Effects of Exergaming in Patients with Cardiovascular Disease Compared to Conventional Cardiac Rehabilitation: A Systematic Review and Meta-Analysis
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, metaanalýza, práce podpořená grantem, přehledy, systematický přehled
PubMed
35329177
PubMed Central
PMC8950475
DOI
10.3390/ijerph19063492
PII: ijerph19063492
Knihovny.cz E-zdroje
- Klíčová slova
- coronary artery disease, exercise capacity, exercise-based cardiac rehabilitation, videogames, virtual reality,
- MeSH
- exergaming MeSH
- kardiovaskulární nemoci * etiologie MeSH
- kardiovaskulární rehabilitace * metody MeSH
- kvalita života MeSH
- lidé MeSH
- terapie cvičením MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- metaanalýza MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
- systematický přehled MeSH
Background: Exercise-based cardiac rehabilitation (CR) programs are used for improving prognosis and quality of life in patients with cardiovascular disease (CVD). Nonetheless, adherence to these programs is low, and exercise-based CR programs based on virtual reality (i.e., exergaming) have been proposed as an alternative to conventional CR programs. However, whether exergaming programs are superior to conventional CR programs in patients with CVD is not known. Objective: This systematic review with meta-analysis was conducted to explore whether exergaming enhances exercise capacity, quality of life, mental health, motivation, and exercise adherence to a greater extent than conventional CR programs in patients with CVD. Method: Electronic searches were carried out in PubMed, Embase, Web of Science, and Cumulative Index to Nursing and Allied Health Literature databases up to June 2021. Meta-analyses were performed using robust variance estimation with small-sample corrections. The effect sizes were calculated as the mean differences (MD) or standardized mean differences (SMD) as appropriate. The SMD magnitude was classified as trivial (<0.20), small (0.20−0.49), medium (0.50−0.79), or large (≥0.80). Heterogeneity was interpreted based on the I2 statistics as low (25%), moderate (50%), or high (75%). Results: Pooled analyses showed no differences between exergaming and conventional CR programs for enhancing exercise capacity (i.e., distance covered in the six-minute walk test) (MD+ = 14.07 m (95% confidence interval (CI) −38.18 to 66.32 m); p = 0.426) and mental health (SMD+ = 0.17 (95% CI −0.36 to 0.70); p = 0.358). The results showed a small, statistically nonsignificant improvement in quality of life in favor of exergaming (SMD+ = 0.22 (95% CI = −0.37 to 0.81); p = 0.294). Moderate heterogeneity was found for exercise capacity (I2 = 53.7%), while no heterogeneity was found for quality of life (I2 = 3.3%) and mental health (I2 = 0.0%). Conclusions: Exergaming seems not to be superior to conventional CR programs for improving exercise capacity, quality of life, or mental health in patients with CVD.
Cardiology Department Alicante General University Hospital 03010 Alicante Spain
Department of Physical Education and Sport University of Valencia 46010 Valencia Spain
Faculty of Physical Education and Sport Charles University 16252 Prague Czech Republic
Institute for Health and Biomedical Research of Alicante 03010 Alicante Spain
Zobrazit více v PubMed
Virani S.S., Alonso A., Aparicio H.J., Benjamin E.J., Bittencourt M.S., Callaway C.W., Carson A.P., Chamberlain A.M., Cheng S., Delling F.N., et al. Heart Disease and Stroke Statistics-2021 Update: A Report from the American Heart Association. Circulation. 2021;143:e254–e743. doi: 10.1161/CIR.0000000000000950. PubMed DOI
Nelson S., Whitsel L., Khavjou O., Phelps D., Leib A. Projections of Cardiovascular Disease Prevalence and Costs. RTI International Research; Triangle Park, NC, USA: 2016. p. 214680. Technical Report.
