The first structure-function study of GH151 α-l-fucosidase uncovers new oligomerization pattern, active site complementation, and selective substrate specificity

. 2022 Aug ; 289 (16) : 4998-5020. [epub] 20220220

Jazyk angličtina Země Anglie, Velká Británie Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid35113503

Fucosylated compounds are abundantly present in nature and are associated with many biological processes, therefore carrying great potential for use in medicine and biotechnology. Efficient ways to modify fucosylated compounds are still being developed. Promising results are provided by glycosyl hydrolases with transglycosylating activities, such as α-l-fucosidase isoenzyme 2 from Paenibacillus thiaminolyticus (family GH151 of Carbohydrate-Active enZYmes). Currently, there is no 3D structure representing this glycoside hydrolase family and only a few members have been investigated. Here, we present the first structure-function study of a GH151 member, providing the key insights into its specific oligomerization and active site properties. According to the crystal structure, small-angle X-ray scattering data and catalytic investigation, this enzyme functions as a tetramer of a new type and represents the second known case of active site complementation among all α-l-fucosidases. Mutation of the active site-complementing residue histidine 503 to alanine confirmed its influence on α-l-fucosidase activity and, specifically, on substrate binding. Several unique features of GH151 family α-l-fucosidases were revealed, including the oligomerization pattern, active site accessibility and complementation, and substrate selectivity. Some common properties of GH151 glycosyl hydrolases then would be the overall three-domain structure and conservation of the central domain loop 2 function, including its complementation role and the formation of the carbohydrate-binding platform in the active site vicinity.

Zobrazit více v PubMed

Li J, Hsu HC, Mountz JD, Allen JG. Unmasking fucosylation: from cell adhesion to immune system regulation and diseases. Cell Chem Biol. 2018;25:499-512.

Ma B, Simala-Gran JL, Taylor DE. Fucosylation in prokaryotes and eukaryotes. Glycobiology. 2006;16:158R-84R.

Becker DJ, Lowe JB. Fucose: biosynthesis and biological function in mammals. Glycobiology. 2003;13:41R-53R.

Michalski J, Klein A. Glycoprotein lysosomal storage disorders: α- and β-mannosidosis, fucosidosis and α-N-acetylgalactosaminidase deficiency. Biochem Biophys Acta. 1999;1455:69-84.

Zhang SY, Lin BD, Li BR. Evaluation of the diagnostic value of alpha-l-fucosidase, alpha-fetoprotein and thymidine kinase 1 with ROC and logistic regression for hepatocellular carcinoma. FEBS Open Bio. 2015;5:240-4.

Lombard V, Golaqconda Ramulu H, Drula E, Coutinho PM, Henrissat B. The carbohydrate-active enzymes database (CAZy) in 2013. Nucleic Acids Res. 2014;42:D490-5.

Henrissat B. A classification of glycosyl hydrolases based on amino acid sequence similarities. Biochem J. 1991;280:309-16.

McCarter JD, Withers SG. Mechanisms of enzymatic glycoside hydrolysis. Curr Opin Struct Biol. 1994;4:85-92.

Koshland DE. Stereochemistry and the mechanism of enzymatic reactions. Biol Rev. 1953;28:416-36.

Klontz EH, Li CH, Kihn K, Fields JK, Beckett D, Snyder GA, et al. Structure and dynamics of an α-fucosidase reveal a mechanism for highly efficient IgG transfucosylation. Nat Commun. 2020;11:6204.

Benešová E, Lipovová P, Krejzová J, Kovaľová T, Buchtová P, Spiwok V, et al. α-l-Fucosidase isoenzyme iso2 from Paenibacillus thiaminolyticus. BMC Biotechnol. 2015;15:36.

Sakurama H, Tsutsumi E, Ashida H, Katayama T, Yamamoto K, Kumagai H. Differences in the substrate specificities and active-site structures of two α-l-fucosidases (glycoside hydrolase family 29) from Bacteroides thetaiotaomicron. Biosci Biotechnol Biochem. 2012;76:1022-4.

Rodríguez-Díaz J, Monedero V, Yebra MJ. Utilization of natural fucosylated oligosaccharides by three novel α-l-fucosidases from a probiotic Lactobacillus casei strain. Appl Environ Microbiol. 2011;77:703-5.

Grootaert H, Van Landuyt L, Hulpiau P, Callewaert N. Functional exploration of the GH29 fucosidase family. Glycobiology. 2020;30:735-45.

Thompson A, Attwood D, Gullikson E, Howells M, Kim K-J, Kirz J, et al. Section 1.1 Electron binding energies. In: Thompson AC, Vaughan D, editors. X-Ray data booklet. Table1-1. Berkeley, CA: Lawrence Berkeley National Laboratory; 2001. p. 15.

Krissinel E, Henrick K. Inference of macromolecular assemblies from crystalline state. J Mol Biol. 2007;372:774-97.

