Combination of Circulating Tumour DNA and 18F-FDG PET/CT for Precision Monitoring of Therapy Response in Patients With Advanced Non-small Cell Lung Cancer: A Prospective Study
Jazyk angličtina Země Řecko Médium print
Typ dokumentu časopisecké články
PubMed
35181593
PubMed Central
PMC8865037
DOI
10.21873/cgp.20319
PII: 19/2/270
Knihovny.cz E-zdroje
- Klíčová slova
- Circulating tumour DNA, PET/CT, liquid biopsy, non-small cell lung cancer, therapy response,
- MeSH
- cirkulující nádorová DNA * genetika MeSH
- fluorodeoxyglukosa F18 metabolismus terapeutické užití MeSH
- glykolýza MeSH
- lidé MeSH
- nádory plic * diagnostické zobrazování farmakoterapie genetika MeSH
- nemalobuněčný karcinom plic * diagnostické zobrazování farmakoterapie genetika MeSH
- PET/CT metody MeSH
- prognóza MeSH
- prospektivní studie MeSH
- radiofarmaka terapeutické užití MeSH
- retrospektivní studie MeSH
- tumor burden MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- cirkulující nádorová DNA * MeSH
- fluorodeoxyglukosa F18 MeSH
- radiofarmaka MeSH
BACKGROUND/AIM: Circulating tumour DNA (ctDNA) represents an emerging biomarker in non-small cell lung cancer (NSCLC). We focused on the combination of ctDNA and positron emission tomography/computed tomography (PET/CT) in the follow-up monitoring of advanced-stage NSCLC patients treated with chemotherapy. PATIENTS AND METHODS: Eighty-four patients were enrolled in this study. 18F-fluorodeoxyglucose PET/CT and ctDNA assessments were performed at baseline and after two cycles of chemotherapy (follow-up). RESULTS: There was a correlation of ctDNA with metabolic tumour volume (MTV), total lesion glycolysis (TLG), and iodine concentration (IC) at baseline (p=0.001, p=0.001, p=0.003) and at follow-up (p=0.006, p=0.002, p=0.001). The objective response was associated with follow-up ctDNA (p<0.001) and the change of all PET/CT parameters. ROC analyses showed that the combination of follow-up ctDNA with changes in SUVmax is very promising for the estimation of objective response and progression-free survival. CONCLUSION: The combination of ctDNA assessment with PET/CT is a promising approach for the follow-up monitoring of therapy response and prognosis estimation of advanced-stage NSCLC patients.
Center for Applied Genomics of Solid Tumors Genomac Research Institute Prague Czech Republic
Department of Analytical Chemistry Faculty of Science Charles University Prague Czech Republic
Zobrazit více v PubMed
Jemal A, Bray F, Center MM, Ferlay J, Ward E, Forman D. Global cancer statistics. CA Cancer J Clin. 2011;61(2):69–90. doi: 10.3322/caac.20107. PubMed DOI
Ferlay J, Parkin DM, Steliarova-Foucher E. Estimates of cancer incidence and mortality in Europe in 2008. Eur J Cancer. 2010;46(4):765–781. doi: 10.1016/j.ejca.2009.12.014. PubMed DOI
Brambilla E, Travis WD, Colby TV, Corrin B, Shimosato Y. The new World Health Organization classification of lung tumours. Eur Respir J. 2001;18(6):1059–1068. doi: 10.1183/09031936.01.00275301. PubMed DOI