Rauch B., Salzwedel A., Bjarnason-Wehrens B., Albus C., Meng K., Schmid J.P., Benzer W., Hackbusch M., Jensen K., Schwaab B., et al. Cardiac Rehabilitation in German Speaking Countries of Europe-Evidence-Based Guidelines from Germany, Austria and Switzerland LLKardReha-DACH-Part 1. J. Clin. Med. 2021;10:2192. doi: 10.3390/jcm10102192. PubMed DOI PMC
Papathanasiou J., Troev T., Ferreira A.S., Tsekoura D., Elkova H., Kyriopoulos E., Ilieva E. Advanced Role and Field of Competence of the Physical and Rehabilitation Medicine Specialist in Contemporary Cardiac Rehabilitation. Hell. J. Cardiol. 2016;57:16–22. doi: 10.1016/S1109-9666(16)30013-6. PubMed DOI
Shields G.E., Wells A., Doherty P., Heagerty A., Buck D., Davies L.M. Cost-effectiveness of cardiac rehabilitation: A systematic review. Heart. 2018;104:1403–1410. doi: 10.1136/heartjnl-2017-312809. PubMed DOI PMC
Pelliccia A., Sharma S., Gati S., Bäck M., Börjesson M., Caselli S., Collet J.P., Corrado D., Drezner J.A., Halle M., et al. ESC Guidelines on sports cardiology and exercise in patients with cardiovascular disease. Eur. Heart J. 2021;42:17–96. doi: 10.1093/eurheartj/ehaa605. PubMed DOI
Piepoli M.F., Hoes A.W., Agewall S., Albus C., Brotons C., Catapano A.L., Cooney M.T., Corrà U., Cosyns B., Deaton C., et al. European Guidelines on cardiovascular disease prevention in clinical practice: The Sixth Joint Task Force of the European Society of Cardiology and Other Societies on Cardiovascular Disease Prevention in Clinical Practice (constituted by representatives of 10 societies and by invited experts) Developed with the special contribution of the European Association for Cardiovascular Prevention & Rehabilitation (EACPR) Eur. Heart J. 2016;37:2315–2381. PubMed PMC
Candelaria D., Randall S., Ladak L., Gallagher R. Health-related quality of life and exercise-based cardiac rehabilitation in contemporary acute coronary syndrome patients: A systematic review and meta-analysis. Qual. Life Res. 2020;29:579–592. doi: 10.1007/s11136-019-02338-y. PubMed DOI
Long L., Mordi I.R., Bridges C., Sagar V.A., Davies E.J., Coats A.J., Dalal H., Rees K., Singh S.J., Taylor R.S. Exercise-based cardiac rehabilitation for adults with heart failure. Cochrane Database Syst. Rev. 2019;1:Cd003331. doi: 10.1002/14651858.CD003331.pub5. PubMed DOI PMC
Rauch B., Davos C.H., Doherty P., Saure D., Metzendorf M.I., Salzwedel A., Völler H., Jensen K., Schmid J.P. The prognostic effect of cardiac rehabilitation in the era of acute revascularisation and statin therapy: A systematic review and meta-analysis of randomized and non-randomized studies—The Cardiac Rehabilitation Outcome Study (CROS) Eur. J. Prev. Cardiol. 2016;23:1914–1939. doi: 10.1177/2047487316671181. PubMed DOI PMC
Beatty A.L., Schiller N.B., Whooley M.A. Six-Minute Walk Test as a Prognostic Tool in Stable Coronary Heart Disease: Data from the Heart and Soul Study. Arch. Int. Med. 2012;172:1096–1102. doi: 10.1001/archinternmed.2012.2198. PubMed DOI PMC
Omar H.R., Guglin M. Prognostic value of 6-min walk test and cardiopulmonary exercise test in acute heart failure (from the ESCAPE trial) Am. Heart J. Plus Cardiol. Res. Pract. 2021;1:100005. doi: 10.1016/j.ahjo.2021.100005. PubMed DOI PMC
Ciani O., Piepoli M., Smart N., Uddin J., Walker S., Warren F.C., Zwisler A.D., Davos C.H., Taylor R.S. Validation of Exercise Capacity as a Surrogate Endpoint in Exercise-Based Rehabilitation for Heart Failure: A Meta-Analysis of Randomized Controlled Trials. JACC Heart Fail. 2018;6:596–604. doi: 10.1016/j.jchf.2018.03.017. PubMed DOI