Boraston AB, Bolam DN, Gilbert HJ, Davies GJ. Carbohydrate-binding modules: fine-tuning polysaccharide recognition. Biochem J. 2004;382:769-81.

Friesner RA, Murphy RB, Repasky MP, Frye LL, Greenwood JR, Halgren TA, et al. Extra precision glide: docking and scoring incorporating a model of hydrophobic enclosure for protein-ligand complexes. J Med Chem. 2006;49:6177-96.

Cao H, Walton JD, Brumm P, Philips GN Jr. Structure and substrate specificity of a Eukaryotic fucosidase from Fusarium graminearum. J Biol Chem. 2014;289:25624-38.

Summers EL, Moon CD, Atua R, Arcus VR. The structure of a glycoside hydrolase 29 family member from a rumen bacterium reveals unique, dual carbohydrate-binding domain. Acta Crystallogr F Struct Biol Commun. 2016;72:750-61.

Wright DW, Moreno-Vargas AJ, Carmona AT, Robina I, Davies GJ. Three-dimensional structure of a bacterial α-l-fucosidase with a 5-membered iminocyclitol inhibitor. Bioorg Med Chem. 2013;21:4751-4.

Nagae M, Tsuchiya A, Katayama T, Yamamoto K, Wakatsuki S, Kato R. Structural basis of the catalytic reaction mechanism of novel 1,2-alpha-L-fucosidase from Bifidobacterium bifidum. J Biol Chem. 2007;282:18497-509.

Sulzenbacher G, Bignon C, Nishimura T, Tarling CA, Withers SG, Henrissat B, et al. Crystal structure of Termotoga maritima α-l-fucosidases. J Biol Chem. 2004;279:13119-28.

Skálová T, Dohnálek J, Spiwok V, Lipovová P, Vondráčková E, Petroková H, et al. Cold-active β-galactosidase from Arthrobacter sp. C2-2 forms compact 660 kDa hexamers: crystal structure at 1.9 Å resolution. J Mol Biol. 2005;353:282-94.

Krissinel E, Henrick K. Secondary structure matching (SSM), a new tool for fast protein structure alignment in three dimensions. Acta Crystallogr D Biol Crystallogr. 2004;60:2256-68.

Maksimainen M, Paavilainen S, Hakulinen N, Rouvinen J. Structural analysis, enzymatic characterization, and catalytic mechanisms of β-galactosidase from Bacillus circulans sp. alkalophilus. FEBS J. 2012;279:1788-98.

Solomon HV, Tabachnikov O, Feinberg H, Govada L, Chayen NE, Shoham Y, et al. Crystallization and preliminary crystallographic analysis of GanB, a GH42 intracellular β-galactosidase from Geobacillus stearothermophilus. Acta Crystallogr Sect F Struct Biol Cryst Commun. 2013;69(Pt 10):1114-9.

Hidaka M, Fushinobu S, Ohtsu N, Motoshima H, Matsuzawa H, Shoun H, et al. Trimeric crystal structure of the glycoside hydrolase family 42 beta-galactosidase from Thermus thermophilus A4 and the structure of its complex with galactose. J Mol Biol. 2002;322:79-91.

Fan Y, Hua X, Zhang Y, Feng Y, Shen Q, Dong J, et al. Cloning, expression and structural stability of a cold-adapted β-galactosidase from Rahnella sp. R3. Protein Expr Purif. 2015;115:158-64.

Viborg AH, Fredslund F, Katayama T, Nielsen SK, Svensson B, Kitaoka M, et al. A beta 1-6/ beta 1-3 galactosidase from Bifidobacterium animalis subsp. lactis Bl-04 gives insight into sub-specificities of beta-galactoside catabolism within Bifidobacterium. Mol Microbiol. 2014;94:1024-40. https://doi.org/10.1111/mmi.12815

Teze D, Zhao J, Wiemann M, Kazi ZGA, Lupo R, Zeuner B, et al. Rational enzyme design without structural knowledge: a sequence-based approach for efficient generation of transglycosylases. Chemistry. 2021;27:10323-34. https://doi.org/10.1002/chem.202100110

Kovalová T, Kovaľ T, Benešová E, Vodičková P, Spiwok V, Lipovová P, et al. Active site complementation and hexameric arrangement in the GH family 29; a structure-function study of α-l-fucosidase isoenzyme 1 from Paenibacillus thiaminolyticus. Glycobiology. 2019;29:59-73.

Lezyk M, Jers C, Kjaerulff L, Gotfredsen CH, Mikkelsen MD, Mikkelsen JD. Novel α-l-fucosidases from a soil metagenome for production of fucosylated human milk oligosaccharides. PLoS One. 2016;11:e0147438.

Füzik T, Ulbrich P, Ruml T. Efficient mutagenesis independent of ligation. J Microbiol Methods. 2014;106:67-71.