Eisenhauer EA, Therasse P, Bogaerts J, Schwartz LH, Sargent D, Ford R, Dancey J, Arbuck S, Gwyther S, Mooney M, Rubinstein L, Shankar L, Dodd L, Kaplan R, Lacombe D, Verweij J. New response evaluation criteria in solid tumours: revised RECIST guideline (version 1.1) Eur J Cancer. 2009;45(2):228–247. doi: 10.1016/j.ejca.2008.10.026. PubMed DOI
van Elmpt W, Ollers M, Dingemans AM, Lambin P, De Ruysscher D. Response assessment using 18F-FDG PET early in the course of radiotherapy correlates with survival in advanced-stage non-small cell lung cancer. J Nucl Med. 2012;53(10):1514–1520. doi: 10.2967/jnumed.111.102566. PubMed DOI PMC
Coche E. Evaluation of lung tumor response to therapy: Current and emerging techniques. Diagn Interv Imaging. 2016;97(10):1053–1065. doi: 10.1016/j.diii.2016.09.001. PubMed DOI
Baxa J, Ludvik J, Sedlmair M, Flohr T, Schmidt B, Hošek P, Pesek M, Svatoň M, Ferda J. Correlation of iodine quantification and FDG uptake in early therapy response assessment of non-small cell lung cancer: Possible benefit of dual-energy CT scan as an integral part of PET/CT examination. Anticancer Res. 2020;40(6):3459–3468. doi: 10.21873/anticanres.14332. PubMed DOI
Wan JCM, Massie C, Garcia-Corbacho J, Mouliere F, Brenton JD, Caldas C, Pacey S, Baird R, Rosenfeld N. Liquid biopsies come of age: towards implementation of circulating tumour DNA. Nat Rev Cancer. 2017;17(4):223–238. doi: 10.1038/nrc.2017.7. PubMed DOI
Pécuchet N, Zonta E, Didelot A, Combe P, Thibault C, Gibault L, Lours C, Rozenholc Y, Taly V, Laurent-Puig P, Blons H, Fabre E. Base-position error rate analysis of next-generation sequencing applied to circulating tumor DNA in non-small cell lung cancer: a prospective study. PLoS Med. 2016;13(12):e1002199. doi: 10.1371/journal.pmed.1002199. PubMed DOI PMC
Song Y, Hu C, Xie Z, Wu L, Zhu Z, Rao C, Liu L, Chen Y, Liang N, Chen J, Hu C, Yang N, Hu J, Zhao W, Tong G, Dong X, Zheng D, Jin M, Chen J, Huang M, He Y, Rosell R, Lippi G, Mino-Kenudson M, Han-Zhang H, Mao X, Zhang L, Liu H, Field JK, Chuai S, Ye J, Han Y, Lu S, Written on behalf of AME Lung Cancer Collaborative Group Circulating tumor DNA clearance predicts prognosis across treatment regimen in a large real-world longitudinally monitored advanced non-small cell lung cancer cohort. Transl Lung Cancer Res. 2020;9(2):269–279. doi: 10.21037/tlcr.2020.03.17. PubMed DOI PMC
Ricciuti B, Jones G, Severgnini M, Alessi JV, Recondo G, Lawrence M, Forshew T, Lydon C, Nishino M, Cheng M, Awad M. Early plasma circulating tumor DNA (ctDNA) changes predict response to first-line pembrolizumab-based therapy in non-small cell lung cancer (NSCLC) J Immunother Cancer. 2021;9(3):e001504. doi: 10.1136/jitc-2020-001504. PubMed DOI PMC
Benesova L, Belsanova B, Kramar F, Halkova T, Benes V, Minarik M. Application of denaturing capillary electrophoresis for the detection of prognostic mutations in isocitrate dehydrogenase 1 and isocitrate dehydrogenase 2 genes in brain tumors. J Sep Sci. 2018;41(13):2819–2827. doi: 10.1002/jssc.201701473. PubMed DOI