Giannitsi S., Bougiakli M., Bechlioulis A., Kotsia A., Michalis L.K., Naka K.K. 6-min walking test: A useful tool in the management of heart failure patients. Ther. Adv. Cardiovasc. Dis. 2019;13:1753944719870084. doi: 10.1177/1753944719870084. PubMed DOI PMC
Ambrosetti M., Abreu A., Corrà U., Davos C.H., Hansen D., Frederix I., Iliou M.C., Pedretti R.F., Schmid J.P., Vigorito C., et al. Secondary prevention through comprehensive cardiovascular rehabilitation: From knowledge to implementation. 2020 update. A position paper from the Secondary Prevention and Rehabilitation Section of the European Association of Preventive Cardiology. Eur. J. Prev. Cardiol. 2020;28:460–495. doi: 10.1177/2047487320913379. PubMed DOI
Resurrección D.M., Moreno-Peral P., Gómez-Herranz M., Rubio-Valera M., Pastor L., Caldas de Almeida J.M., Motrico E. Factors associated with non-participation in and dropout from cardiac rehabilitation programmes: A systematic review of prospective cohort studies. Eur. J. Cardiovasc. Nurs. 2019;18:38–47. doi: 10.1177/1474515118783157. PubMed DOI
Oosenbrug E., Marinho R.P., Zhang J., Marzolini S., Colella T.J., Pakosh M., Grace S.L. Sex Differences in Cardiac Rehabilitation Adherence: A Meta-analysis. Can. J. Cardiol. 2016;32:1316–1324. doi: 10.1016/j.cjca.2016.01.036. PubMed DOI
Nguyen A.V., Ong Y.A., Luo C.X., Thuraisingam T., Rubino M., Levin M.F., Kaizer F., Archambault P.S. Virtual reality exergaming as adjunctive therapy in a sub-acute stroke rehabilitation setting: Facilitators and barriers. Disabil. Rehabil. Assist. Technol. 2018;14:317–324. doi: 10.1080/17483107.2018.1447608. PubMed DOI
Fang Z., Wu T., Lv M., Chen M., Zeng Z., Qian J., Chen W., Jiang S., Zhang J. Effect of Traditional plus Virtual Reality Rehabilitation on Prognosis of Stroke Survivors: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Am. J. Phys. Med. Rehabil. 2022;101:217–228. doi: 10.1097/PHM.0000000000001775. PubMed DOI
Laver K.E., Lange B., George S., Deutsch J.E., Saposnik G., Crotty M. Virtual reality for stroke rehabilitation. Cochrane Database Syst. Rev. 2017;11:Cd008349. doi: 10.1002/14651858.CD008349.pub4. PubMed DOI PMC
Zeng N., Pope Z., Lee J.E., Gao Z. A systematic review of active video games on rehabilitative outcomes among older patients. J. Sport Health Sci. 2017;6:33–43. doi: 10.1016/j.jshs.2016.12.002. PubMed DOI PMC
Zhang B., Li D., Liu Y., Wang J., Xiao Q. Virtual reality for limb motor function, balance, gait, cognition and daily function of stroke patients: A systematic review and meta-analysis. J. Adv. Nurs. 2021;77:3255–3273. doi: 10.1111/jan.14800. PubMed DOI
Verheijden Klompstra L., Jaarsma T., Strömberg A. Exergaming in older adults: A scoping review and implementation potential for patients with heart failure. Eur. J. Cardiovasc. Nurs. 2014;13:388–398. doi: 10.1177/1474515113512203. PubMed DOI PMC
Ruivo J., Karim K., O’Shea R., Oliveira R.C.S., Keary L., O’Brien C., Gormley J.P. In-class Active Video Game Supplementation and Adherence to Cardiac Rehabilitation. J. Cardiopulm. Rehabil. Prev. 2017;37:274–278. doi: 10.1097/HCR.0000000000000224. PubMed DOI
Radhakrishnan K., Baranowski T., Julien C., Thomaz E., Kim M. Role of Digital Games in Self-Management of Cardiovascular Diseases: A Scoping Review. Games Health J. 2019;8:65–73. doi: 10.1089/g4h.2018.0011. PubMed DOI PMC