Birnboim HC, Doly J. A rapid alkaline extraction procedure for screening recombinant plasmid DNA. Nucleic Acids Res. 1979;7:1513-23.

Mueller U, Förster R, Hellmig M, Huschmann FU, Kastner A, Malecki P, et al. The macromolecular crystallography beamlines at BESSY II of the Helmholtz-Zentrum Berlin: Current status and perspectives. Eur Phys J Plus. 2015;130:141-50.

Kabsch W. Integration, scaling, space-group assignment and post refinement. Acta Crystallogr D Biol Crystallogr. 2010;66:133-44.

Evans PR, Murshudov GN. How good are my data and what is the resolution? Acta Crystallogr D Biol Crystallogr. 2013;69:1204-14.

Winn MD, Ballard CC, Cowtan KD, Dodson EJ, Emsley P, Evans PR, et al. Overview of the CCP4 suite and current developments. Acta Crystallogr D Biol Crystallogr. 2011;67:235-42.

Adams PD, Afonine PV, Bunkoczi G, Chen VB, Davis IW, Echols N, et al. PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr D Biol Crystallogr. 2010;66:213-21.

Murshudov GN, Skubák P, Lebedev AA, Pannu NS, Steiner RA, Nicholls RA, et al. REFMAC5 for refinement of macromolecular crystal structure. Acta Crystallogr D Biol Crystallogr. 2011;67:355-67.

Emsley P, Lohkamp B, Scott W, Cowtan K. Features and development of Coot. Acta Crystallogr D Biol Crystallogr. 2010;66:486-501.

Cianci M, Bourenkov G, Pompidor G, Karpics I, Kallio J, Bento I, et al. P13, the EMBL macromolecular crystallography beamline at the low-emittance PETRA III ring for high- and low-energy phasing with variable beam focusing. J Synchrotron Rad. 2017;24:323-32.

Chen VB, Arendall WB, Headd JJ, Keedy DA, Immormino RM, Kapral GJ, et al. MolProbity: all-atom structure validation for macromolecular crystallography. Acta Crystallogr D Biol Crystallogr. 2010;66:12-21.

Konarev PV, Volkov VV, Sokolova AV, Koch MHJ, Svergun DI. PRIMUS - a Windows-PC based system for small-angle scattering data analysis. J Appl Crystallogr. 2003;36:1277-82.

Svergun DI. Determination of the regularization parameter in indirect-transform methods using perceptual criteria. J Appl Crystallogr. 1992;25:495-503.

Franke D, Svergun DI. DAMMIF, a program for rapid ab-initio shape determination in small-angle scattering. J Appl Crystallogr. 2009;42:342-6.

Volkov VV, Svergun DI. Uniqueness of ab initio shape determination in small-angle scattering. J Appl Crystallogr. 2003;36:860-4.

Franke D, Petoukhov M, Konarev P, Panjkovich A, Tuukkanen A, Mertens H, et al. ATSAS 2.8: a comprehensive data analysis suite for small-angle scattering from macromolecular solutions. J Appl Crystallogr. 2017;50:1212-25.

Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool. J Mol Biol. 1990;215:403-10.

Sievers F, Wilm A, Dineen D, Gibson TJ, Karplus K, Li W, et al. Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega. Mol Syst Biol. 2011;7:539.

Robert X, Gouet P. Deciphering key features in protein structures with the new ENDscript server. Nucl Acids Res. 2014;42(W1):W320-4.

Cheng K, Zhou Y, Neelamegham S. DrawGlycan-SNFG: a robust tool to render glycans and glycopeptides with fragmentation information. Glycobiology. 2017;27:200-5.

Woods Group GLYCAM Web. Athens, GA: Complex Carbohydrate Research Center, University of Georgia; (2005-2020) [cited 2019 Jul 15]. Available from: http://glycam.org

Schrödinger Release 2020-3: LigPrep. New York, NY: Schrödinger, LLC; 2020.

Greenwood JR, Calkins D, Sullivan AP, Shelley JC. Towards the comprehensive, rapid, and accurate prediction of the favorable tautomeric states of drug-like molecules in aqueous solution. J Comput Aided Mol Des. 2010;24:591-604.

Søndergaard CR, Olsson MH, Rostkowski M, Jensen JH. Improved treatment of ligands and coupling effects in empirical calculation and rationalization of pKa values. J Chem Theory Comput. 2011;7:2284-95.

Svergun DI. Restoring low resolution structure of biological macromolecules from solution scattering using simulated annealing. Biophys J. 1999;76:2879-86.

Hajizadeh NR, Franke D, Jeffries CM, Svergun DI. Consensus Bayesian assessment of protein molecular mass from solution X-ray scattering data. Sci Rep. 2018;8:7204.

Zobrazit více v PubMed

RefSeq
AIC77300.1

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...