Headache onset after vaccination against SARS-CoV-2: a systematic literature review and meta-analysis
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články, metaanalýza, přehledy, systematický přehled
PubMed
35361131
PubMed Central
PMC8969402
DOI
10.1186/s10194-022-01400-4
PII: 10.1186/s10194-022-01400-4
Knihovny.cz E-zdroje
- Klíčová slova
- Adverse Event, BNT162b2, COVID-19, ChAdOx1, Headache, SARS-CoV-2, Vaccination,
- MeSH
- bolesti hlavy etiologie MeSH
- COVID-19 * prevence a kontrola MeSH
- lidé MeSH
- SARS-CoV-2 * MeSH
- vakcína BNT162 MeSH
- vakcinace škodlivé účinky MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- metaanalýza MeSH
- přehledy MeSH
- systematický přehled MeSH
- Názvy látek
- vakcína BNT162 MeSH
BACKGROUND: Vaccines against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) are used to reduce the risk of developing Coronavirus Disease 2019 (COVID-19). Despite the significant benefits in terms of reduced risk of hospitalization and death, different adverse events may present after vaccination: among them, headache is one of the most common, but nowadays there is no summary presentation of its incidence and no description of its main features. METHODS: We searched PubMed and EMBASE covering the period between January 1st 2020 and August 6th, 2021, looking for record in English and with an abstract and using three main search terms (with specific variations): COVID-19/SARS-CoV-2; Vaccination; headache/adverse events. We selected manuscript including information on subjects developing headache after injection, and such information had to be derived from a structured form (i.e. no free reporting). Pooled estimates and 95% confidence intervals were calculated. Analyses were carried out by vaccine vs. placebo, by first vs. second dose, and by mRNA-based vs. "traditional" vaccines; finally, we addressed the impact of age and gender on post-vaccine headache onset. RESULTS: Out of 9338 records, 84 papers were included in the review, accounting for 1.57 million participants, 94% of whom received BNT162b2 or ChAdOx1. Headache was generally the third most common AE: it was detected in 22% (95% CI 18-27%) of subjects after the first dose of vaccine and in 29% (95% CI 23-35%) after the second, with an extreme heterogeneity. Those receiving placebo reported headache in 10-12% of cases. No differences were detected across different vaccines or by mRNA-based vs. "traditional" ones. None of the studies reported information on headache features. A lower prevalence of headache after the first injection of BNT162b2 among older participants was shown. CONCLUSIONS: Our results show that vaccines are associated to a two-fold risk of developing headache within 7 days from injection, and the lack of difference between vaccine types enable to hypothesize that headache is secondary to systemic immunological reaction than to a vaccine-type specific reaction. Some descriptions report onset within the first 24 h and that in around one-third of the cases, headache has migraine-like features with pulsating quality, phono and photophobia; in 40-60% of the cases aggravation with activity is observed. The majority of patients used some medication to treat headache, the one perceived as the most effective being acetylsalicylic acid.
Ambulatorio Per La Diagnosi E Cura Delle Cefalee Centro Medico Visconti Di Modrone Milan Italy
Deparment of Internal Medicine Sapienza University Rome Italy
Departement of Neurology Headache Center Charité Universitaetsmedizin Berlin Berlin Germany
Department of Anatomy and Neuroscience Faculty of Medicine University J J Strossmayer Osijek Croatia
Department of Clinical and Molecular Medicine Sapienza University Rome Italy
Department of Neurology Kingston Hospital London UK
Department of Neurology Regional Hospital of Shkodra Shkoder Albania
Department of Neurology School of Medicine Istanbul Medipol University Istanbul Turkey
Department of Neurology St George's University Hospital London UK
Department of Neurology University Emergency Hospital of Bucharest Bucharest Romania
Department of Neurology University Hospital Center Osijek Osijek Croatia
Department of Neurology University Medicine Greifswald Greifswald Germany
Department of Neurology Wroclaw Medical University Wroclaw Poland
Department of Neurosciences Rita Levi Montalcini University of Torino Turin Italy
Department of Neurosciences Università Cattolica del Sacro Cuore Rome Italy
General Practice Moscow Russia
General Practice Orzyny Poland
Headache Clinic Terapia Neurologiczna 'Samodzielni' Warsaw Poland
MIGRE Polish Headache Center Wroclaw Poland
Neurology and Clinical Genetics Department Kyrgyz State Medical Academy Bishkek Kyrgyzstan
