Catching Them Early: Framework Parameters and Progress for Prenatal and Childhood Application of Advanced Therapies
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, přehledy
Grantová podpora
777554
European Commission
EXCELLENCE/1216/0092
Research and Innovation Foundation of Cyprus
EXCELLENCE/0421/0086
Research and Innovation Foundation of Cyprus
New infrastructure for diagnosis and treatment of patients
EEA and Norway Grants
PubMed
35456627
PubMed Central
PMC9031205
DOI
10.3390/pharmaceutics14040793
PII: pharmaceutics14040793
Knihovny.cz E-zdroje
- Klíčová slova
- CAR NK cell, CAR T cell, gene therapy, hematopoietic stem and progenitor cell, mesenchymal stromal cell, somatic cell therapy, tissue-engineered medicinal product,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Advanced therapy medicinal products (ATMPs) are medicines for human use based on genes, cells or tissue engineering. After clear successes in adults, the nascent technology now sees increasing pediatric application. For many still untreatable disorders with pre- or perinatal onset, timely intervention is simply indispensable; thus, prenatal and pediatric applications of ATMPs hold great promise for curative treatments. Moreover, for most inherited disorders, early ATMP application may substantially improve efficiency, economy and accessibility compared with application in adults. Vindicating this notion, initial data for cell-based ATMPs show better cell yields, success rates and corrections of disease parameters for younger patients, in addition to reduced overall cell and vector requirements, illustrating that early application may resolve key obstacles to the widespread application of ATMPs for inherited disorders. Here, we provide a selective review of the latest ATMP developments for prenatal, perinatal and pediatric use, with special emphasis on its comparison with ATMPs for adults. Taken together, we provide a perspective on the enormous potential and key framework parameters of clinical prenatal and pediatric ATMP application.
Consorzio per Valutazioni Biologiche e Farmacologiche 70122 Bari Italy
Empa Swiss Federal Laboratories for Materials Science and Technology 9014 St Gallen Switzerland
Institute of Translational Pharmacology IFT National Research Council 90146 Palermo Italy
Zobrazit více v PubMed
European Medicines Agency Advanced Therapy Medicinal Products: Overview|European Medicines Agency. [(accessed on 11 October 2021)]. Available online: https://www.ema.europa.eu/en/human-regulatory/overview/advanced-therapy-medicinal-products-overview.
European Medicines Agency Advanced Therapy Classification|European Medicines Agency. [(accessed on 11 October 2021)]. Available online: https://www.ema.europa.eu/en/human-regulatory/marketing-authorisation/advanced-therapies/advanced-therapy-classification.
European Medicines Agency Guidelines Relevant for Advanced Therapy Medicinal Products|European Medicines Agency. [(accessed on 11 October 2021)]. Available online: https://www.ema.europa.eu/en/human-regulatory/research-development/advanced-therapies/guidelines-relevant-advanced-therapy-medicinal-products.
European Medicines Agency Marketing-Authorisation Procedures for Advanced-Therapy Medicinal Products|European Medicines Agency. [(accessed on 11 October 2021)]. Available online: https://www.ema.europa.eu/en/human-regulatory/marketing-authorisation/advanced-therapies/marketing-authorisation-procedures-advanced-therapy-medicinal-products.
European Medicines Agency Niraparib|Medicines|European Medicines Agency. [(accessed on 11 October 2021)]. Available online: https://www.ema.europa.eu/en/medicines?search_api_views_fulltext=cancer+niraparib.
