Cure of a Photoactivated Resin Cement. J. Prosthodont. 1994;3:149–157. doi: 10.1111/j.1532-849X.1994.tb00146.x. PubMed DOI

van Noort R., Barbour M.E. Introduction to Dental Materials. 4th ed. Elsevier; Mosby, St. Louis, MO, USA: 2013.

Powers J., O’Keefe K. Cements: How to select the right one. Dent. Prod. Rep. 2005;39:76–78.

Craig R.G., Powers J.M., Sakaguchi R.L. Craig’s Restorative Dental Materials. 12th ed. Elsevier; Mosby, St. Louis, MO, USA: 2006.

Simon J.F., Darnell L. Considerations for proper selection of dental cements. Compend. Contin. Educ. Dent. 2012;33:28–30. PubMed

Burgess J.O., Ghuman T., Cakir D., Swift E.J., Jr. Self-Adhesive Resin Cements. J. Esthet. Restor. Dent. 2010;22:412–419. doi: 10.1111/j.1708-8240.2010.00378.x. PubMed DOI

Ferracane J.L., Stansbury J.W., Burke F.J.T. Self-adhesive resin cements—Chemistry, properties and clinical considerations. J. Oral Rehabil. 2010;38:295–314. doi: 10.1111/j.1365-2842.2010.02148.x. PubMed DOI

Swift E.J., Bayne S.C. Shear bond strength of a new one-bottle dentin adhesive. Am. J. Dent. 1997;10:184–188. PubMed

Zidan O., Ferguson G.C. The retention of complete crowns prepared with three different tapers and luted with four different cements. J. Prosthet. Dent. 2003;89:565–571. doi: 10.1016/S0022-3913(03)00182-3. PubMed DOI

Cekic I., Ergun G., Lassila L.V.J., Vallittu P.K. Ceramic-dentin bonding: Effect of adhesive systems and light-curing units. J. Adhes. Dent. 2007;9:17–23. PubMed

Youm S.-H., Jung K.-H., Son S.-A., Kwon Y.-H., Park J.-K. Effect of dentin pretreatment and curing mode on the microtensile bond strength of self-adhesive resin cements. J. Adv. Prosthodont. 2015;7:317–322. doi: 10.4047/jap.2015.7.4.317. PubMed DOI PMC

Hammal M., Chlup Z., Ingr T., Staněk J., Mounajjed R. Effectiveness of dentin pre-treatment on bond strength of two self-adhesive resin cements compared to an etch-and-rinse system: An in vitro study. PeerJ. 2021;9:e11736. doi: 10.7717/peerj.11736. PubMed DOI PMC

De Munck J., Vargas M., Van Landuyt K., Hikita K., Lambrechts P., Van Meerbeek B. Bonding of an auto-adhesive luting material to enamel and dentin. Dent. Mater. 2004;20:963–971. doi: 10.1016/j.dental.2004.03.002. PubMed DOI

Simon J.F., de Rijl W. Shear bond strength of Empress to dentin using four resin cements; Proceedings of the AADR Oral Presentations; Orlando, FL, USA. 31 March 2006; p. 886.

Acquaviva P.A., Cerutti F., Adami G., Gagliani M., Ferrari M., Gherlone E., Cerutti A. Degree of conversion of three composite materials employed in the adhesive cementation of indirect restorations: A micro-Raman analysis. J. Dent. 2009;37:610–615. doi: 10.1016/j.jdent.2009.04.001. PubMed DOI

Mounajjed R., Salinas T.J., Ingr T., Azar B. Effect of different resin luting cements on the marginal fit of lithium disilicate pressed crowns. J. Prosthet. Dent. 2018;119:975–980. doi: 10.1016/j.prosdent.2017.08.001. PubMed DOI

Sumino N., Tsubota K., Takamizawa T., Shiratsuchi K., Miyazaki M., Latta M.A. Comparison of the wear and flexural characteristics of flowable resin composites for posterior lesions. Acta Odontol. Scand. 2013;71:820–827. doi: 10.3109/00016357.2012.734405. PubMed DOI