Neurology Clinic Department of Neurology Tartu University Hospital Tartu Estonia
Neurology Department Republican Diagnostic Centre Makhachkala Russia
Outpatient Service Pogradec Hospital Pogradec Albania
Regional Referral Headache Center Sant'Andrea University Hospital Rome Italy
Zobrazit více v PubMed
Kaur N, Gupta I, Singh H, et al. Epidemiological and clinical characteristics of 6635 covid-19 patients: a pooled analysis. SN Compr Clin Med. 2020;2:1048–1052. doi: 10.1007/s42399-020-00393-y. PubMed DOI PMC
WHO coronavirus disease (COVID-19) dashboard. https://covid19.who.int/table
Li Y-D, Chi W-Y, Su J-H, et al. Coronavirus vaccine development: from SARS and MERS to COVID-19. J Biomed Sci. 2020;27:104. doi: 10.1186/s12929-020-00695-2. PubMed DOI PMC
Scobie HM, Johnson AG, Suthar AB, et al. Monitoring incidence of COVID-19 cases, hospitalizations, and deaths, by vaccination status — 13 U.S. jurisdictions, April 4–July 17, 2021. MMWR Morb Mortal Wkly Rep. 2021;70:1284–1290. doi: 10.15585/mmwr.mm7037e1. PubMed DOI PMC
Tartof SY, Slezak JM, Fischer H, et al. Effectiveness of mRNA BNT162b2 COVID-19 vaccine up to 6 months in a large integrated health system in the USA: a retrospective cohort study. Lancet E-Pub. 2021 doi: 10.1016/S0140-6736(21)02183-8. PubMed DOI PMC
Havers FP, Pham H, Taylor CA, et al. COVID-19–associated hospitalizations among vaccinated and unvaccinated adults ≥18 years—COVID-NET, 13 states, January 1–July 24, 2021. medRxiv [Preprint posted online August 29, 2021]
Balakrishnan VS. The arrival of Sputnik V. Lancet Infect Dis. 2020;20:1128. doi: 10.1016/S1473-3099(20)30709-X. PubMed DOI PMC
Status of COVID-19 Vaccines within WHO EUL/PQ evaluation process. https://extranet.who.int/pqweb/sites/default/files/documents/Status_COVID_VAX_19August2021.pdf
Phillips EJ. Allergic reactions after COVID-19 vaccination—putting risk into perspective. JAMA Netw Open. 2021;4:e2122326. doi: 10.1001/jamanetworkopen.2021.22326. PubMed DOI
Diaz GA, Parsons GT, Gering SK, et al. Myocarditis and pericarditis after vaccination for COVID-19. JAMA. 2021;326(12):1210–1212. doi: 10.1001/jama.2021.13443. PubMed DOI PMC
Franchini M, Liumbruno GM, Pezzo M. COVID-19 vaccine-associated immune thrombosis and thrombocytopenia (VITT): diagnostic and therapeutic recommendations for a new syndrome. Eur J Haematol. 2021;107:173–180. doi: 10.1111/ejh.13665. PubMed DOI PMC
Dyer O. Covid-19: regulators warn that rare Guillain-Barré cases may link to J&J and AstraZeneca vaccines. BMJ. 2021;374:1786. doi: 10.1136/bmj.n1786. PubMed DOI
Cai C, Peng Y, Shen E, et al. A comprehensive analysis of the efficacy and safety of COVID-19 vaccines. Mol Ther. 2021;29:2794–2805. doi: 10.1016/j.ymthe.2021.08.001. PubMed DOI PMC
Kadali RAK, Janagama R, Peruru S, et al. Non-life-threatening adverse effects with COVID-19 mRNA-1273 vaccine: a randomized, cross-sectional study on healthcare workers with detailed self-reported symptoms. J Med Virol. 2021;93:4420–4429. doi: 10.1002/jmv.26996. PubMed DOI PMC
Sekiguchi K, Watanabe N, Miyazaki N, et al. Incidence of headache after COVID-19 vaccination in patients with history of headache: a cross-sectional study. Cephalalgia E-Pub. 2021 doi: 10.1177/03331024211038654. PubMed DOI PMC
Steiner TJ, Stovner LJ, Jensen R, et al. Migraine remains second among the world’s causes of disability, and first among young women: findings from GBD2019. J Headache Pain. 2020;21:137. doi: 10.1186/s10194-020-01208-0. PubMed DOI PMC
Arroyo-Quiroz C, Kurth T, Cantu-Brito C, et al. Lifetime prevalence and underdiagnosis of migraine in a population sample of Mexican women. Cephalalgia. 2014;34(13):1088–1092. doi: 10.1177/0333102414529196. PubMed DOI
Fermo OP. Underdiagnosis and undertreatment of migraine in Poland. Neurol Neurochir Pol. 2021;55(4):331–332. doi: 10.5603/PJNNS.a2021.0046. PubMed DOI
Moher D, Liberati A, Tetzlaff J, Altman DG, PRISMA Group Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. Ann Intern Med. 2009;151(4):264–9. doi: 10.7326/0003-4819-151-4-200908180-00135. PubMed DOI
Ouzzani M, Hammady H, Fedorowicz Z, Elmagarmid A. Rayyan—a web and mobile app for systematic reviews. Syst Rev. 2016;5:210. doi: 10.1186/s13643-016-0384-4. PubMed DOI PMC
Newcombe RG (1998) Two-sided confidence intervals for the single proportion: comparison of seven methods. Stat Med 17:857–872. 10.1002/(sici)1097-0258(19980430)17:8%3c857::aid-sim777%3e3.0.co;2-e PubMed
DerSimonian R, Laird N. Meta-analysis in clinical trials. Control Clin Trials. 1986;7:177–188. doi: 10.1016/0197-2456(86)90046-2. PubMed DOI
Freeman MF, Tukey JW. Transformations related to the angular and the square root. Ann Math Stats. 1950;21:607–611. doi: 10.1214/aoms/1177729756. DOI