EC Medicines for Children|EC Public Health. [(accessed on 11 October 2021)]. Available online: https://ec.europa.eu/health/human-use/paediatric-medicines/
Halioua-Haubold C.L., Peyer J.G., Smith J.A., Arshad Z., Scholz M., Brindley D.A., Maclaren R.E. Regulatory considerations for gene therapy products in the US, EU, and Japan. Yale J. Biol. Med. 2017;90:683–693. PubMed PMC
Iglesias-Lopez C., Obach M., Vallano A., Agustí A. Comparison of regulatory pathways for the approval of advanced therapies in the European Union and the United States. Cytotherapy. 2021;23:261–274. doi: 10.1016/j.jcyt.2020.11.008. PubMed DOI
Eder C., Wild C. Technology forecast: Advanced therapies in late clinical research, EMA. approval or clinical application via hospital exemption. J. Mark. Access Health Policy. 2019;7:1600939. doi: 10.1080/20016689.2019.1600939. PubMed DOI PMC
Gatline A. Investor’s Business Daily® – Technology: Can CRISPR and These 3 Small Biotechs Cure 10,000 Diseases? [(accessed on 17 May 2018)]. Available online: https://www.investors.com/news/technology/crispr-gene-editing-biotech-companies/
López-Paniagua M., de la Mata A., Galindo S., Blázquez F., Calonge M., Nieto-Miguel T. Advanced Therapy Medicinal Products for the Eye: Definitions and Regulatory Framework. Pharmaceutics. 2021;13:347. doi: 10.3390/pharmaceutics13030347. PubMed DOI PMC
Ronco V., Dilecce M., Lanati E., Canonico P.L., Jommi C. Price and reimbursement of advanced therapeutic medicinal products in Europe: Are assessment and appraisal diverging from expert recommendations? J. Pharm. Policy Pract. 2021;14:30. doi: 10.1186/s40545-021-00311-0. PubMed DOI PMC
Mebarki M., Abadie C., Larghero J., Cras A. Human umbilical cord-derived mesenchymal stem/stromal cells: A promising candidate for the development of advanced therapy medicinal products. Stem Cell Res. Ther. 2021;12:152. doi: 10.1186/s13287-021-02222-y. PubMed DOI PMC
Ciccocioppo R., Comoli P., Astori G., del Bufalo F., Prapa M., Dominici M., Locatelli F. Developing cell therapies as drug products. Br. J. Pharmacol. 2021;178:262–279. doi: 10.1111/bph.15305. PubMed DOI
Elverum K., Whitman M. Delivering cellular and gene therapies to patients: Solutions for realizing the potential of the next generation of medicine. Gene Ther. 2020;27:537–544. doi: 10.1038/s41434-019-0074-7. PubMed DOI PMC
Koniali L., Lederer C.W., Kleanthous M. Therapy Development by Genome Editing of Hematopoietic Stem Cells. Cells. 2021;10:1492. doi: 10.3390/cells10061492. PubMed DOI PMC
Whomsley R., Palmi Reig V., Hidalgo-Simon A. Environmental risk assessment of advanced therapies containing genetically modified organisms in the EU. Br. J. Clin. Pharmacol. 2021;87:2450–2458. doi: 10.1111/bcp.14781. PubMed DOI
Lechanteur C., Briquet A., Bettonville V., Baudoux E., Beguin Y. Msc manufacturing for academic clinical trials: From a clinical-grade to a full gmp-compliant process. Cells. 2021;10:1320. doi: 10.3390/cells10061320. PubMed DOI PMC
Beattie S. Call for more effective regulation of clinical trials with advanced therapy medicinal products consisting of or containing genetically modified organisms in the European Union. Hum. Gene Ther. 2021;32:997–1003. doi: 10.1089/HUM.2021.058. PubMed DOI
European Medicines Agency Scientific Recommendations on Classification of Advanced Therapy Medicinal Products|EMA/140033/2021. [(accessed on 10 December 2021)]. Available online: https://www.ema.europa.eu/en/human-regulatory/marketing-authorisation/advanced-therapies/advanced-therapy-classification/scientific-recommendations-classification-advanced-therapy-medicinal-products.