Nikaido T., Tagami J., Yatani H., Ohkubo C., Nihei T., Koizumi H., Maseki T., Nishiyama Y., Takigawa T., Tsubota Y. Concept and clinical application of the resin-coating technique for indirect restorations. Dent. Mater. J. 2018;37:192–196. doi: 10.4012/dmj.2017-253. PubMed DOI

Baroudi K. Flowable Resin Composites: A Systematic Review and Clinical Considerations. J. Clin. Diagn. Res. 2015;9:ZE18–ZE24. doi: 10.7860/JCDR/2015/12294.6129. PubMed DOI PMC

Peumans M., Van Meerbeek B., Lambrechts P., Vanherle G. Porcelain veneers: A review of the literature. J. Dent. 2000;28:163–177. doi: 10.1016/S0300-5712(99)00066-4. PubMed DOI

Barceleiro M.D.O., Miranda M., Dias K.R.H.C., Sekito T. Shear bond strength of porcelain laminate veneer bonded with flowable composite. Oper. Dent. 2003;28:423–428. PubMed

Munksgaard E.C., Hansen E.K., Kato H. Wall-to-wall polymerization contraction of composite resins versus filler content. Eur. J. Oral Sci. 1987;95:526–531. doi: 10.1111/j.1600-0722.1987.tb01970.x. PubMed DOI

Helvey G.A. Creating super dentin: Using flowable composites as luting agents to help prevent secondary caries. Compend. Contin. Educ. Dent. 2013;34:288–300. PubMed

Attar N., Tam L., McComb D. Flow, strength, stiffness and radiopacity of flowable resin composites. J. Can. Dent. Assoc. 2003;69:516–521. PubMed

Ayub K.V., Santos G., Rizkalla A.S., Bohay R., Pegoraro L.F., Rubo J.H., Santos M.J. Effect of preheating on microhardness and viscosity of 4 resin composites. J Can Dent. Assoc. 2014;80:12. PubMed

Mundim F.M., Garcia L.D.F.R., Cruvinel D.R., Lima F.A., Bachmann L., Pires-De-Souza F.C.P. Color stability, opacity and degree of conversion of pre-heated composites. J. Dent. 2011;39:e25–e29. doi: 10.1016/j.jdent.2010.12.001. PubMed DOI

Walter R., Swift E.J., Sheikh H., Ferracane J. Effects of temperature on composite resin shrinkage. Quintessence Int. 2009;40:843–847. PubMed

Blalock J.S., Holmes R.G., Rueggeberg F. Effect of temperature on unpolymerized composite resin film thickness. J. Prosthet. Dent. 2006;96:424–432. doi: 10.1016/j.prosdent.2006.09.022. PubMed DOI

Sampaio C.S., Barbosa J.M., Cáceres E., Rigo L.C., Coelho P.G., Bonfante E.A., Hirata R. Volumetric shrinkage and film thickness of cementation materials for veneers: An in vitro 3D microcomputed tomography analysis. J. Prosthet. Dent. 2017;117:784–791. doi: 10.1016/j.prosdent.2016.08.029. PubMed DOI

Özcan M., Meşe A. Adhesion of conventional and simplified resin-based luting cements to superficial and deep dentin. Clin. Oral Investig. 2011;16:1081–1088. doi: 10.1007/s00784-011-0594-z. PubMed DOI

Von Elm E., Altman D.G., Egger M., Pocock S.J., Gøtzsche P.C., Vandenbroucke J.P. Strengthening the reporting of observational studies in epidemiology (STROBE) statement: Guidelines for reporting observational studies. Int. J. Surg. 2014;12:1495–1499. doi: 10.1016/j.ijsu.2014.07.013. PubMed DOI

D’Arcangelo C., Vanini L. Effect of three surface treatments on the adhesive properties of indirect composite restorations. J. Adhes. Dent. 2007;9:319–326. PubMed

Hagino R., Mine A., Kawaguchi-Uemura A., Tajiri-Yamada Y., Yumitate M., Ban S., Miura J., Matsumoto M., Yatani H., Nakatani H. Adhesion procedures for CAD/CAM indirect resin composite block: A new resin primer versus a conventional silanizing agent. J. Prosthodont. Res. 2020;64:319–325. doi: 10.1016/j.jpor.2019.09.004. PubMed DOI

Epi InfoTM for Windows, Centers for Disease Control and Prevention. [(accessed on 25 December 2020)]; Available online: https://www.cdc.gov/epiinfo/pc.html.