Davis A.J., Parker H.M., Gallagher R. Gamified applications for secondary prevention in patients with high cardiovascular disease risk: A systematic review of effectiveness and acceptability. J. Clin. Nurs. 2021;30:3001–3010. doi: 10.1111/jocn.15808. PubMed DOI
García-Bravo S., Cuesta-Gómez A., Campuzano-Ruiz R., López-Navas M.J., Domínguez-Paniagua J., Araújo-Narváez A., Barreñada-Copete E., García-Bravo C., Flórez-García M.T., Botas-Rodríguez J., et al. Virtual reality and video games in cardiac rehabilitation programs. A systematic review. Disabil. Rehabil. 2021;43:448–457. doi: 10.1080/09638288.2019.1631892. PubMed DOI
Gulick V., Graves D., Ames S., Krishnamani P.P. Effect of a Virtual Reality-Enhanced Exercise and Education Intervention on Patient Engagement and Learning in Cardiac Rehabilitation: Randomized Controlled Trial. J. Med. Int. Res. 2021;23:e23882. doi: 10.2196/23882. PubMed DOI PMC
Jaarsma T., Klompstra L., Ben Gal T., Ben Avraham B., Boyne J., Back M., Chiala O., Dickstein K., Evangelista L., Hagenow A., et al. Effects of exergaming on exercise capacity in patients with heart failure: Results of an international multicentre randomized controlled trial. Eur. J. Heart Fail. 2021;23:114–124. doi: 10.1002/ejhf.1754. PubMed DOI
Page M.J., McKenzie J.E., Bossuyt P.M., Boutron I., Hoffmann T.C., Mulrow C.D., Shamseer L., Tetzlaff J.M., Akl E.A., Brennan S.E., et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. Int. J. Surg. 2021;88:105906. doi: 10.1016/j.ijsu.2021.105906. PubMed DOI
Cumpston M., Li T., Page M.J., Chandler J., Welch V.A., Higgins J.P., Thomas J. Updated guidance for trusted systematic reviews: A new edition of the Cochrane Handbook for Systematic Reviews of Interventions. Cochrane Database Syst. Rev. 2019;10:Ed000142. doi: 10.1002/14651858.ED000142. PubMed DOI PMC
Cohen J. Statistical Power Analysis for the Behavioral Sciences. Academic Press; Cambridge, MA, USA: 2013.
Higgins J.P., Thomas J., Chandler J., Cumpston M., Li T., Page M.J., Welch V.A. Cochrane Handbook for Systematic Reviews of Interventions. John Wiley & Sons; Hoboken, NJ, USA: 2019. PubMed
Hedges L.V., Tipton E., Johnson M.C. Robust variance estimation in meta-regression with dependent effect size estimates. Res. Synth. Methods. 2010;1:39–65. doi: 10.1002/jrsm.5. PubMed DOI
Tipton E. Small sample adjustments for robust variance estimation with meta-regression. Psychol. Methods. 2015;20:375–393. doi: 10.1037/met0000011. PubMed DOI
Higgins J.P., Thompson S.G. Quantifying heterogeneity in a meta-analysis. Stat. Med. 2002;21:1539–1558. doi: 10.1002/sim.1186. PubMed DOI
Melsen W.G., Bootsma M.C., Rovers M.M., Bonten M.J. The effects of clinical and statistical heterogeneity on the predictive values of results from meta-analyses. Clin. Microbiol. Infect. 2014;20:123–129. doi: 10.1111/1469-0691.12494. PubMed DOI
Cacau L.A., Oliveira G.U., Maynard L.G., Araújo Filho A.A., Silva W.M., Cerqueria Neto M.L., Antoniolli A.R., Santana-Filho V.J. The use of the virtual reality as intervention tool in the postoperative of cardiac surgery. Braz. J. Cardiovasc. Surg. 2013;28:281–289. doi: 10.5935/1678-9741.20130039. PubMed DOI
Chuang T.Y., Sung W.H., Chang H.A., Wang R.Y. Effect of a virtual reality-enhanced exercise protocol after coronary artery bypass grafting. Phys. Ther. 2006;86:1369–1377. doi: 10.2522/ptj.20050335. PubMed DOI
