Assessing the Anthelmintic Candidates BLK127 and HBK4 for Their Efficacy on Haemonchus contortus Adults and Eggs, and Their Hepatotoxicity and Biotransformation

. 2022 Mar 30 ; 14 (4) : . [epub] 20220330

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid35456588

Grantová podpora
project GAUK 1568519; UNCE/18/SCI/012 and SVV 260 550 Charles University
EFSA-CDN [CZ.02.1.01/0.0/0.0/16_019/0000841], co-funded by ERDF Ministry of Education Youth and Sports
Yourgene Health and Phylumtech SA Australian Research Council

Odkazy

PubMed 35456588
PubMed Central PMC9024958
DOI 10.3390/pharmaceutics14040754
PII: pharmaceutics14040754
Knihovny.cz E-zdroje

As a widely distributed parasitic nematode of ruminants, Haemonchus contortus has become resistant to most anthelmintic classes, there has been a major demand for new compounds against H. contortus and related nematodes. Recent phenotypic screening has revealed two compounds, designated as BLK127 and HBK4, that are active against H. contortus larvae. The present study was designed to assess the activity of these compounds against H. contortus eggs and adults, hepatotoxicity in rats and sheep, as well as biotransformation in H. contortus adults and the ovine liver. Both compounds exhibited no inhibitory effect on the hatching of eggs. The benzyloxy amide BLK127 significantly decreased the viability of adults in sensitive and resistant strains of H. contortus and showed no hepatotoxic effect, even at the highest concentration tested (100 µM). In contrast, HBK4 had no impact on the viability of H. contortus adults and exhibited significant hepatotoxicity. Based on these findings, HBK4 was excluded from further studies, while BLK127 seems to be a potential candidate for a new anthelmintic. Consequently, biotransformation of BLK127 was tested in H. contortus adults and the ovine liver. In H. contortus, several metabolites formed via hydroxylation, hydrolysis and glycosidation were identified, but the extent of biotransformation was low, and the total quantity of the metabolites formed did not differ significantly between the sensitive and resistant strains. In contrast, ovine liver cells metabolized BLK127 more extensively with a glycine conjugate of 4-(pentyloxy)benzoic acid as the main BLK127 metabolite.

Zobrazit více v PubMed

Kotze A.C., Prichard R.K. Chapter Nine—Anthelmintic Resistance in Haemonchus contortus: History, Mechanisms and Diagnosis. In: Gasser R.B., Samson-Himmelstjerna G.V., editors. Advances in Parasitology. Volume 93. Academic Press; Cambridge, MA, USA: 2016. pp. 397–428. PubMed

Laing R., Kikuchi T., Martinelli A., Tsai I.J., Beech R.N., Redman E., Holroyd N., Bartley D.J., Beasley H., Britton C., et al. The genome and transcriptome of Haemonchus contortus, a key model parasite for drug and vaccine discovery. Genome Biol. 2013;14:R88. doi: 10.1186/gb-2013-14-8-r88. PubMed DOI PMC

Stear M.J., Doligalska M., Donskow-Schmelter K. Alternatives to anthelmintics for the control of nematodes in livestock. Parasitology. 2007;134:139–151. doi: 10.1017/S0031182006001557. PubMed DOI

Prichard R. Genetic variability following selection of Haemonchus contortus with anthelmintics. Trends Parasitol. 2001;17:445–453. doi: 10.1016/S1471-4922(01)01983-3. PubMed DOI

Zajíčková M., Nguyen L.T., Skálová L., Stuchlíková L.R., Matoušková P. Anthelmintics in the future: Current trends in the discovery and development of new drugs against gastrointestinal nematodes. Drug Discov. Today. 2019;25:430–437. doi: 10.1016/j.drudis.2019.12.007. PubMed DOI

Preston S., Jabbar A., Gasser R.B. A perspective on genomic-guided anthelmintic discovery and repurposing using Haemonchus contortus. Infect. Genet. Evol. 2016;40:368–373. doi: 10.1016/j.meegid.2015.06.029. PubMed DOI

Toutain P.-L. Pharmacokinetic/pharmacodynamic integration in drug development and dosage-regimen optimization for veterinary medicine. AAPS PharmSci. 2002;4:160–188. doi: 10.1208/ps040438. PubMed DOI PMC

Ahmed I. Pharmaceutical challenges in veterinary product development. Adv. Drug Deliv. Rev. 2002;54:871–882. doi: 10.1016/S0169-409X(02)00074-1. PubMed DOI

From an Idea to the Marketplace: The Journey of an Animal Drug through the Approval Process. [(accessed on 20 February 2022)]; Available online: https://www.fda.gov/animal-veterinary/animal-health-literacy/idea-marketplace-journey-animal-drug-through-approval-process.