Higgins JP, Thompson SG, Deeks JJ, Altman DG. Measuring inconsistency in meta-analyses. BMJ. 2003;327:557–560. doi: 10.1136/bmj.327.7414.557. PubMed DOI PMC
Higgins JPT, Green S (editors). Cochrane Handbook for Systematic Reviews of Interventions version 5.1.0. Cochrane, 2011. Available from https://handbook-5-1.cochrane.org/front_page.htm, last access 15/10/2021
Fu R, Gartlehner G, Grant M, et al. (2010) Conducting Quantitative Synthesis When Comparing Medical Interventions: AHRQ and the Effective Health Care Program. In: Agency for Healthcare Research and Quality. Methods Guide for Comparative Effectiveness Reviews. Rockville, MD. Available at: http://effectivehealthcare.ahrq.gov/ (last access 28/01/2022) PubMed
García-Grimshaw M, Ceballos-Liceaga SE, Hernández-Vanegas LE, et al. Neurologic adverse events among 704,003 first-dose recipients of the BNT162b2 mRNA COVID-19 vaccine in Mexico: a nationwide descriptive study. Clin Immunol. 2021;229:108786. doi: 10.1016/j.clim.2021.108786. PubMed DOI PMC
Polack FP, Thomas SJ, Kitchin N, et al. Safety and efficacy of the BNT162b2 mRNA Covid-19 vaccine. N Engl J Med. 2020;383(27):2603–2615. doi: 10.1056/NEJMoa2034577. PubMed DOI PMC
Frenck RW, Jr, Klein NP, Kitchin N, et al. Safety, immunogenicity, and efficacy of the BNT162b2 Covid-19 vaccine in adolescents. N Engl J Med. 2021;385(3):239–250. doi: 10.1056/NEJMoa2107456. PubMed DOI PMC
d’Arminio Monforte A, Tavelli A, Perrone PM, et al. Association between previous infection with SARS CoV-2 and the risk of self-reported symptoms after mRNA BNT162b2 vaccination: data from 3,078 health care workers. EClinicalMedicine. 2021;36:100914. doi: 10.1016/j.eclinm.2021.100914. PubMed DOI PMC
Baldolli A, Michon J, Appia F, et al. Tolerance of BNT162b2 mRNA COVI-19 vaccine in patients with a medical history of COVID-19 disease: a case control study. Vaccine. 2021;39(32):4410–4413. doi: 10.1016/j.vaccine.2021.06.054. PubMed DOI PMC
Ossato A, Tessari R, Trabucchi C, et al. Comparison of medium-term adverse reactions induced by the first and second dose of mRNA BNT162b2 (Comirnaty, Pfizer-BioNTech) vaccine: a post-marketing Italian study conducted between 1 January and 28 February 2021. Eur J Hosp Pharm. 2021;27:ejhpharm-2021-002933. doi: 10.1136/ejhpharm-2021-002933. PubMed DOI PMC
Nittner-Marszalska M, Rosiek-Biegus M, Kopeć A, et al. Pfizer-BioNTech COVID-19 vaccine tolerance in allergic versus non-allergic individuals. Vaccines (Basel) 2021;9(6):553. doi: 10.3390/vaccines9060553. PubMed DOI PMC
Cuschieri S, Borg M, Agius S, et al. Adverse reactions to Pfizer-BioNTech vaccination of healthcare workers at Malta’s state hospital. Int J Clin Pract. 2021;75(10):e14605. doi: 10.1111/ijcp.14605. PubMed DOI PMC
Izumo T, Kuse N, Awano N, et al. Side effects and antibody titer transition of the BNT162b2 messenger ribonucleic acid coronavirus disease 2019 vaccine in Japan. Respir Investig. 2021;59(5):635–642. doi: 10.1016/j.resinv.2021.06.003. PubMed DOI PMC
Riad A, Pokorná A, Attia S, et al. Prevalence of COVID-19 vaccine side effects among healthcare workers in the Czech Republic. J Clin Med. 2021;10(7):1428. doi: 10.3390/jcm10071428. PubMed DOI PMC
Furer V, Eviatar T, Zisman D, et al. Immunogenicity and safety of the BNT162b2 mRNA COVID-19 vaccine in adult patients with autoimmune inflammatory rheumatic diseases and in the general population: a multicentre study. Ann Rheum Dis. 2021;80(10):1330–1338. doi: 10.1136/annrheumdis-2021-220647. PubMed DOI
Kadali RAK, Janagama R, Peruru S, et al. Side effects of BNT162b2 mRNA COVID-19 vaccine: a randomized, cross-sectional study with detailed self-reported symptoms from healthcare workers. Int J Infect Dis. 2021;106:376–381. doi: 10.1016/j.ijid.2021.04.047. PubMed DOI PMC
Borobia AM, Carcas AJ, Pérez-Olmeda M, et al. Immunogenicity and reactogenicity of BNT162b2 booster in ChAdOx1-S-primed participants (CombiVacS): a multicentre, open-label, randomised, controlled, phase 2 trial. Lancet. 2021;398(10295):121–130. doi: 10.1016/S0140-6736(21)01420-3. PubMed DOI PMC
Bookstein Peretz S, Regev N, Novick L, et al. Short-term outcome of pregnant women vaccinated with BNT162b2 mRNA COVID-19 vaccine. Ultrasound Obstet Gynecol. 2021;58(3):450–456. doi: 10.1002/uog.23729. PubMed DOI PMC
El-Shitany NA, Harakeh S, Badr-Eldin SM, et al. Minor to moderate side effects of Pfizer-BioNTech COVID-19 vaccine among Saudi residents: a retrospective cross-sectional study. Int J Gen Med. 2021;14:1389–1401. doi: 10.2147/IJGM.S310497. PubMed DOI PMC
Morales-Núñez JJ, Muñoz-Valle JF, Meza-López C, et al. Neutralizing Antibodies Titers and Side Effects in Response to BNT162b2 Vaccine in Healthcare Workers with and without Prior SARS-CoV-2 Infection. Vaccines (Basel) 2021;9(7):742. doi: 10.3390/vaccines9070742. PubMed DOI PMC