Hikasa T., Matsuka Y., Mine A., Minakuchi H., Hara E.S., Van Meerbeek B., Yatani H., Kuboki T. A 15-year clinical comparative study of the cumulative survival rate of cast metal core and resin core restorations luted with adhesive resin cement. Int. J. Prosthodont. 2010;23:397–405. PubMed

Schmalz G., Ryge G. Reprint of Criteria for the clinical evaluation of dental restorative materials. Clin. Oral Investig. 2005;9:215–232. doi: 10.1007/s00784-005-0018-z. PubMed DOI

IBM SPSS Statistics 28, SPSS Inc. [(accessed on 14 March 2021)]. Available online: https://www.ibm.com/support/pages/ibm-spss-statistics-28-documentation.

Fan J., Xu Y., Si L., Li X., Fu B., Hannig M. Long-term Clinical Performance of Composite Resin or Ceramic Inlays, Onlays, and Overlays: A Systematic Review and Meta-analysis. Oper. Dent. 2021;46:25–44. doi: 10.2341/19-107-LIT. PubMed DOI

Bustamante-Hernández N., Montiel-Company J.M., Bellot-Arcís C., Mañes-Ferrer J.F., Solá-Ruíz M.F., Agustín-Panadero R., Fernández-Estevan L. Clinical Behavior of Ceramic, Hybrid and Composite Onlays. A Systematic Review and Meta-Analysis. Int. J. Environ. Res. Public Health. 2020;17:7582. doi: 10.3390/ijerph17207582. PubMed DOI PMC

Signore A., Benedicenti S., Covani U., Ravera G. A 4- to 6-year retrospective clinical study of cracked teeth restored with bonded indirect resin composite onlays. Int. J. Prosthodont. 2007;20:609–616. doi: 10.1308/135576108785891169. PubMed DOI

Chrepa V., Konstantinidis I., Kotsakis G.A., Mitsias M.E. The survival of indirect composite resin onlays for the restoration of root filled teeth: A retrospective medium-term study. Int. Endod. J. 2014;47:967–973. doi: 10.1111/iej.12242. PubMed DOI

Fennis W., Kuijs R., Roeters F., Creugers N., Kreulen C. Randomized Control Trial of Composite Cuspal Restorations. J. Dent. Res. 2014;93:36–41. doi: 10.1177/0022034513510946. PubMed DOI PMC

Dias M.C.R., Martins J.N., Chen A., Quaresma S.A., Luis H., Caramês J. Prognosis of Indirect Composite Resin Cuspal Coverage on Endodontically Treated Premolars and Molars: An In Vivo Prospective Study. J. Prosthodont. 2018;27:598–604. doi: 10.1111/jopr.12545. PubMed DOI

Kaytan B., Onal B., Pamir T., Tezel H. Clinical evaluation of indirect resin composite and ceramic onlays over a 24-month period. Gen. Dent. 2005;53:329–334. PubMed

D’Arcangelo C., Zarow M., DE Angelis F., Vadini M., Paolantonio M., Giannoni M., D’Amario M. Five-year retrospective clinical study of indirect composite restorations luted with a light-cured composite in posterior teeth. Clin. Oral Investig. 2013;18:615–624. doi: 10.1007/s00784-013-1001-8. PubMed DOI

Schulte A.G., Vöckler A., Reinhardt R. Longevity of ceramic inlays and onlays luted with a solely light-curing composite resin. J. Dent. 2005;33:433–442. doi: 10.1016/j.jdent.2004.10.026. PubMed DOI

Zimmer S., Göhlich O., Rüttermann S., Lang H., Raab W.H.-M., Barthel C.R. Long-term Survival of Cerec Restorations: A 10-year Study. Oper. Dent. 2008;33:484–487. doi: 10.2341/07-142. PubMed DOI