Nguyen L.T., Kurz T., Preston S., Brueckmann H., Lungerich B., Herath H., Koehler A.V., Wang T., Skalova L., Jabbar A., et al. Phenotypic screening of the ‘Kurz-box’ of chemicals identifies two compounds (BLK127 and HBK4) with anthelmintic activity in vitro against parasitic larval stages of Haemonchus contortus. Parasit. Vectors. 2019;12:191. doi: 10.1186/s13071-019-3426-7. PubMed DOI PMC

Jiao Y., Preston S., Garcia-Bustos J.F., Baell J.B., Ventura S., Le T., McNamara N., Nguyen N., Botteon A., Skinner C., et al. Tetrahydroquinoxalines induce a lethal evisceration phenotype in Haemonchus contortus in vitro. Int. J. Parasitol. Drugs Drug Resist. 2018;9:59–71. doi: 10.1016/j.ijpddr.2018.12.007. PubMed DOI PMC

Geary T.G. Chapter Ten—Haemonchus contortus: Applications in Drug Discovery. In: Gasser R.B., Samson-Himmelstjerna G.V., editors. Advances in Parasitology. Volume 93. Academic Press; Cambridge, MA, USA: 2016. pp. 429–463. PubMed

O’Grady J., Kotze A.C. Haemonchus contortus: In vitro drug screening assays with the adult life stage. Exp. Parasitol. 2004;106:164–172. doi: 10.1016/j.exppara.2004.03.007. PubMed DOI

Gomez-Lechon M.J., Lahoz A., Gombau L., Castell J.V., Donato M.T. In Vitro Evaluation of Potential Hepatotoxicity Induced by Drugs. Curr. Pharm. Des. 2010;16:1963–1977. doi: 10.2174/138161210791208910. PubMed DOI

Ingawale D.K., Mandlik S.K., Naik S.R. Models of hepatotoxicity and the underlying cellular, biochemical and immunological mechanism(s): A critical discussion. Environ. Toxicol. Pharmacol. 2014;37:118–133. doi: 10.1016/j.etap.2013.08.015. PubMed DOI

Olinga P., Schuppan D. Precision-cut liver slices: A tool to model the liver ex vivo. J. Hepatol. 2013;58:1252–1253. doi: 10.1016/j.jhep.2013.01.009. PubMed DOI

Collins S.D., Yuen G., Tu T., Budzinska M.A., Spring K.J., Bryant K., Shackel N.A. In vitro models of the liver: Disease modeling, drug discovery and clinical applications. In: Tirnitz-Parker J.E.E., editor. Hepatocellular Carcinoma. Codon Publications; Singapore: 2019. pp. 47–67. PubMed

Palma E., Doornebal E.J., Chokshi S. Precision-cut liver slices: A versatile tool to advance liver research. Hepatol. Int. 2019;13:51–57. doi: 10.1007/s12072-018-9913-7. PubMed DOI PMC

Prasad B., Garg A., Takwani H., Singh S. Metabolite identification by liquid chromatography-mass spectrometry. Trends Analytl. Chem. 2011;30:360–387. doi: 10.1016/j.trac.2010.10.014. DOI

Rothwell J., Sangster N. Haemonchus contortus: The uptake and metabolism of closantel. Int. J. Parasitol. 1997;27:313–319. doi: 10.1016/S0020-7519(96)00200-7. PubMed DOI

Stuchlíková L.R., Matoušková P., Vokřál I., Lamka J., Szotáková B., Sečkařová A., Dimunová D., Nguyen L.T., Várady M., Skálová L. Metabolism of albendazole, ricobendazole and flubendazole in Haemonchus contortus adults: Sex differences, resistance-related differences and the identification of new metabolites. Int. J. Parasitol. Drugs Drug Resist. 2018;8:50–58. doi: 10.1016/j.ijpddr.2018.01.005. PubMed DOI PMC