Lee YW, Lim SY, Lee JH, et al. Adverse reactions of the second dose of the BNT162b2 mRNA COVID-19 vaccine in healthcare workers in Korea. J Korean Med Sci. 2021;36(21):e153. doi: 10.3346/jkms.2021.36.e153. PubMed DOI PMC
Lotan I, Wilf-Yarkoni A, Friedman Y, et al. Safety of the BNT162b2 COVID-19 vaccine in multiple sclerosis (MS): early experience from a tertiary MS center in Israel. Eur J Neurol. 2021;28(11):3742–3748. doi: 10.1111/ene.15028. PubMed DOI PMC
Simon B, Rubey H, Treipl A, et al. Haemodialysis patients show a highly diminished antibody response after COVID-19 mRNA vaccination compared with healthy controls. Nephrol Dial Transplant. 2021;36(9):1709–1716. doi: 10.1093/ndt/gfab179. PubMed DOI PMC
Pimpinelli F, Marchesi F, Piaggio G, et al. Fifth-week immunogenicity and safety of anti-SARS-CoV-2 BNT162b2 vaccine in patients with multiple myeloma and myeloproliferative malignancies on active treatment: preliminary data from a single institution. J Hematol Oncol. 2021;14(1):81. doi: 10.1186/s13045-021-01090-6. PubMed DOI PMC
Cserep G, Morrow D, Latchford K, et al. The effect of a single dose of BNT162b2 vaccine on the incidence of severe COVID-19 infection in patients on chronic hemodialysis: a single-centre study. Clin Exp Nephrol. 2021;26(1):54–58. doi: 10.1007/s10157-021-02118-4. PubMed DOI PMC
Abohelwa M, Elmassry M, Abdelmalek J et al (2021) 2019 Novel coronavirus vaccination among post-graduate residents and fellows. J Prim Care Community Health 12:21501327211022976. 10.1177/21501327211022978 PubMed PMC
Peled Y, Ram E, Lavee J, et al. BNT162b2 vaccination in heart transplant recipients: clinical experience and antibody response. J Heart Lung Transplant. 2021;40(8):759–762. doi: 10.1016/j.healun.2021.04.003. PubMed DOI PMC
Sahin U, Muik A, Derhovanessian E, et al. COVID-19 vaccine BNT162b1 elicits human antibody and TH1 T cell responses. Nature. 2020;586(7830):594–599. doi: 10.1038/s41586-020-2814-7. PubMed DOI
Achiron A, Dolev M, Menascu S, et al. COVID-19 vaccination in patients with multiple sclerosis: what we have learnt by February 2021. Mult Scler. 2021;27(6):864–870. doi: 10.1177/13524585211003476. PubMed DOI PMC
Tobaiqy M, Elkout H, MacLure K. Analysis of thrombotic adverse reactions of COVID-19 AstraZeneca vaccine reported to EudraVigilance database. Vaccines (Basel) 2021;9(4):393. doi: 10.3390/vaccines9040393. PubMed DOI PMC
Göbel CH, Heinze A, Karstedt S, et al. Headache attributed to vaccination against COVID-19 (Coronavirus SARS-CoV-2) with the ChAdOx1 nCoV-19 (AZD1222) vaccine: a multicenter observational cohort study. Pain Ther. 2021;10(2):1309–1330. doi: 10.1007/s40122-021-00296-3. PubMed DOI PMC
Jeon M, Kim J, Oh CE, et al. Adverse events following immunization associated with coronavirus disease 2019 vaccination reported in the mobile vaccine adverse events reporting system. J Korean Med Sci. 2021;36(17):e114. doi: 10.3346/jkms.2021.36.e114. PubMed DOI PMC
Pokharel K, Dawadi BR, Karki A. Side effects after second dose of covishield vaccine among health care workers: a descriptive cross sectional study. JNMA J Nepal Med Assoc. 2021;59(238):577–579. doi: 10.31729/jnma.6556. PubMed DOI PMC
Logunov DY, Dolzhikova IV, Zubkova OV, et al. Safety and immunogenicity of an rAd26 and rAd5 vector-based heterologous prime-boost COVID-19 vaccine in two formulations: two open, non-randomised phase 1/2 studies from Russia. Lancet. 2020;396(10255):887–897. doi: 10.1016/S0140-6736(20)31866-3. PubMed DOI PMC
Tanriover MD, Doğanay HL, Akova M, et al. Efficacy and safety of an inactivated whole-virion SARS-CoV-2 vaccine (CoronaVac): interim results of a double-blind, randomised, placebo-controlled, phase 3 trial in Turkey. Lancet. 2021;398(10296):213–222. doi: 10.1016/S0140-6736(21)01429-X. PubMed DOI PMC
Wang G, Zhu L, Zhu Y, et al. Safety survey by clinical pharmacists on COVID-19 vaccination from a single center in China. Hum Vaccin Immunother. 2021;17(9):2863–2867. doi: 10.1080/21645515.2021.1913964. PubMed DOI PMC
Avcı H, Karabulut B, Eken HD, et al. Otolaryngology-specific symptoms may be highly observed in patients with a history of Covid-19 infection after inactivated coronavirus vaccination. Ear Nose Throat J. 2021;8:1455613211028493. doi: 10.1177/01455613211028493. PubMed DOI
Zhang MX, Zhang TT, Shi GF, et al. Safety of an inactivated SARS-CoV-2 vaccine among healthcare workers in China. Expert Rev Vaccines. 2021;20(7):891–898. doi: 10.1080/14760584.2021.1925112. PubMed DOI PMC
Djanas D, Yusirwan MRD, et al. Survey data of COVID-19 vaccine side effects among hospital staff in a national referral hospital in Indonesia. Data Brief. 2021;36:107098. doi: 10.1016/j.dib.2021.107098. PubMed DOI PMC