Benesova L, Belsanova B, Suchanek S, Kopeckova M, Minarikova P, Lipska L, Levy M, Visokai V, Zavoral M, Minarik M. Mutation-based detection and monitoring of cell-free tumor DNA in peripheral blood of cancer patients. Anal Biochem. 2013;433(2):227–234. doi: 10.1016/j.ab.2012.06.018. PubMed DOI
Levy M, Benesova L, Lipska L, Belsanova B, Minarikova P, Veprekova G, Zavoral M, Minarik M. Utility of cell-free tumour DNA for post-surgical follow-up of colorectal cancer patients. Anticancer Res. 2012;32(5):1621–1626. PubMed
Nakas CT, Yiannoutsos CT. Ordered multiple-class ROC analysis with continuous measurements. Stat Med. 2004;23(22):3437–3449. doi: 10.1002/sim.1917. PubMed DOI
Diehl F, Li M, Dressman D, He Y, Shen D, Szabo S, Diaz LA Jr, Goodman SN, David KA, Juhl H, Kinzler KW, Vogelstein B. Detection and quantification of mutations in the plasma of patients with colorectal tumors. Proc Natl Acad Sci USA. 2005;102(45):16368–16373. doi: 10.1073/pnas.0507904102. PubMed DOI PMC
Fleischhacker M, Schmidt B. Circulating nucleic acids (CNAs) and cancer – a survey. Biochim Biophys Acta. 2007;1775(1):181–232. doi: 10.1016/j.bbcan.2006.10.001. PubMed DOI
Bettegowda C, Sausen M, Leary RJ, Kinde I, Wang Y, Agrawal N, Bartlett BR, Wang H, Luber B, Alani RM, Antonarakis ES, Azad NS, Bardelli A, Brem H, Cameron JL, Lee CC, Fecher LA, Gallia GL, Gibbs P, Le D, Giuntoli RL, Goggins M, Hogarty MD, Holdhoff M, Hong SM, Jiao Y, Juhl HH, Kim JJ, Siravegna G, Laheru DA, Lauricella C, Lim M, Lipson EJ, Marie SK, Netto GJ, Oliner KS, Olivi A, Olsson L, Riggins GJ, Sartore-Bianchi A, Schmidt K, Shih lM, Oba-Shinjo SM, Siena S, Theodorescu D, Tie J, Harkins TT, Veronese S, Wang TL, Weingart JD, Wolfgang CL, Wood LD, Xing D, Hruban RH, Wu J, Allen PJ, Schmidt CM, Choti MA, Velculescu VE, Kinzler KW, Vogelstein B, Papadopoulos N, Diaz LA Jr. Detection of circulating tumor DNA in early- and late-stage human malignancies. Sci Transl Med. 2014;6(224):224ra24. doi: 10.1126/scitranslmed.3007094. PubMed DOI PMC
Newman AM, Bratman SV, To J, Wynne JF, Eclov NC, Modlin LA, Liu CL, Neal JW, Wakelee HA, Merritt RE, Shrager JB, Loo BW Jr, Alizadeh AA, Diehn M. An ultrasensitive method for quantitating circulating tumor DNA with broad patient coverage. Nat Med. 2014;20(5):548–554. doi: 10.1038/nm.3519. PubMed DOI PMC
Dawson SJ, Tsui DW, Murtaza M, Biggs H, Rueda OM, Chin SF, Dunning MJ, Gale D, Forshew T, Mahler-Araujo B, Rajan S, Humphray S, Becq J, Halsall D, Wallis M, Bentley D, Caldas C, Rosenfeld N. Analysis of circulating tumor DNA to monitor metastatic breast cancer. N Engl J Med. 2013;368(13):1199–1209. doi: 10.1056/NEJMoa1213261. PubMed DOI
Sorensen BS, Wu L, Wei W, Tsai J, Weber B, Nexo E, Meldgaard P. Monitoring of epidermal growth factor receptor tyrosine kinase inhibitor-sensitizing and resistance mutations in the plasma DNA of patients with advanced non-small cell lung cancer during treatment with erlotinib. Cancer. 2014;120(24):3896–3901. doi: 10.1002/cncr.28964. PubMed DOI PMC