Matoušková P., Vokřál I., Lamka J., Skálová L. The Role of Xenobiotic-Metabolizing Enzymes in Anthelmintic Deactivation and Resistance in Helminths. Trends Parasitol. 2016;32:481–491. doi: 10.1016/j.pt.2016.02.004. PubMed DOI

Zajíčková M., Prchal L., Navrátilová M., Vodvárková N., Matoušková P., Vokřál I., Nguyen L.T., Skálová L. Sertraline as a new potential anthelmintic against Haemonchus contortus: Toxicity, efficacy, and biotransformation. Vet. Res. 2021;52:143. doi: 10.1186/s13567-021-01012-x. PubMed DOI PMC

A Van Wyk J., Gerber H.M., Groeneveld H.T. A technique for the recovery of nematodes from ruminants by migration from gastro-intestinal ingesta gelled in agar: Large-scale application. Onderstepoort J. Veter-Res. 1980;47:147–158. PubMed

Zárybnický T., Matoušková P., Lancošová B., Šubrt Z., Skálová L., Boušová I. Inter-Individual Variability in Acute Toxicity of R-Pulegone and R-Menthofuran in Human Liver Slices and Their Influence on miRNA Expression Changes in Comparison to Acetaminophen. Int. J. Mol. Sci. 2018;19:1805. doi: 10.3390/ijms19061805. PubMed DOI PMC

Kotze A.C., McClure S.J. Haemonchus contortus utilises catalase in defence against exogenous hydrogen peroxide in vitro. Int. J. Parasitol. 2001;31:1563–1571. doi: 10.1016/S0020-7519(01)00303-4. PubMed DOI

Holcapek M., Kolárová L., Nobilis M. High-performance liquid chromatography-tandem mass spectrometry in the identification and determination of phase I and phase II drug metabolites. Anal. Bioanal. Chem. 2008;391:59–78. doi: 10.1007/s00216-008-1962-7. PubMed DOI PMC

Vokřál I., Jirásko R., Stuchlíková L., Bártíková H., Szotáková B., Lamka J., Várady M., Skálová L. Biotransformation of albendazole and activities of selected detoxification enzymes in Haemonchus contortus strains susceptible and resistant to anthelmintics. Vet. Parasitol. 2013;196:373–381. doi: 10.1016/j.vetpar.2013.03.018. PubMed DOI

Preston S., Jabbar A., Nowell C., Joachim A., Ruttkowski B., Baell J., Cardno T., Korhonen P.K., Piedrafita D., Ansell B.R.E., et al. Low cost whole-organism screening of compounds for anthelmintic activity. Int. J. Parasitol. 2015;45:333–343. doi: 10.1016/j.ijpara.2015.01.007. PubMed DOI

Nguyen L.T., Zajíčková M., Mašátová E., Matoušková P., Skálová L. The ATP bioluminescence assay: A new application and optimization for viability testing in the parasitic nematode Haemonchus contortus. Vet. Res. 2021;52:124. doi: 10.1186/s13567-021-00980-4. PubMed DOI PMC

Laing R., Bartley D.J., Morrison A.A., Rezansoff A., Martinelli A., Laing S.T., Gilleard J.S. The cytochrome P450 family in the parasitic nematode Haemonchus contortus. Int. J. Parasitol. 2015;45:243–251. doi: 10.1016/j.ijpara.2014.12.001. PubMed DOI PMC

Huckle K.R., Hutson D.H., Millburn P. Species differences in the metabolism of 3-phenoxybenzoic acid. Drug Metab. Dispos. 1981;9:352. PubMed

Parkinson A. Biotransformation of xenobiotics. In: CD K., editor. Casarett and Doull’s Toxicology: The Basic Science of Poisons. 8th ed. McGraw-Hill; New York, NY, USA: 2013. pp. 133–224.

Lipinski C.A., Lombardo F., Dominy B.W., Feeney P.J. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv. Drug Deliv. Rev. 2001;46:3–26. doi: 10.1016/S0169-409X(00)00129-0. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...