• This record comes from PubMed

Living in darkness: Exploring adaptation of Proteus anguinus in 3 dimensions by X-ray imaging

. 2022 Apr 05 ; 11 () : .

Language English Country United States Media print

Document type Journal Article, Research Support, Non-U.S. Gov't

BACKGROUND: Lightless caves can harbour a wide range of living organisms. Cave animals have evolved a set of morphological, physiological, and behavioural adaptations known as troglomorphisms, enabling their survival in the perpetual darkness, narrow temperature and humidity ranges, and nutrient scarcity of the subterranean environment. In this study, we focused on adaptations of skull shape and sensory systems in the blind cave salamander, Proteus anguinus, also known as olm or simply proteus-the largest cave tetrapod and the only European amphibian living exclusively in subterranean environments. This extraordinary amphibian compensates for the loss of sight by enhanced non-visual sensory systems including mechanoreceptors, electroreceptors, and chemoreceptors. We compared developmental stages of P. anguinus with Ambystoma mexicanum, also known as axolotl, to make an exemplary comparison between cave- and surface-dwelling paedomorphic salamanders. FINDINGS: We used contrast-enhanced X-ray computed microtomography for the 3D segmentation of the soft tissues in the head of P. anguinus and A. mexicanum. Sensory organs were visualized to elucidate how the animal is adapted to living in complete darkness. X-ray microCT datasets were provided along with 3D models for larval, juvenile, and adult specimens, showing the cartilage of the chondrocranium and the position, shape, and size of the brain, eyes, and olfactory epithelium. CONCLUSIONS: P. anguinus still keeps some of its secrets. Our high-resolution X-ray microCT scans together with 3D models of the anatomical structures in the head may help to elucidate the nature and origin of the mechanisms behind its adaptations to the subterranean environment, which led to a series of troglomorphisms.

See more in PubMed

Sket  B. Distribution of Proteus (Amphibia: Urodela: Proteidae) and its possible explanation. J Biogeogr. 1997;24(3):263–80.

Gorički  Š, Stanković  D, Snoj  A, et al.  Environmental DNA in subterranean biology: range extension and taxonomic implications for Proteus. Sci Rep. 2017;7(1):doi:10.1038/srep45054. PubMed DOI PMC

Aljančič  G. History of research on Proteus anguinus Laurenti 1768 in Slovenia. Folia biol geol. 2019;60(1):39.

Laurenti  J. Synopsis reptilium. In: Specimen Medicum, Exhibens Synopsin Reptilium Emendatam cum Experimentis Circa Venena et Antidota Reptilium Austriacorum. Vienna: JT de Trattnern; 1768:35–6.

von Schreibers  KA. Historical and anatomical description of a doubtful amphibious animal of Germany, called, by Laurenti, Proteus anguinus. Philos Trans. 1801;91:241–64.

Charles  D. On the Origin of Species. John Murray; 1859.

Kostanjšek  R, Diderichsen  B, Recknagel  H, et al.  Toward the massive genome of Proteus anguinus—illuminating longevity, regeneration, convergent evolution, and metabolic disorders. Ann N Y Acad Sci. 2022;1507(1):5–11. PubMed

Schlegel  PA, Steinfartz  S, Bulog  B. Non-visual sensory physiology and magnetic orientation in the blind cave salamander, Proteus anguinus (and some other cave-dwelling urodele species). Review and new results on light-sensitivity and non-visual orientation in subterranean urodeles (Amphibia). Anim Biol. 2009;59(3):351–384.

Bulog  B, Schlegel  P. Functional morphology of the inner ear and underwater audiograms of Proteus anguinus (Amphibia, Urodela). Eur J Physiol. 2000;439(S1):r165–7. PubMed

Hervant  F, Mathieu  J, Durand  J. Behavioural, physiological and metabolic responses to long-term starvation and refeeding in a blind cave-dwelling (Proteus anguinus) and a surface-dwelling (Euproctus asper) salamander. J Exp Biol. 2001;204(2):269–81. PubMed

Ivanović  A, Aljančič  G, Arntzen  JW, et al.  Skull shape differentiation of black and white olms (Proteus anguinus anguinus and Proteus a. parkelj): an exploratory analysis with micro-CT scanning. Contrib Zool. 2013;82(2):107–14.

Papi  F, Mauri  E, Pesaro  S, et al.  Analysis of the skull of Proteus anguinus anguinus by high-resolution X-ray computed microtomography. Nat Slov. 2018;2:43–5.

Metscher  B. MicroCT for comparative morphology: simple staining methods allow high-contrast 3D imaging of diverse non-mineralized animal tissues. BMC Physiol. 2009;9(1):11. PubMed PMC

Tesařová  M, Mancini  L, Simon  A, et al.  A quantitative analysis of 3D-cell distribution in regenerating muscle-skeletal system with synchrotron X-ray computed microtomography. Sci Rep. 2018;8(1): doi:10.1038/s41598-018-32459-2. PubMed DOI PMC

Bayle  P, Braga  J, Mazurier  A, et al.  Dental developmental pattern of the Neanderthal child from Roc de Marsal: a high-resolution 3D analysis. J Hum Evol. 2009;56(1):66–75. PubMed

Zanolli  C, Bondioli  L, Mancini  L, et al.  Brief communication: Two human fossil deciduous molars from the Sangiran dome (Java, Indonesia). Am J Phys Anthropol. 2012;147(3):472–81. PubMed

Tesařová  M, Zikmund  T, Kaucká  M, et al.  Use of micro computed-tomography and 3D printing for reverse engineering of mouse embryo nasal capsule. J Instrum. 2016;11(03):C03006.