Tie J, Kinde I, Wang Y, Wong HL, Roebert J, Christie M, Tacey M, Wong R, Singh M, Karapetis CS, Desai J, Tran B, Strausberg RL, Diaz LA Jr, Papadopoulos N, Kinzler KW, Vogelstein B, Gibbs P. Circulating tumor DNA as an early marker of therapeutic response in patients with metastatic colorectal cancer. Ann Oncol. 2015;26(8):1715–1722. doi: 10.1093/annonc/mdv177. PubMed DOI PMC
Larson SM, Erdi Y, Akhurst T, Mazumdar M, Macapinlac HA, Finn RD, Casilla C, Fazzari M, Srivastava N, Yeung HW, Humm JL, Guillem J, Downey R, Karpeh M, Cohen AE, Ginsberg R. Tumor treatment response based on visual and quantitative changes in global tumor glycolysis using PET-FDG imaging. The visual response score and the change in total lesion glycolysis. Clin Positron Imaging. 1999;2(3):159–171. doi: 10.1016/s1095-0397(99)00016-3. PubMed DOI
Woff E, Kehagias P, Vandeputte C, Ameye L, Guiot T, Paesmans M, Hendlisz A, Flamen P. Combining 18F-FDG PET/CT-based metabolically active tumor volume and circulating cell-free DNA significantly improves outcome prediction in chemorefractory metastatic colorectal cancer. J Nucl Med. 2019;60(10):1366–1372. doi: 10.2967/jnumed.118.222919. PubMed DOI
Decazes P, Camus V, Bohers E, Viailly PJ, Tilly H, Ruminy P, Viennot M, Hapdey S, Gardin I, Becker S, Vera P, Jardin F. Correlations between baseline 18F-FDG PET tumour parameters and circulating DNA in diffuse large B cell lymphoma and Hodgkin lymphoma. EJNMMI Res. 2020;10(1):120. doi: 10.1186/s13550-020-00717-y. PubMed DOI PMC
Bohers E, Viailly PJ, Becker S, Marchand V, Ruminy P, Maingonnat C, Bertrand P, Etancelin P, Picquenot JM, Camus V, Menard AL, Lemasle E, Contentin N, Leprêtre S, Lenain P, Stamatoullas A, Lanic H, Libraire J, Vaudaux S, Pepin LF, Vera P, Tilly H, Jardin F. Non-invasive monitoring of diffuse large B-cell lymphoma by cell-free DNA high-throughput targeted sequencing: analysis of a prospective cohort. Blood Cancer J. 2018;8(8):74. doi: 10.1038/s41408-018-0111-6. PubMed DOI PMC
Camus V, Viennot M, Lequesne J, Viailly PJ, Bohers E, Bessi L, Marcq B, Etancelin P, Dubois S, Picquenot JM, Veresezan EL, Cornic M, Burel L, Loret J, Becker S, Decazes P, Lenain P, Lepretre S, Lemasle E, Lanic H, Ménard AL, Contentin N, Tilly H, Stamatoullas A, Jardin F. Targeted genotyping of circulating tumor DNA for classical Hodgkin lymphoma monitoring: a prospective study. Haematologica. 2021;106(1):154–162. doi: 10.3324/haematol.2019.237719. PubMed DOI PMC
McEvoy AC, Warburton L, Al-Ogaili Z, Celliers L, Calapre L, Pereira MR, Khattak MA, Meniawy TM, Millward M, Ziman M, Gray ES. Correlation between circulating tumour DNA and metabolic tumour burden in metastatic melanoma patients. BMC Cancer. 2018;18(1):726. doi: 10.1186/s12885-018-4637-6. PubMed DOI PMC
Winther-Larsen A, Demuth C, Fledelius J, Madsen AT, Hjorthaug K, Meldgaard P, Sorensen BS. Correlation between circulating mutant DNA and metabolic tumour burden in advanced non-small cell lung cancer patients. Br J Cancer. 2017;117(5):704–709. doi: 10.1038/bjc.2017.215. PubMed DOI PMC