Riad A, Sağıroğlu D, Üstün B, et al. Prevalence and risk factors of CoronaVac side effects: an independent cross-sectional study among healthcare workers in Turkey. J Clin Med. 2021;10(12):2629. doi: 10.3390/jcm10122629. PubMed DOI PMC
Han B, Song Y, Li C, et al. Safety, tolerability, and immunogenicity of an inactivated SARS-CoV-2 vaccine (CoronaVac) in healthy children and adolescents: a double-blind, randomised, controlled, phase 1/2 clinical trial. Lancet Infect Dis. 2021;21(12):1645–1653. doi: 10.1016/S1473-3099(21)00319-4. PubMed DOI PMC
Jackson LA, Anderson EJ, Rouphael NG, et al. An mRNA vaccine against SARS-CoV-2 - preliminary report. N Engl J Med. 2020;383(20):1920–1931. doi: 10.1056/NEJMoa2022483. PubMed DOI PMC
Anderson EJ, Rouphael NG, Widge AT, et al. Safety and immunogenicity of SARS-CoV-2 mRNA-1273 vaccine in older adults. N Engl J Med. 2020;383(25):2427–2438. doi: 10.1056/NEJMoa2028436. PubMed DOI PMC
Heath PT, Galiza EP, Baxter DN, et al. Safety and efficacy of NVX-CoV2373 Covid-19 vaccine. N Engl J Med. 2021;385(13):1172–1183. doi: 10.1056/NEJMoa2107659. PubMed DOI PMC
Shinde V, Bhikha S, Hoosain Z, et al. Efficacy of NVX-CoV2373 Covid-19 vaccine against the B.1.351 variant. N Engl J Med. 2021;384(20):1899–1909. doi: 10.1056/NEJMoa2103055. PubMed DOI PMC
Keech C, Albert G, Cho I, et al. Phase 1–2 trial of a SARS-CoV-2 recombinant spike protein nanoparticle vaccine. N Engl J Med. 2020;383(24):2320–2332. doi: 10.1056/NEJMoa2026920. PubMed DOI PMC
Xia S, Zhang Y, Wang Y, et al. Safety and immunogenicity of an inactivated SARS-CoV-2 vaccine, BBIBP-CorV: a randomised, double-blind, placebo-controlled, phase 1/2 trial. Lancet Infect Dis. 2021;21(1):39–51. doi: 10.1016/S1473-3099(20)30831-8. PubMed DOI PMC
Guo W, Duan K, Zhang Y, et al. Safety and immunogenicity of an inactivated SARS-CoV-2 vaccine in healthy adults aged 18 years or older: a randomized, double-blind, placebo-controlled, phase 1/2 trial. EClinicalMedicine. 2021;38:101010. doi: 10.1016/j.eclinm.2021.101010. PubMed DOI PMC
Xia S, Duan K, Zhang Y, et al. Effect of an inactivated vaccine against SARS-CoV-2 on safety and immunogenicity outcomes: interim analysis of 2 randomized clinical trials. JAMA. 2020;324(10):951–960. doi: 10.1001/jama.2020.15543. PubMed DOI PMC
Zhu FC, Guan XH, Li YH, et al. Immunogenicity and safety of a recombinant adenovirus type-5-vectored COVID-19 vaccine in healthy adults aged 18 years or older: a randomised, double-blind, placebo-controlled, phase 2 trial. Lancet. 2020;396(10249):479–488. doi: 10.1016/S0140-6736(20)31605-6. PubMed DOI PMC
Zhu FC, Li YH, Guan XH, et al. Safety, tolerability, and immunogenicity of a recombinant adenovirus type-5 vectored COVID-19 vaccine: a dose-escalation, open-label, non-randomised, first-in-human trial. Lancet. 2020;395(10240):1845–1854. doi: 10.1016/S0140-6736(20)31208-3. PubMed DOI PMC
Sadoff J, Gray G, Vandebosch A, et al. Safety and efficacy of single-dose Ad26.COV2.S vaccine against Covid-19. N Engl J Med. 2021;384(23):2187–2201. doi: 10.1056/NEJMoa2101544. PubMed DOI PMC
Pagotto V, Ferloni A, Mercedes Soriano M, et al. Active monitoring of early safety of Sputnik V vaccine in Buenos Aires. Argentina Medicina (B Aires) 2021;81(3):408–414. PubMed
Menni C, Klaser K, May A, et al. Vaccine side-effects and SARS-CoV-2 infection after vaccination in users of the COVID symptom study app in the UK: a prospective observational study. Lancet Infect Dis. 2021;21(7):939–949. doi: 10.1016/S1473-3099(21)00224-3. PubMed DOI PMC
Al Kaabi N, Zhang Y, Xia S, et al. Effect of 2 inactivated SARS-CoV-2 vaccines on symptomatic COVID-19 infection in adults: a randomized clinical trial. JAMA. 2021;326(1):35–45. doi: 10.1001/jama.2021.8565. PubMed DOI PMC
Shimabukuro TT, Kim SY, Myers TR, et al. Preliminary findings of mRNA Covid-19 vaccine safety in pregnant persons. N Engl J Med. 2021;384(24):2273–2282. doi: 10.1056/NEJMoa2104983. PubMed DOI PMC
Bae S, Lee YW, Lim SY, et al. Adverse reactions following the first dose of ChAdOx1 nCoV-19 vaccine and BNT162b2 vaccine for healthcare workers in South Korea. J Korean Med Sci. 2021;36(17):e115. doi: 10.3346/jkms.2021.36.e115. PubMed DOI PMC
Park MJ, Choi YJ, Choi S. Emergency department utilization by in-hospital healthcare workers after COVID-19 vaccination. J Korean Med Sci. 2021;36(27):e196. doi: 10.3346/jkms.2021.36.e196. PubMed DOI PMC
Kim T, Park SY, Yu S, et al. Impacts of side effects to BNT162b2 and the first dose of ChAdOx1 Anti-SARS-CoV-2 vaccination on work productivity, the need for medical attention, and vaccine acceptance: a multicenter survey on healthcare workers in referral teaching hospitals in the Republic of Korea. Vaccines (Basel) 2021;9(6):648. doi: 10.3390/vaccines9060648. PubMed DOI PMC