Durand  J. Ocular development and involution in the European cave salamander, Proteus anguinus laurenti. Biol Bull. 1976;151(3):450–66. PubMed

Stuart  SN, Chanson  JS, Cox  NA, et al.  Status and trends of amphibian declines and extinctions worldwide. Science. 2004;306(5702):1783–6. PubMed

Ronneberger  O, Fischer  P, Brox  T. U-Net: convolutional networks for biomedical image segmentation. In: Navab  N, Hornegger  J, Wells  W  et al.., et al., eds. Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015. Cham:Springer; 2015:doi:10.1007/978-3-319-24574-4_28. DOI

Tromba  G, Longo  R, Abrami  A, et al.  The SYRMEP Beamline of Elettra: clinical mammography and bio-medical applications. AIP Conf. Proc. 2010;1266:18–23.

Du Plesis  A, Broeckhoven  C, Guelpa  A, et al.  Laboratory x-ray micro-computed tomography: a user guideline for biological samples. Gigascience. 2017;6(6):doi:10.1093/gigascience/gix027. PubMed DOI PMC

van der Meij  M, Bout  R. The relationship between shape of the skull and bite force in finches. J Exp Biol. 2008;211(10):1668–80. PubMed

Dolivo-Dobrovolsky  V. Das Kopfskelett des Grottenolmes (Proteus anguinus Laur.). Zool Anz. 1923;57:281–4.

Dolivo-Dobrovolsky  V. Lobanja človeške ribice (Proteus anguinus Laurenti). Rad Jugosl Akad Zna-nosti Umjetnost. 1926;232:190–209.

Bizjak Mali  L, Sket  B. History and biology of the «black proteus» (Proteus anguinus parkelj Sket & Arntzen 1994; Amphibia: Proteidae). Folia Biol Geol. 2019;60:5–37.

Culver  D, Pipan  T. The Biology of Caves and Other Subterranean Habitats. Oxford University Press; 2019:doi:10.1093/oso/9780198820765.001.0001. DOI

Ribera  I, Cieslak  A, Faille  A, et al.  Historical and ecological factors determining cave diversity: analysis and synthesis. In: Moldovan  O, Kováč  Ľ, Halse  S, eds. Cave Ecology. Cham: Springer; 2018:doi:10.1007/978-3-319-98852-8_10. DOI

Recknagel  H, Trontelj  P. From cave dragons to genomics: advancements in the study of subterranean tetrapods. Bioscience. 2021;72(3):254–66. PubMed PMC

Comai  G, Tesařová  M, Dupé  V, et al.  Local retinoic acid signaling directs emergence of the extraocular muscle functional unit. PLoS Biol. 2020;18(11):e3000902. PubMed PMC

Jeffery  WR. Emerging model systems in evo-devo: cavefish and microevolution of development. Evol Dev. 2008;10:265–72. PubMed PMC

Tovar  R, Cantu  V, Fremaux  B, et al.  Comparative development and ocular histology between epigean and subterranean salamanders (Eurycea) from central Texas. PeerJ. 2021;9:e11840. PubMed PMC

Dumas  P, Chris  B. The olfaction in Proteus anguinus: a behavioural and cytological study. Behav Processes. 1998;43(2):107–13. PubMed

Kumar  A, Godwin  J, Gates  P, et al.  Molecular basis for the nerve dependence of limb regeneration in an adult vertebrate. Science. 2007;318(5851):772–7. PubMed PMC

Tesarova  M, Mancini  L, Mauri  E, et al.  Supporting data for "Living in darkness: exploring adaptation of Proteus anguinusin 3 dimensions by X-ray imaging" GigaScience Database. 2022. 10.5524/102196. PubMed DOI PMC

Schneider  C, Rasband  W, Eliceiri  K. NIH Image to ImageJ: 25 years of image analysis. Nat Methods. 2012;9(7):671–5. PubMed PMC

Limaye  A, Stock  S. Drishti: a volume exploration and presentation tool. Developments in X-Ray Tomography. 2012;8: doi:10.1117/12.935640. DOI

Yushkevich  PA, Gao  Y, Gerig  G. ITK-SNAP: an interactive tool for semi-automatic segmentation of multi-modality biomedical images. Conf Proc IEEE Eng Med Biol Soc. 2016;2016:3342–5. PubMed PMC

Tesařová  M, Heude  E, Comai  G, et al.  An interactive and intuitive visualisation method for X-ray computed tomography data of biological samples in 3D Portable Document Format. Sci Rep. 2019;9(1):doi:10.1038/s41598-019-51180-2. PubMed DOI PMC

Cignoni  P, Callieri  M, Corsini  M, et al.  MeshLab: an Open-Source Mesh Processing Tool. Computing. 2008;1:129–36., 10.2312/LocalChapterEvents/ItalChap/ItalianChapConf2008/129-136. DOI

Hess  R. The Essential Blender: guide to 3D creation with the open source suite Blender. No Starch Press; 2007.

Salamander 3D Model Collection. 2022. Sketchfab Repository. https://sketchfab.com/GigaDB/collections/salamander.

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...