Klompstra L., Jaarsma T., Strömberg A. Exergaming to increase the exercise capacity and daily physical activity in heart failure patients: A pilot study. BMC Geriatr. 2014;14:119. doi: 10.1186/1471-2318-14-119. PubMed DOI PMC
Vieira A., Melo C., Machado J., Gabriel J. Virtual reality exercise on a home-based phase III cardiac rehabilitation program, effect on executive function, quality of life and depression, anxiety and stress: A randomized controlled trial. Disabil. Rehabil. Assist. Technol. 2018;13:112–123. doi: 10.1080/17483107.2017.1297858. PubMed DOI
Garcia-Bravo S., Cano-de-la-Cuerda R., Dominguez-Paniagua J., Campuzano-Ruiz R., Barrenada-Copete E., Lopez-Navas M.J., Araujo-Narvaez A., Garcia-Bravo C., Florez-Garcia M., Botas-Rodriguez J., et al. Effects of Virtual Reality on Cardiac Rehabilitation Programs for Ischemic Heart Disease: A Randomized Pilot Clinical Trial. Int. J. Environ. Res. Public Health. 2020;17:8472. doi: 10.3390/ijerph17228472. PubMed DOI PMC
Brewer L.C., Kaihoi B., Schaepe K., Zarling K., Squires R.W., Thomas R.J., Kopecky S. Patient-perceived acceptability of a virtual world-based cardiac rehabilitation program. Digit. Health. 2017;3:2055207617705548. doi: 10.1177/2055207617705548. PubMed DOI PMC
Chatzitofis A., Monaghan D., Mitchell E., Honohan F., Zarpalas D., O’Connor N.E., Daras P. HeartHealth: A cardiovascular disease home-based rehabilitation system. Procedia Comput. Sci. 2015;63:340–347. doi: 10.1016/j.procs.2015.08.352. DOI
Hickman R.L., Clochesy J.M., Pinto M.D., Burant C., Pignatiello G. Impact of serious game for health on chronic disease self-management: Preliminary efficacy among community dwelling adults with hypertension. J. Health Hum. Serv. Adm. 2015;38:253–275. PubMed
Jóźwik S., Cieślik B., Gajda R., Szczepańska-Gieracha J. Evaluation of the Impact of Virtual Reality-Enhanced Cardiac Rehabilitation on Depressive and Anxiety Symptoms in Patients with Coronary Artery Disease: A Randomised Controlled Trial. J. Clin. Med. 2021;10:2148. doi: 10.3390/jcm10102148. PubMed DOI PMC
Maciołek J., Wąsek W., Kamiński B., Piotrowicz K., Krzesiński P. The impact of mobile virtual reality-enhanced relaxation training on anxiety levels in patients undergoing cardiac rehabilitation. Kardiol. Pol. (Pol. Heart J.) 2020;78:1032–1034. doi: 10.33963/KP.15528. PubMed DOI
Radhakrishnan K., Julien C., O’Hair M., Baranowski T., Lee G., Allen C., Sagna A., Thomaz E., Kim M. Usability Testing of a Sensor-Controlled Digital Game to Engage Older Adults with Heart Failure in Physical Activity and Weight Monitoring. Appl. Clin. Inform. 2020;11:873–881. doi: 10.1055/s-0040-1721399. PubMed DOI PMC
Radhakrishnan K., Toprac P., O’Hair M., Bias R., Kim M.T., Bradley P., Mackert M. Interactive Digital e-Health Game for Heart Failure Self-Management: A Feasibility Study. Games Health J. 2016;5:366–374. doi: 10.1089/g4h.2016.0038. PubMed DOI PMC
Szczepańska-Gieracha J., Jóźwik S., Cieślik B., Mazurek J., Gajda R. Immersive Virtual Reality Therapy as a Support for Cardiac Rehabilitation: A Pilot Randomized-Controlled Trial. Cyberpsychol. Behav. Soc. Netw. 2021;24:543–549. doi: 10.1089/cyber.2020.0297. PubMed DOI PMC
da Cruz M.M.A., Ricci-Vitor A.L., Borges G.L.B., da Silva P.F., Turri-Silva N., Takahashi C., Grace S.L., Vanderlei L.C.M. A Randomized, Controlled, Crossover Trial of Virtual Reality in Maintenance Cardiovascular Rehabilitation in a Low-Resource Setting: Impact on Adherence, Motivation, and Engagement. Phys. Ther. 2021;101:pzab071. doi: 10.1093/ptj/pzab071. PubMed DOI