Attico E., Sceberras V., Pellegrini G. Approaches for Effective Clinical Application of Stem Cell Transplantation. Curr. Transplant. Rep. 2018;5:244–250. doi: 10.1007/s40472-018-0202-0. PubMed DOI PMC
Quinn C., Young C., Thomas J., Trusheim M. Estimating the Clinical Pipeline of Cell and Gene Therapies and Their Potential Economic Impact on the US Healthcare System. Value Health. 2019;22:621–626. doi: 10.1016/j.jval.2019.03.014. PubMed DOI
Shukla V., Seoane-Vazquez E., Fawaz S., Brown L., Rodriguez-Monguio R. The Landscape of Cellular and Gene Therapy Products: Authorization, Discontinuations, and Cost. Hum. Gene Ther. Clin. Dev. 2019;30:102–113. doi: 10.1089/humc.2018.201. PubMed DOI
Adami A., Maher J. An overview of CAR T-cell clinical trial activity to 2021. Immunother. Adv. 2021;1:ltab004. doi: 10.1093/immadv/ltab004. PubMed DOI PMC
Marofi F., Saleh M.M., Rahman H.S., Suksatan W., Al-Gazally M.E., Abdelbasset W.K., Thangavelu L., Yumashev A.V., Hassanzadeh A., Yazdanifar M., et al. CAR-engineered NK cells; a promising therapeutic option for treatment of hematological malignancies. Stem Cell Res. Ther. 2021;12:374. doi: 10.1186/s13287-021-02462-y. PubMed DOI PMC
Li Y.-R., Dunn Z.S., Zhou Y., Lee D., Yang L. Development of Stem Cell-Derived Immune Cells for Off-the-Shelf Cancer Immunotherapies. Cells. 2021;10:3497. doi: 10.3390/cells10123497. PubMed DOI PMC
Aiuti A., Cattaneo F., Galimberti S., Benninghoff U., Cassani B., Callegaro L., Scaramuzza S., Andolfi G., Mirolo M., Brigida I., et al. Gene therapy for immunodeficiency due to adenosine deaminase deficiency. N. Engl. J. Med. 2009;360:447–458. doi: 10.1056/NEJMoa0805817. PubMed DOI
Bank A., Dorazio R., Leboulch P. A phase I/II clinical trial of beta-globin gene therapy for beta-thalassemia. Ann. N. Y. Acad. Sci. 2005;1054:308–316. doi: 10.1196/annals.1345.007. PubMed DOI
Cavazzana-Calvo M., Payen E., Negre O., Wang G., Hehir K., Fusil F., Down J., Denaro M., Brady T., Westerman K., et al. Transfusion independence and HMGA2 activation after gene therapy of human beta-thalassaemia. Nature. 2010;467:318–322. doi: 10.1038/nature09328. PubMed DOI PMC
Ribeil J.-A., Hacein-Bey-Abina S., Payen E., Magnani A., Semeraro M., Magrin E., Caccavelli L., Neven B., Bourget P., El Nemer W., et al. Gene Therapy in a Patient with Sickle Cell Disease. N. Engl. J. Med. 2017;376:848–855. doi: 10.1056/NEJMoa1609677. PubMed DOI
Thompson A.A., Walters M.C., Kwiatkowski J., Rasko J.E.J., Ribeil J.-A.A., Hongeng S., Magrin E., Schiller G.J., Payen E., Semeraro M., et al. Gene Therapy in Patients with Transfusion-Dependent β-Thalassemia. N. Engl. J. Med. 2018;378:1479–1493. doi: 10.1056/NEJMoa1705342. PubMed DOI
CRISPRTX CRISPR Therapeutics Provides Business Update and Reports Fourth Quarter and Full Year 2020 Financial Results. [(accessed on 1 June 2021)]. Available online: http://ir.crisprtx.com/news-releases/news-release-details/crispr-therapeutics-provides-business-update-and-reports-4.