Hyun MH, Lee ES, Eo JS, Kim S, Kang EJ, Sung JS, Choi YJ, Park KH, Shin SW, Lee SY, Kim YH. Clinical implications of circulating cell-free DNA quantification and metabolic tumor burden in advanced non-small cell lung cancer. Lung Cancer. 2019;134:158–166. doi: 10.1016/j.lungcan.2019.06.014. PubMed DOI
Nygaard AD, Holdgaard PC, Spindler KL, Pallisgaard N, Jakobsen A. The correlation between cell-free DNA and tumour burden was estimated by PET/CT in patients with advanced NSCLC. Br J Cancer. 2014;110(2):363–368. doi: 10.1038/bjc.2013.705. PubMed DOI PMC
Morbelli S, Alama A, Ferrarazzo G, Coco S, Genova C, Rijavec E, Bongioanni F, Biello F, Dal Bello MG, Barletta G, Massollo M, Vanni I, Piva R, Nieri A, Bauckneht M, Sambuceti G, Grossi F. Circulating tumor DNA reflects tumor metabolism rather than tumor burden in chemotherapy-naive patients with advanced non-small cell lung cancer: 18F-FDG PET/CT study. J Nucl Med. 2017;58(11):1764–1769. doi: 10.2967/jnumed.117.193201. PubMed DOI
Schmidkonz C, Krumbholz M, Atzinger A, Cordes M, Goetz TI, Prante O, Ritt P, Schaefer C, Agaimy A, Hartmann W, Rössig C, Fröhlich B, Bäuerle T, Dirksen U, Kuwert T, Metzler M. Assessment of treatment responses in children and adolescents with Ewing sarcoma with metabolic tumor parameters derived from 18F-FDG-PET/CT and circulating tumor DNA. Eur J Nucl Med Mol Imaging. 2020;47(6):1564–1575. doi: 10.1007/s00259-019-04649-1. PubMed DOI
Lee JY, Qing X, Xiumin W, Yali B, Chi S, Bak SH, Lee HY, Sun JM, Lee SH, Ahn JS, Cho EK, Kim DW, Kim HR, Min YJ, Jung SH, Park K, Mao M, Ahn MJ. Longitudinal monitoring of EGFR mutations in plasma predicts outcomes of NSCLC patients treated with EGFR TKIs: Korean Lung Cancer Consortium (KLCC-12-02) Oncotarget. 2016;7(6):6984–6993. doi: 10.18632/oncotarget.6874. PubMed DOI PMC
Mok T, Wu YL, Lee JS, Yu CJ, Sriuranpong V, Sandoval-Tan J, Ladrera G, Thongprasert S, Srimuninnimit V, Liao M, Zhu Y, Zhou C, Fuerte F, Margono B, Wen W, Tsai J, Truman M, Klughammer B, Shames DS, Wu L. Detection and dynamic changes of EGFR mutations from circulating tumor DNA as a predictor of survival outcomes in NSCLC patients treated with first-line intercalated erlotinib and chemotherapy. Clin Cancer Res. 2015;21(14):3196–3203. doi: 10.1158/1078-0432.CCR-14-2594. PubMed DOI
Paesmans M, Berghmans T, Dusart M, Garcia C, Hossein-Foucher C, Lafitte JJ, Mascaux C, Meert AP, Roelandts M, Scherpereel A, Terrones Munoz V, Sculier JP, European Lung Cancer Working Party, and on behalf of the IASLC Lung Cancer Staging Project Primary tumor standardized uptake value measured on fluorodeoxyglucose positron emission tomography is of prognostic value for survival in non-small cell lung cancer: update of a systematic review and meta-analysis by the European Lung Cancer Working Party for the International Association for the Study of Lung Cancer Staging Project. J Thorac Oncol. 2010;5(5):612–619. doi: 10.1097/JTO.0b013e3181d0a4f5. PubMed DOI
Liu J, Dong M, Sun X, Li W, Xing L, Yu J. Prognostic value of 18F-FDG PET/CT in surgical non-small cell lung cancer: a meta-analysis. PLoS One. 2016;11(1):e0146195. doi: 10.1371/journal.pone.0146195. PubMed DOI PMC