Vieira A., Gabriel J., Melo C., Machado J. Kinect system in home-based cardiovascular rehabilitation. Proc. Inst. Mech. Eng. Part H J. Eng. Med. 2017;231:40–47. doi: 10.1177/0954411916679201. PubMed DOI
Klochkov A., Khizhnikova A.E., Kotov-Smolenskiy A.M., Suponeva N.A., Chernikova L. In Efficacy of training in virtual environment in patients with balance disturbances. Eur. J. Neurol. 2018;25:207. PubMed
Gremeaux V., Troisgros O., Benaïm S., Hannequin A., Laurent Y., Casillas J.M., Benaïm C. Determining the minimal clinically important difference for the six-minute walk test and the 200-m fast-walk test during cardiac rehabilitation program in coronary artery disease patients after acute coronary syndrome. Arch. Phys. Med. Rehabil. 2011;92:611–619. doi: 10.1016/j.apmr.2010.11.023. PubMed DOI
Täger T., Hanholz W., Cebola R., Fröhlich H., Franke J., Doesch A., Katus H.A., Wians F.H., Jr., Frankenstein L. Minimal important difference for 6-min walk test distances among patients with chronic heart failure. Int. J. Cardiol. 2014;176:94–98. doi: 10.1016/j.ijcard.2014.06.035. PubMed DOI
Candelaria D., Zecchin R., Ferry C., Ladak L., Randall S., Gallagher R. Shorter Wait Times to Cardiac Rehabilitation Associated with Greater Exercise Capacity Improvements: A Multisite study. J. Cardiopulm. Rehabil. Prev. 2021;41:243–248. doi: 10.1097/HCR.0000000000000548. PubMed DOI
Collins Z.C., Suskin N., Aggarwal S., Grace S.L. Cardiac rehabilitation wait times and relation to patient outcomes. Eur. J. Phys. Rehabil. Med. 2015;51:301–309. PubMed
Haykowsky M., Scott J., Esch B., Schopflocher D., Myers J., Paterson I., Warburton D., Jones L., Clark A.M. A meta-analysis of the effects of exercise training on left ventricular remodeling following myocardial infarction: Start early and go longer for greatest exercise benefits on remodeling. Trials. 2011;12:92. doi: 10.1186/1745-6215-12-92. PubMed DOI PMC
Manresa-Rocamora A., Ribeiro F., Sarabia J.M., Íbias J., Oliveira N.L., Vera-García F.J., Moya-Ramón M. Exercise-based cardiac rehabilitation and parasympathetic function in patients with coronary artery disease: A systematic review and meta-analysis. Clin. Auton. Res. 2021;31:187–203. doi: 10.1007/s10286-020-00687-0. PubMed DOI
Manresa-Rocamora A., Sarabia J.M., Sánchez-Meca J., Oliveira J., Vera-Garcia F.J., Moya-Ramón M. Are the Current Cardiac Rehabilitation Programs Optimized to Improve Cardiorespiratory Fitness in Patients? A Meta-Analysis. J. Aging Phys. Act. 2020;29:327–342. doi: 10.1123/japa.2019-0363. PubMed DOI
Johnson D.A., Sacrinty M.T., Gomadam P.S., Mehta H.J., Brady M.M., Douglas C.J., Paladenech C.C., Robinson K.C. Effect of early enrollment on outcomes in cardiac rehabilitation. Am. J. Cardiol. 2014;114:1908–1911. doi: 10.1016/j.amjcard.2014.09.036. PubMed DOI
McPhee P.G., Winegard K.J., MacDonald M.J., McKelvie R.S., Millar P.J. Importance of early cardiac rehabilitation on changes in exercise capacity: A retrospective pilot study. Appl. Physiol. Nutr. Metab. 2015;40:1314–1317. doi: 10.1139/apnm-2015-0271. PubMed DOI
MacInnis M.J., Gibala M.J. Physiological adaptations to interval training and the role of exercise intensity. J. Physiol. 2017;595:2915–2930. doi: 10.1113/JP273196. PubMed DOI PMC