Gruhn B., Brodt G., Ernst J. Extended Treatment with Mesenchymal Stromal Cells-Frankfurt am Main in a Pediatric Patient with Steroid-refractory Acute Gastrointestinal Graft-Versus-Host Disease: Case Report and Review of the Literature. J. Pediatr. Hematol. Oncol. 2021;43:e419–e425. doi: 10.1097/MPH.0000000000001758. PubMed DOI
Buscail E., Le Cosquer G., Gross F., Lebrin M., Bugarel L., Deraison C., Vergnolle N., Bournet B., Gilletta C., Buscail L. Adipose-derived stem cells in the treatment of perianal fistulas in Crohn’s disease: Rationale, clinical results and perspectives. Int. J. Mol. Sci. 2021;22:9967. doi: 10.3390/ijms22189967. PubMed DOI PMC
Cuende N., Rasko J.E.J., Koh M.B.C., Dominici M., Ikonomou L. Cell, tissue and gene products with marketing authorization in 2018 worldwide. Cytotherapy. 2018;20:1401–1413. doi: 10.1016/j.jcyt.2018.09.010. PubMed DOI
Globerson Levin A., Rivière I., Eshhar Z., Sadelain M. CAR T cells: Building on the CD19 paradigm. Eur. J. Immunol. 2021;51:2151–2163. doi: 10.1002/eji.202049064. PubMed DOI PMC
Lee D.W., Kochenderfer J.N., Stetler-Stevenson M., Cui Y.K., Delbrook C., Feldman S.A., Fry T.J., Orentas R., Sabatino M., Shah N.N., et al. T cells expressing CD19 chimeric antigen receptors for acute lymphoblastic leukaemia in children and young adults: A phase 1 dose-escalation trial. Lancet. 2015;385:517–528. doi: 10.1016/S0140-6736(14)61403-3. PubMed DOI PMC
Lichtenstein D.A., Schischlik F., Shao L., Steinberg S.M., Yates B., Wang H.W., Wang Y., Inglefield J., Dulau-Florea A., Ceppi F., et al. Characterization of HLH-like manifestations as a CRS variant in patients receiving CD22 CAR T cells. Blood. 2021;138:2469–2484. doi: 10.1182/blood.2021011898. PubMed DOI PMC
Liu R., Cheng Q., Kang L., Wang E., Li Y., Zhang J., Xiao H., Zhang Y., Chu L., Chen X., et al. CD19 or CD20 CAR T-cell Therapy Demonstrates Durable Antitumor Efficacy in Patients with CNS Lymphoma. Hum. Gene Ther. 2022;33:318–329. doi: 10.1089/hum.2021.249. PubMed DOI
Shah N., Chari A., Scott E., Mezzi K., Usmani S.Z. B-cell maturation antigen (BCMA) in multiple myeloma: Rationale for targeting and current therapeutic approaches. Leukemia. 2020;34:985–1005. doi: 10.1038/s41375-020-0734-z. PubMed DOI PMC
Xue Y.B., Lai X., Li R.L., Ge C.L., Zeng B.Z., Li Z., Fu Q.F., Zhao L.F., Dong S.W., Yang J.Y., et al. CD19 and CD30 CAR T-Cell Immunotherapy for High-Risk Classical Hodgkin’s Lymphoma. Front. Oncol. 2021;10:607362. doi: 10.3389/fonc.2020.607362. PubMed DOI PMC
Zhang H., Liu M., Xiao X., Lv H., Jiang Y., Li X., Yuan T., Zhao M. A combination of humanized anti-BCMA and murine anti-CD38 CAR-T cell therapy in patients with relapsed or refractory multiple myeloma. Leuk. Lymphoma. 2022:1–10. doi: 10.1080/10428194.2022.2030476. PubMed DOI