Malament K.A., Margvelashvili-Malament M., Natto Z.S., Thompson V., Rekow D., Att W. 10.9-year survival of pressed acid etched monolithic e.max lithium disilicate glass-ceramic partial coverage restorations: Performance and outcomes as a function of tooth position, age, sex, and the type of partial coverage restoration (inlay or onlay) J. Prosthet. Dent. 2021;126:523–532. doi: 10.1016/j.prosdent.2020.07.015. PubMed DOI

Hahn P., Attin T., Gröfke M., Hellwig E. Influence of resin cement viscosity on microleakage of ceramic inlays. Dent. Mater. 2001;17:191–196. doi: 10.1016/S0109-5641(00)00067-1. PubMed DOI

Bortolotto T., Guillarme D., Gutemberg D., Veuthey J.-L., Krejci I. Composite resin vs resin cement for luting of indirect restorations: Comparison of solubility and shrinkage behavior. Dent. Mater. J. 2013;32:834–838. doi: 10.4012/dmj.2013-153. PubMed DOI

Zeller D.K., Fischer J., Rohr N. Viscous behavior of resin composite cements. Dent. Mater. J. 2021;40:253–259. doi: 10.4012/dmj.2019-313. PubMed DOI

Di Francescantonio M., Aguiar T.R., Arrais C.A.G., Cavalcanti A.N., Davanzo C.U., Giannini M. Influence of viscosity and curing mode on degree of conversion of dual-cured resin cements. Eur. J. Dent. 2013;7:81–85. PubMed PMC

Marcondes R.L., Lima V.P., Barbon F.J., Isolan C.P., Carvalho M.A., Salvador M.V., Lima A.F., Moraes R.R. Viscosity and thermal kinetics of 10 preheated restorative resin composites and effect of ultrasound energy on film thickness. Dent. Mater. 2020;36:1356–1364. doi: 10.1016/j.dental.2020.08.004. PubMed DOI

Cantoro A., Goracci C., Coniglio I., Magni E., Polimeni A., Ferrari M. Influence of ultrasound application on inlays luting with self-adhesive resin cements. Clin. Oral Investig. 2010;15:617–623. doi: 10.1007/s00784-010-0451-5. PubMed DOI

Sato M., Fujishima A., Shibata Y., Miyazaki T., Inoue M. Nanoindentation tests to assess polymerization of resin-based luting cement. Dent. Mater. 2014;30:1021–1028. doi: 10.1016/j.dental.2014.05.034. PubMed DOI

Zhang X., Zhang Q., Meng X., Ye Y., Feng D., Xue J., Wang H., Huang H., Wang M., Wang J. Rheological and Mechanical Properties of Resin-Based Materials Applied in Dental Restorations. Polymer. 2021;13:2975. doi: 10.3390/polym13172975. PubMed DOI PMC

Yoshikawa T., Morigami M., Sadr A., Tagami J. Environmental SEM and dye penetration observation on resin-tooth interface using different light curing method. Dent. Mater. J. 2016;35:89–96. doi: 10.4012/dmj.2015-196. PubMed DOI

Bacchi A., Consani R.L., Martim G.C., Pfeifer C.S. Thio-urethane oligomers improve the properties of light-cured resin cements. Dent. Mater. 2015;31:565–574. doi: 10.1016/j.dental.2015.02.008. PubMed DOI PMC

Bacchi A., Dobson A., Ferracane J., Consani R., Pfeifer C. Thio-urethanes Improve Properties of Dual-cured Composite Cements. J. Dent. Res. 2014;93:1320–1325. doi: 10.1177/0022034514551768. PubMed DOI PMC

Faria E., Silva A.L., Pfeifer C.S. Development of dual-cured resin cements with long working time, high conversion in absence of light and reduced polymerization stress. Dent. Mater. 2020;36:e293–e301. doi: 10.1016/j.dental.2020.06.005. PubMed DOI PMC

Bacchi A., Caldas R.A., Cesar P.F., Pfeifer C.S. Optical properties and colorimetric evaluation of resin cements formulated with thio-urethane oligomers. J. Esthet. Restor. Dent. 2018;31:153–159. doi: 10.1111/jerd.12437. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...