McLaurin-Jiang S, Garner CD, Krutsch K, et al. Maternal and child symptoms following COVID-19 vaccination among breastfeeding mothers. Breastfeed Med. 2021;16(9):702–709. doi: 10.1089/bfm.2021.0079. PubMed DOI
Song JY, Cheong HJ, Kim SR, et al. Early safety monitoring of COVID-19 vaccines in healthcare workers. J Korean Med Sci. 2021;36(15):e110. doi: 10.3346/jkms.2021.36.e110. PubMed DOI PMC
Hatmal MM, Al-Hatamleh MAI, Olaimat AN, et al. Side effects and perceptions following COVID-19 vaccination in Jordan: a randomized, cross-sectional study implementing machine learning for predicting severity of side effects. Vaccines (Basel) 2021;9(6):556. doi: 10.3390/vaccines9060556. PubMed DOI PMC
Kim SH, Wi YM, Yun SY, et al. Adverse events in healthcare workers after the first dose of ChAdOx1 nCoV-19 or BNT162b2 mRNA COVID-19 vaccination: a single center experience. J Korean Med Sci. 2021;36(14):e107. doi: 10.3346/jkms.2021.36.e107. PubMed DOI PMC
Powell AA, Power L, Westrop S, et al. Real-world data shows increased reactogenicity in adults after heterologous compared to homologous prime-boost COVID-19 vaccination, March-June 2021. England Euro Surveill. 2021;26(28):2100634. doi: 10.2807/1560-7917.ES.2021.26.28.2100634. PubMed DOI PMC
Al Khames Aga QA, Alkhaffaf WH, Hatem TH, et al. Safety of COVID-19 vaccines. J Med Virol. 2021;93(12):6588–6594. doi: 10.1002/jmv.27214. PubMed DOI PMC
Jęśkowiak I, Wiatrak B, Grosman-Dziewiszek P, et al. The incidence and severity of post-vaccination reactions after vaccination against COVID-19. Vaccines (Basel) 2021;9(5):502. doi: 10.3390/vaccines9050502. PubMed DOI PMC
Shu YJ, He JF, Pei RJ, et al. Immunogenicity and safety of a recombinant fusion protein vaccine (V-01) against coronavirus disease 2019 in healthy adults: a randomized, double-blind, placebo-controlled, phase II trial. Chin Med J (Engl) 2021;134(16):1967–1976. doi: 10.1097/CM9.0000000000001702. PubMed DOI PMC
Meng FY, Gao F, Jia SY, et al. Safety and immunogenicity of a recombinant COVID-19 vaccine (Sf9 cells) in healthy population aged 18 years or older: two single-center, randomised, double-blind, placebo-controlled, phase 1 and phase 2 trials. Signal Transduct Target Ther. 2021;6(1):271. doi: 10.1038/s41392-021-00692-3. PubMed DOI PMC
Yang S, Li Y, Dai L, et al. Safety and immunogenicity of a recombinant tandem-repeat dimeric RBD-based protein subunit vaccine (ZF2001) against COVID-19 in adults: two randomised, double-blind, placebo-controlled, phase 1 and 2 trials. Lancet Infect Dis. 2021;21(8):1107–1119. doi: 10.1016/S1473-3099(21)00127-4. PubMed DOI PMC
Cherian S, Paul A, Ahmed S, et al. Safety of the ChAdOx1 nCoV-19 and the BBV152 vaccines in 724 patients with rheumatic diseases: a post-vaccination cross-sectional survey. Rheumatol Int. 2021;41(8):1441–1445. doi: 10.1007/s00296-021-04917-0. PubMed DOI PMC
Andrzejczak-Grządko S, Czudy Z, Donderska M. Side effects after COVID-19 vaccinations among residents of Poland. Eur Rev Med Pharmacol Sci. 2021;25(12):4418–4421. doi: 10.26355/eurrev_202106_26153. PubMed DOI
Ou MT, Boyarsky BJ, Chiang TPY, et al. Immunogenicity and reactogenicity after SARS-CoV-2 mRNA vaccination in kidney transplant recipients taking belatacept. Transplantation. 2021;105(9):2119–2123. doi: 10.1097/TP.0000000000003824. PubMed DOI PMC
Quiroga B, Sánchez-Álvarez E, Goicoechea M, et al. COVID-19 vaccination among Spanish nephrologists: acceptance and side effects. J Healthc Qual Res. 2021;36(6):363–369. doi: 10.1016/j.jhqr.2021.05.002. PubMed DOI PMC
Pan HX, Liu JK, Huang BY, et al. Immunogenicity and safety of a severe acute respiratory syndrome coronavirus 2 inactivated vaccine in healthy adults: randomized, double-blind, and placebo-controlled phase 1 and phase 2 clinical trials. Chin Med J (Engl) 2021;134(11):1289–1298. doi: 10.1097/CM9.0000000000001573. PubMed DOI PMC
Alhazmi A, Alamer E, Daws D, et al. Evaluation of side effects associated with COVID-19 vaccines in Saudi Arabia. Vaccines (Basel) 2021;9(6):674. doi: 10.3390/vaccines9060674. PubMed DOI PMC
Abu-Hammad O, Alduraidi H, Abu-Hammad S, et al. Side effects reported by Jordanian healthcare workers who received COVID-19 vaccines. Vaccines (Basel) 2021;9(6):577. doi: 10.3390/vaccines9060577. PubMed DOI PMC
Wang J, Hou Z, Liu J, et al. Safety and immunogenicity of COVID-19 vaccination in patients with non-alcoholic fatty liver disease (CHESS2101): a multicenter study. J Hepatol. 2021;75(2):439–441. doi: 10.1016/j.jhep.2021.04.026. PubMed DOI PMC
Campello E, Simion C, Bulato C, et al. Absence of hypercoagulability after nCoV-19 vaccination: an observational pilot study. Thromb Res. 2021;205:24–28. doi: 10.1016/j.thromres.2021.06.016. PubMed DOI PMC