Mohanty R., Chowdhury C.R., Arega S., Sen P., Ganguly P., Ganguly N. CAR T cell therapy: A new era for cancer treatment (Review) Oncol. Rep. 2019;42:2183–2195. doi: 10.3892/or.2019.7335. PubMed DOI
Tang Y., Yin H., Zhao X., Jin D., Liang Y., Xiong T., Li L., Tang W., Zhang J., Liu M., et al. High efficacy and safety of CD38 and BCMA bispecific CAR-T in relapsed or refractory multiple myeloma. J. Exp. Clin. Cancer Res. 2022;41:1–15. doi: 10.1186/s13046-021-02214-z. PubMed DOI PMC
Shah N.N., Johnson B.D., Schneider D., Zhu F., Szabo A., Keever-Taylor C.A., Krueger W., Worden A.A., Kadan M.J., Yim S., et al. Bispecific anti-CD20, anti-CD19 CAR T cells for relapsed B cell malignancies: A phase 1 dose escalation and expansion trial. Nat. Med. 2020;26:1569–1575. doi: 10.1038/s41591-020-1081-3. PubMed DOI
Xie G., Dong H., Liang Y., Ham J.D., Rizwan R., Chen J. CAR-NK cells: A promising cellular immunotherapy for cancer. EBioMedicine. 2020;59:102975. doi: 10.1016/j.ebiom.2020.102975. PubMed DOI PMC
Tucci F., Scaramuzza S., Aiuti A., Mortellaro A. Update on Clinical Ex Vivo Hematopoietic Stem Cell Gene Therapy for Inherited Monogenic Diseases. Mol. Ther. 2021;29:489–504. doi: 10.1016/j.ymthe.2020.11.020. PubMed DOI PMC
Simaria A.S., Hassan S., Varadaraju H., Rowley J., Warren K., Vanek P., Farid S.S. Allogeneic cell therapy bioprocess economics and optimization: Single-use cell expansion technologies. Biotechnol. Bioeng. 2014;111:69–83. doi: 10.1002/bit.25008. PubMed DOI PMC
Papasavva P., Kleanthous M., Lederer C.W. Rare Opportunities: CRISPR/Cas-Based Therapy Development for Rare Genetic Diseases. Mol. Diagn. Ther. 2019;23:201–222. doi: 10.1007/s40291-019-00392-3. PubMed DOI PMC
Papanikolaou E., Bosio A. The Promise and the Hope of Gene Therapy. Front. Genome Ed. 2021;3:618346. doi: 10.3389/fgeed.2021.618346. PubMed DOI PMC
European Medicines Agency Zynteglo. [(accessed on 21 March 2022)]. Available online: https://www.ema.europa.eu/en/medicines/human/EPAR/zynteglo.
European Medicines Agency Skysona. [(accessed on 21 March 2022)]. Available online: https://www.ema.europa.eu/en/medicines/human/EPAR/skysona.
European Medicines Agency Strimvelis. [(accessed on 21 March 2022)]. Available online: https://www.ema.europa.eu/en/medicines/human/EPAR/strimvelis.
European Medicines Agency Libmeldy. [(accessed on 21 March 2022)]. Available online: https://www.ema.europa.eu/en/medicines/human/EPAR/libmeldy.
European Medicines Agency Luxturna. [(accessed on 21 March 2022)]. Available online: https://www.ema.europa.eu/en/medicines/human/EPAR/luxturna.
European Medicines Agency Zolgensma. [(accessed on 21 March 2022)]. Available online: https://www.ema.europa.eu/en/medicines/human/EPAR/zolgensma.
European Medicines Agency Resamirigene Bilparvovec. [(accessed on 21 March 2022)]. Available online: https://www.ema.europa.eu/en/medicines/human/paediatric-investigation-plans/emea-002571-pip01-19.