Peng W., Lin J.H., Crouse J. Is playing exergames really exercising? A meta-analysis of energy expenditure in active video games. Cyberpsychol. Behav. Soc. Netw. 2011;14:681–688. doi: 10.1089/cyber.2010.0578. PubMed DOI
Balady G.J., Williams M.A., Ades P.A., Bittner V., Comoss P., Foody J.M., Franklin B., Sanderson B., Southard D. Core components of cardiac rehabilitation/secondary prevention programs: 2007 update: A scientific statement from the American Heart Association Exercise, Cardiac Rehabilitation, and Prevention Committee, the Council on Clinical Cardiology; the Councils on Cardiovascular Nursing, Epidemiology and Prevention, and Nutrition, Physical Activity, and Metabolism; and the American Association of Cardiovascular and Pulmonary Rehabilitation. Circulation. 2007;115:2675–2682. PubMed
Domínguez-Téllez P., Moral-Muñoz J.A., Salazar A., Casado-Fernández E., Lucena-Antón D. Game-Based Virtual Reality Interventions to Improve Upper Limb Motor Function and Quality of Life After Stroke: Systematic Review and Meta-analysis. Games Health J. 2020;9:1–10. doi: 10.1089/g4h.2019.0043. PubMed DOI
Sever S., Doherty P., Golder S., Harrison A.S. Is improvement in depression in patients attending cardiac rehabilitation with new-onset depressive symptoms determined by patient characteristics? Open Heart. 2020;7:e001264. doi: 10.1136/openhrt-2020-001264. PubMed DOI PMC
Jolliffe J.A., Rees K., Taylor R.S., Thompson D., Oldridge N., Ebrahim S. Exercise-based rehabilitation for coronary heart disease. Cochrane Database Syst. Rev. 2001;6:Cd001800. PubMed
Martin B.J., Hauer T., Arena R., Austford L.D., Galbraith P.D., Lewin A.M., Knudtson M.L., Ghali W.A., Stone J.A., Aggarwal S.G. Cardiac rehabilitation attendance and outcomes in coronary artery disease patients. Circulation. 2012;126:677–687. doi: 10.1161/CIRCULATIONAHA.111.066738. PubMed DOI
Benjamin E.J., Virani S.S., Callaway C.W., Chamberlain A.M., Chang A.R., Cheng S., Chiuve S.E., Cushman M., Delling F.N., Deo R., et al. Heart Disease and Stroke Statistics-2018 Update: A Report From the American Heart Association. Circulation. 2018;137:e67–e492. doi: 10.1161/CIR.0000000000000558. PubMed DOI
van Riet E.E., Hoes A.W., Wagenaar K.P., Limburg A., Landman M.A., Rutten F.H. Epidemiology of heart failure: The prevalence of heart failure and ventricular dysfunction in older adults over time. A systematic review. Eur. J. Heart Fail. 2016;18:242–252. doi: 10.1002/ejhf.483. PubMed DOI
Puymirat E., Simon T., Cayla G., Cottin Y., Elbaz M., Coste P., Lemesle G., Motreff P., Popovic B., Khalife K., et al. Acute Myocardial Infarction: Changes in Patient Characteristics, Management, and 6-Month Outcomes Over a Period of 20 Years in the FAST-MI Program (French Registry of Acute ST-Elevation or Non-ST-Elevation Myocardial Infarction) 1995 to 2015. Circulation. 2017;136:1908–1919. doi: 10.1161/CIRCULATIONAHA.117.030798. PubMed DOI
Agmon M., Perry C.K., Phelan E., Demiris G., Nguyen H.Q. A pilot study of Wii Fit exergames to improve balance in older adults. J. Geriatr. Phys. 2011;34:161–167. doi: 10.1519/JPT.0b013e3182191d98. PubMed DOI
Bhakta M.D., Mookadam F., Wilansky S. Cardiovascular disease in women. Future Cardiol. 2011;7:613–627. doi: 10.2217/fca.11.30. PubMed DOI
Samayoa L., Grace S.L., Gravely S., Scott L.B., Marzolini S., Colella T.J. Sex differences in cardiac rehabilitation enrollment: A meta-analysis. Can. J. Cardiol. 2014;30:793–800. doi: 10.1016/j.cjca.2013.11.007. PubMed DOI