Zhang J, Hu Z, He J, et al. Safety and immunogenicity of a recombinant interferon-armed RBD dimer vaccine (V-01) for COVID-19 in healthy adults: a randomized, double-blind, placebo-controlled. Phase I trial Emerg Microbes Infect. 2021;10(1):1589–1597. doi: 10.1080/22221751.2021.1951126. PubMed DOI PMC
Ward BJ, Gobeil P, Séguin A, et al. Phase 1 randomized trial of a plant-derived virus-like particle vaccine for COVID-19. Nat Med. 2021;27(6):1071–1078. doi: 10.1038/s41591-021-01370-1. PubMed DOI PMC
Zdziarski K, Landowski M, Zabielska P, et al. Subjective feelings of polish doctors after receiving the COVID-19 vaccine. Int J Environ Res Public Health. 2021;18(12):6291. doi: 10.3390/ijerph18126291. PubMed DOI PMC
Goepfert PA, Fu B, Chabanon AL, et al. Safety and immunogenicity of SARS-CoV-2 recombinant protein vaccine formulations in healthy adults: interim results of a randomised, placebo-controlled, phase 1–2, dose-ranging study. Lancet Infect Dis. 2021;21(9):1257–1270. doi: 10.1016/S1473-3099(21)00147-X. PubMed DOI PMC
Hwang YH, Song KH, Choi Y, et al. Can reactogenicity predict immunogenicity after COVID-19 vaccination? Korean J Intern Med. 2021;36(6):1486–1491. doi: 10.3904/kjim.2021.210. PubMed DOI PMC
Chappell KJ, Mordant FL, Li Z, et al. Safety and immunogenicity of an MF59-adjuvanted spike glycoprotein-clamp vaccine for SARS-CoV-2: a randomised, double-blind, placebo-controlled, phase 1 trial. Lancet Infect Dis. 2021;21(10):1383–1394. doi: 10.1016/S1473-3099(21)00200-0. PubMed DOI PMC
von Wrede R, Pukropski J, Moskau-Hartmann S, et al. COVID-19 vaccination in patients with epilepsy: first experiences in a German tertiary epilepsy center. Epilepsy Behav. 2021;122:108160. doi: 10.1016/j.yebeh.2021.108160. PubMed DOI PMC
Mulligan MJ, Lyke KE, Kitchin N, et al. Phase I/II study of COVID-19 RNA vaccine BNT162b1 in adults. Nature. 2020;586(7830):589–593. doi: 10.1038/s41586-020-2639-4. PubMed DOI
Tebas P, Yang S, Boyer JD, et al. Safety and immunogenicity of INO-4800 DNA vaccine against SARS-CoV-2: a preliminary report of an open-label, Phase 1 clinical trial. EClinicalMedicine. 2021;31:100689. doi: 10.1016/j.eclinm.2020.100689. PubMed DOI PMC
Ruddy JA, Boyarsky BJ, Bailey JR, et al. Safety and antibody response to two-dose SARS-CoV-2 messenger RNA vaccination in persons with HIV. AIDS. 2021;35(14):2399–2401. doi: 10.1097/QAD.0000000000003017. PubMed DOI PMC
García-Azorín D, Do TP, Gantenbein AR, et al. Delayed headache after COVID-19 vaccination: a red flag for vaccine induced cerebral venous thrombosis. J Headache Pain. 2021;22(1):108. doi: 10.1186/s10194-021-01324-5. PubMed DOI PMC
Perrotta A, Biondi-Zoccai G, Saade W, et al. A snapshot global survey on side effects of COVID-19 vaccines among healthcare professionals and armed forces with a focus on headache. Panminerva Med. 2021;63(3):324–331. doi: 10.23736/S0031-0808.21.04435-9. PubMed DOI
Ekizoglu E, Gezegen H, Yalınay Dikmen P, et al. The characteristics of COVID-19 vaccine-related headache: clues gathered from the healthcare personnel in the pandemic. Cephalalgia E-Pub. 2021 doi: 10.1177/03331024211042390. PubMed DOI PMC
Hatmi ZN. A systematic review of systematic reviews on the COVID-19 pandemic. SN Compr Clin Med. 2021;3:419–436. doi: 10.1007/s42399-021-00749-y. PubMed DOI PMC
Leonardi M, Lee H, van der Veen S, et al. Avoiding the banality of evil in times of COVID-19: thinking differently with a biopsychosocial perspective for future health and social policies development. SN Compr Clin Med. 2020;2:1758–1760. doi: 10.1007/s42399-020-00486-8. PubMed DOI PMC
Yu S, He M, Liu R, et al. Headache yesterday in China: a new approach to estimating the burden of headache, applied in a general-population survey in China. Cephalalgia. 2013;33(15):1211–1217. doi: 10.1177/0333102413490347. PubMed DOI
Andrée C, Steiner TJ, Barré J, et al. Headache yesterday in Europe. J Headache Pain. 2014;15:33. doi: 10.1186/1129-2377-15-33. PubMed DOI PMC
Ayzenberg I, Katsarava Z, Sborowski A, et al. Headache yesterday in Russia: its prevalence and impact, and their application in estimating the national burden attributable to headache disorders. J Headache Pain. 2015;15:7. doi: 10.1186/1129-2377-16-7. PubMed DOI PMC
Steiner TJ, Rao GN, Kulkarni GB, et al. Headache yesterday in Karnataka state, India: prevalence, impact and cost. J Headache Pain. 2016;17:74. doi: 10.1186/s10194-016-0669-y. PubMed DOI PMC
Salih F, Schönborn L, Kohler S, et al. Vaccine-induced thrombocytopenia with severe headache. N Engl J Med. 2021;385(22):2103–2105. doi: 10.1056/NEJMc2112974. PubMed DOI PMC