Lazarus H.M., Haynesworth S.E., Gerson S.L., Rosenthal N.S., Caplan A.I. Ex vivo expansion and subsequent infusion of human bone marrow-derived stromal progenitor cells (mesenchymal progenitor cells): Implications for therapeutic use. Bone Marrow Transplant. 1995;16:557–564. PubMed
Jacobsohn D.A., Vogelsang G.B. Acute graft versus host disease. Orphanet J. Rare Dis. 2007;2:35. doi: 10.1186/1750-1172-2-35. PubMed DOI PMC
Mac Sweeney R., McAuley D.F. Mesenchymal stem cell therapy in acute lung injury: Is it time for a clinical trial? Thorax. 2012;67:475–476. doi: 10.1136/thoraxjnl-2011-201309. PubMed DOI
Aggarwal S., Pittenger M.F. Human mesenchymal stem cells modulate allogeneic immune cell responses. Blood. 2005;105:1815–1822. doi: 10.1182/blood-2004-04-1559. PubMed DOI
Maitra B., Szekely E., Gjini K., Laughlin M.J., Dennis J., Haynesworth S.E., Koç O.N. Human mesenchymal stem cells support unrelated donor hematopoietic stem cells and suppress T-cell activation. Bone Marrow Transplant. 2004;33:597–604. doi: 10.1038/sj.bmt.1704400. PubMed DOI
Introna M., Lucchini G., Dander E., Galimberti S., Rovelli A., Balduzzi A., Longoni D., Pavan F., Masciocchi F., Algarotti A., et al. Treatment of graft versus host disease with mesenchymal stromal cells: A phase I study on 40 adult and pediatric patients. Biol. Blood Marrow Transplant. 2014;20:375–381. doi: 10.1016/j.bbmt.2013.11.033. PubMed DOI
Le Blanc K., Frassoni F., Ball L., Locatelli F., Roelofs H., Lewis I., Lanino E., Sundberg B., Bernardo M.E., Remberger M., et al. Mesenchymal stem cells for treatment of steroid-resistant, severe, acute graft-versus-host disease: A phase II study. Lancet. 2008;371:1579–1586. doi: 10.1016/S0140-6736(08)60690-X. PubMed DOI
McIntyre L.A., Moher D., Fergusson D.A., Sullivan K.J., Mei S.H.J., Lalu M., Marshall J., McLeod M., Griffin G., Grimshaw J., et al. Efficacy of mesenchymal stromal cell therapy for acute lung injury in preclinical animal models: A systematic review. PLoS ONE. 2016;11:e0147170. doi: 10.1371/journal.pone.0147170. PubMed DOI PMC
Rojas M., Xu J., Woods C.R., Mora A.L., Spears W., Roman J., Brigham K.L. Bone marrow-derived mesenchymal stem cells in repair of the injured lung. Am. J. Respir. Cell Mol. Biol. 2005;33:145–152. doi: 10.1165/rcmb.2004-0330OC. PubMed DOI PMC
Sagar R., David A., Gotherstrom C. BOOSTB4 (Boost Brittle Bones before Birth) trial protocol. Prenat. Diagn. 2020;40:46.
Otsuru S., Desbourdes L., Guess A.J., Hofmann T.J., Relation T., Kaito T., Dominici M., Iwamoto M., Horwitz E.M. Extracellular vesicles released from mesenchymal stromal cells stimulate bone growth in osteogenesis imperfecta. Cytotherapy. 2018;20:62–73. doi: 10.1016/j.jcyt.2017.09.012. PubMed DOI
Dong R., Bai Y., Dai J., Deng M., Zhao C., Tian Z., Zeng F., Liang W., Liu L., Dong S. Engineered scaffolds based on mesenchymal stem cells/preosteoclasts extracellular matrix promote bone regeneration. J. Tissue Eng. 2020;11:1–13. doi: 10.1177/2041731420926918. PubMed DOI PMC
Kon E., Muraglia A., Corsi A., Bianco P., Marcacci M., Martin I., Boyde A., Ruspantini I., Chistolini P., Rocca M., et al. Autologous bone marrow stromal cells loaded onto porous hydroxyapatite ceramic accelerate bone repair in critical-size defects of sheep long bones. J. Biomed. Mater. Res. 2000;49:328–337. doi: 10.1002/(SICI)1097-4636(20000305)49:3<328::AID-JBM5>3.0.CO;2-Q. PubMed DOI
Van Gaalen S.M., Dhert W.J.A., Van Den Muysenberg A., Oner F.C., Van Blitterswijk C., Verbout A.J., De Bruijn J.D. Bone Tissue Engineering for Spine Fusion: An Experimental Study on Ectopic and Orthotopic Implants in Rats. Tissue Eng. 2004;10:231–239. doi: 10.1089/107632704322791871. PubMed DOI
Vicinanza C., Lombardi E., Da Ros F., Marangon M., Durante C., Mazzucato M., Agostini F. Modified mesenchymal stem cells in cancer therapy: A smart weapon requiring upgrades for wider clinical applications. World J. Stem Cells. 2022;14:54–75. doi: 10.4252/wjsc.v14.i1.54. PubMed DOI PMC
Harrell C.R., Volarevic A., Djonov V.G., Jovicic N., Volarevic V. Mesenchymal stem cell: A friend or foe in anti-tumor immunity. Int. J. Mol. Sci. 2021;22:12429. doi: 10.3390/ijms222212429. PubMed DOI PMC
Premer C., Blum A., Bellio M.A., Schulman I.H., Hurwitz B.E., Parker M., Dermarkarian C.R., DiFede D.L., Balkan W., Khan A., et al. Allogeneic Mesenchymal Stem Cells Restore Endothelial Function in Heart Failure by Stimulating Endothelial Progenitor Cells. EBioMedicine. 2015;2:467–475. doi: 10.1016/j.ebiom.2015.03.020. PubMed DOI PMC
Liu M., He J., Zheng S., Zhang K., Ouyang Y., Zhang Y., Li C., Wu D. Human umbilical cord mesenchymal stem cells ameliorate acute liver failure by inhibiting apoptosis, inflammation and pyroptosis. Ann. Transl. Med. 2021;9:1615. doi: 10.21037/atm-21-2885. PubMed DOI PMC
Liu Q., Lv C., Jiang Y., Luo K., Gao Y., Liu J., Zhang X., Mohammad Omar J., Jin S. From hair to liver: Emerging application of hair follicle mesenchymal stem cell transplantation reverses liver cirrhosis by blocking the TGF-β/Smad signaling pathway to inhibit pathological HSC activation. PeerJ. 2022;10:e12872. doi: 10.7717/peerj.12872. PubMed DOI PMC
Huang Y., Yang L. Mesenchymal stem cells and extracellular vesicles in therapy against kidney diseases. Stem Cell Res. Ther. 2021;12:219. doi: 10.1186/s13287-021-02289-7. PubMed DOI PMC
Mastrolia I., Foppiani E.M., Murgia A., Candini O., Samarelli A.V., Grisendi G., Veronesi E., Horwitz E.M., Dominici M. Challenges in Clinical Development of Mesenchymal Stromal/Stem Cells: Concise Review. Stem Cells Transl. Med. 2019;8:1135–1148. doi: 10.1002/sctm.19-0044. PubMed DOI PMC
Sherkow J.S. Controlling CRISPR Through Law: Legal Regimes as Precautionary Principles. Cris. J. 2019;2:299–303. doi: 10.1089/crispr.2019.0029. PubMed DOI
Daley G.Q., Lovell-Badge R., Steffann J. After the Storm—A Responsible Path for Genome Editing. N. Engl. J. Med. 2019;380:897–899. doi: 10.1056/NEJMp1900504. PubMed DOI
Cockroft A., Wilson A. Comparability: What we can learn from the review of advanced therapy medicinal products. Regen. Med. 2021;16:655–667. doi: 10.2217/rme-2021-0026. PubMed DOI
Coppens D.G.M., de Wilde S., Guchelaar H.J., De Bruin M.L., Leufkens H.G.M., Meij P., Hoekman J. A decade of marketing approval of gene and cell-based therapies in the United States, European Union and Japan: An evaluation of regulatory decision-making. Cytotherapy. 2018;20:769–778. doi: 10.1016/j.jcyt.2018.03.038. PubMed DOI
Gozzo L., Romano G.L., Romano F., Brancati S., Longo L., Vitale D.C., Drago F. Health Technology Assessment of Advanced Therapy Medicinal Products: Comparison Among 3 European Countries. Front. Pharmacol. 2021;12:755052. doi: 10.3389/fphar.2021.755052. PubMed DOI PMC
Ten Ham R.M.T., Hoekman J., Hövels A.M., Broekmans A.W., Leufkens H.G.M., Klungel O.H. Challenges in Advanced Therapy Medicinal Product Development: A Survey among Companies in Europe. Mol. Ther. Methods Clin. Dev. 2018;11:121–130. doi: 10.1016/j.omtm.2018.10.003. PubMed DOI PMC