Göbel CH, Heinze A, Karstedt S, et al. Clinical characteristics of headache after vaccination against COVID-19 (coronavirus SARS-CoV-2) with the BNT162b2 mRNA vaccine: a multicentre observational cohort study. Brain Commun. 2021;3(3):fcab169. doi: 10.1093/braincomms/fcab169. PubMed DOI PMC
Baig AM, Khaleeq A, Ali U, et al. Evidence of the COVID-19 virus targeting the CNS: tissue distribution, host–virus interaction, and proposed neurotropic mechanisms. ACS Chem Neurosci. 2020;11:995–998. doi: 10.1021/acschemneuro.0c00122. PubMed DOI
Bougakov D, Podell K, Goldberg E. Multiple Neuroinvasive Pathways in COVID-19. Mol Neurobiol. 2021;58(2):564–575. doi: 10.1007/s12035-020-02152-5. PubMed DOI PMC
MaassenVanDenBrink A, de Vries T, Danser AHJ. Headache medication and the COVID-19 pandemic. J Headache Pain. 2020;21:38. doi: 10.1186/s10194-020-01106-5. PubMed DOI PMC
Wu Y, Xu X, Yang L, et al. Nervous system damage after COVID-19 infection: presence or absence? Brain Behav Immun. 2020;87:55. doi: 10.1016/j.bbi.2020.04.043. PubMed DOI PMC
Harapan BN, Yoo HJ. Neurological symptoms, manifestations, and complications associated with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and coronavirus disease 19 (COVID-19) J Neurol. 2021;268:3059–3071. doi: 10.1007/s00415-021-10406-y. PubMed DOI PMC
Caronna E, Pozo-Rosich P. Headache as a symptom of COVID-19: narrative review of 1-year research. Curr Pain Headache Rep. 2021;25:73. doi: 10.1007/s11916-021-00987-8. PubMed DOI PMC
Chou SH, Beghi E, Helbok R, et al. GCS-NeuroCOVID consortium and energy consortium. Global incidence of neurological manifestations among patients hospitalized with COVID-19 – a report for the GCS-NeuroCOVID consortium and the energy consortium. JAMA Netw Open. 2021;4:e2112131. doi: 10.1001/jamanetworkopen.2021.12131. PubMed DOI PMC
Borges do Nascimento IJ, Cacic N, Abdulazeem HM et al (2020) Novel coronavirus infection (COVID-19) in humans: a scoping review and meta-analysis. J Clin Med 9:941. 10.3390/jcm9040941 PubMed PMC
Lechien JR, Chiesa-Estomba CM, Place S, et al. Clinical and epidemiological characteristics of 1,420 European patients with mild-to-moderate coronavirus disease 2019. J Intern Med. 2020;288:335–344. doi: 10.1111/joim.13089. PubMed DOI PMC
Liguori C, Pierantozzi M, Spanetta M, et al. Subjective neurological symptoms frequently occur in patients with SARS-CoV2 infection. Brain Behav Immun. 2020;88:11–16. doi: 10.1016/j.bbi.2020.05.037. PubMed DOI PMC
O’Keefe JB, Tong EJ, O’Keefe GD, et al. Description of symptom course in a telemedicine monitoring clinic for acute symptomatic COVID-19: a retrospective cohort study. BMJ Open. 2021;11:e044154. doi: 10.1136/bmjopen-2020-044154. PubMed DOI PMC
Straburzyński M, Nowaczewska M, Budrewicz S, et al. COVID-19-related headache and sinonasal inflammation: a longitudinal study analysing the role of acute rhinosinusitis and ICHD-3 classification difficulties in SARS-CoV-2 infection. Cephalalgia. 2021;20:3331024211040753. doi: 10.1177/03331024211040753. PubMed DOI PMC
Bolay H, Gül A, Baykan B. COVID-19 is a real headache! Headache. 2020;60:1415–1421. doi: 10.1111/head.13856. PubMed DOI PMC
Bobker SM, Robbins MS. Virtual issue: COVID-19 and headache. Headache. 2021;61:412–413. doi: 10.1111/head.14085. PubMed DOI PMC
Messlinger K, Neuhuber W, May A. Activation of the trigeminal system as a likely target of SARS-CoV-2 may contribute to anosmia in COVID-19. Cephalalgia. 2021;42(2):176–180. doi: 10.1177/03331024211036665. PubMed DOI PMC
Collignon C, Bol V, Chalon A, et al. Innate immune responses to chimpanzee adenovirus vector 155 vaccination in mice and monkeys. Front Immunol. 2020;11:579872. doi: 10.3389/fimmu.2020.579872. PubMed DOI PMC
Bergamaschi C, Terpos E, Rosati M, et al. Systemic IL-15, IFN-γ, and IP-10/CXCL10 signature associated with effective immune response to SARS-CoV-2 in BNT162b2 mRNA vaccine recipients. Cell Rep. 2021;36:109504. doi: 10.1016/j.celrep.2021.109504. PubMed DOI PMC
Pépin S, Donazzolo Y, Jambrecina A, et al. Safety and immunogenicity of a quadrivalent inactivated influenza vaccine in adults. Vaccine. 2013;31:5572–5578. doi: 10.1016/j.vaccine.2013.08.069. PubMed DOI
Trigo López J, García-Azorín D, Planchuelo-Gómez Á, et al. Phenotypic characterization of acute headache attributed to SARS-CoV-2: an ICHD-3 validation study on 106 hospitalized patients. Cephalalgia. 2020;40:1432–1442. doi: 10.1177/0333102420965146. PubMed DOI PMC
Wang YH, Huang LY, Chen YL, et al. ChAdOx1 COVID-19 vaccine-induced thrombocytopenia syndrome. QJM. 2021;114:733–734. doi: 10.1093/qjmed/hcab221. PubMed DOI PMC
Giovane R, Campbell J. Bilateral thalamic stroke: a case of COVID-19 vaccine-induced immune thrombotic thrombocytopenia (VITT) or a coincidence due to underlying risk factors? Cureus. 2021;13(10):e18977. doi: 10.7759/cureus.18977. PubMed DOI PMC