Adair J., Sevilla J., Heredia C., Becker P., Kiem H.-P., Bueren J. Lessons Learned from Two Decades of Clinical Trial Experience in Gene Therapy for Fanconi Anemia. Curr. Gene Ther. 2017;16:338–348. doi: 10.2174/1566523217666170119113029. PubMed DOI
Jossen V., Muoio F., Panella S., Harder Y., Tallone T., Eibl R. An approach towards a gmp compliant in-vitro expansion of human adipose stem cells for autologous therapies. Bioengineering. 2020;7:77. doi: 10.3390/bioengineering7030077. PubMed DOI PMC
Agostini F., Vicinanza C., Biolo G., Spessotto P., Da Ros F., Lombardi E., Durante C., Mazzucato M. Nucleofection of Adipose Mesenchymal Stem/Stromal Cells: Improved Transfection Efficiency for GMP Grade Applications. Cells. 2021;10:3412. doi: 10.3390/cells10123412. PubMed DOI PMC
Ayati N., Saiyarsarai P., Nikfar S. Short and long term impacts of COVID-19 on the pharmaceutical sector. DARU J. Pharm. Sci. 2020;28:799–805. doi: 10.1007/s40199-020-00358-5. PubMed DOI PMC
Plieth J. The $100,000 Problem Gene Therapy Companies Would Rather Not Mention|Evaluate. [(accessed on 31 December 2021)]. Available online: https://www.evaluate.com/vantage/articles/analysis/vantage-points/100000-problem-gene-therapy-companies-would-rather-not.
Gonçalves E. Advanced therapy medicinal products: Value judgement and ethical evaluation in health technology assessment. Eur. J. Health Econ. 2020;21:311–320. doi: 10.1007/s10198-019-01147-x. PubMed DOI PMC
BioPharma Dive. [(accessed on 18 May 2021)]. Available online: https://www.biopharmadive.com/news/bluebird-withdraw-zynteglo-germany-price/598689/
Rackaityte E., Halkias J. Mechanisms of Fetal T Cell Tolerance and Immune Regulation. Front. Immunol. 2020;11:588. doi: 10.3389/fimmu.2020.00588. PubMed DOI PMC
Bose S.K., Menon P., Peranteau W.H. In Utero Gene Therapy: Progress and Challenges. Trends Mol. Med. 2021;27:728–730. doi: 10.1016/j.molmed.2021.05.007. PubMed DOI PMC
European Medicines Agency Paediatric Regulation|European Medicines Agency. [(accessed on 11 October 2021)]. Available online: https://www.ema.europa.eu/en/human-regulatory/overview/paediatric-medicines/paediatric-regulation.
EUR-Lex-32006R1901-EN-EUR-Lex. [(accessed on 24 February 2022)]. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=celex%3A32006R1901.
EUR-Lex-32006R1902-EN-EUR-Lex. [(accessed on 24 February 2022)]. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=celex%3A32006R1902.
European Commission . State of Paediatric Medicines in the EU – 10 Years of the EU Paediatric Regulation. European Commission; Brussel, Belgium: 2017. COM(2017)626.
European Medicines Agency . 10-Year Report to the European Commission – General Report on the Paediatric Regulation. European Medicines Agency; Amsterdam, The Netherlands: 2017. EMA/231225/2015.
Park P.J., Colletti E., Ozturk F., Wood J.A., Tellez J., Almeida-Porada G., Porada C.D. Factors determining the risk of inadvertent retroviral transduction of male germ cells after in utero gene transfer in sheep. Hum. Gene Ther. 2009;20:201–215. doi: 10.1089/hum.2007.120. PubMed DOI PMC
Almeida-Porada G., Atala A., Porada C.D. In utero stem cell transplantation and gene therapy: Rationale, history, and recent advances toward clinical application. Mol. Ther.-Methods Clin. Dev. 2016;3:16020. doi: 10.1038/mtm.2016.20. PubMed DOI PMC
Staud F., Karahoda R. Trophoblast: The central unit of fetal growth, protection and programming. Int. J. Biochem. Cell Biol. 2018;105:35–40. doi: 10.1016/j.biocel.2018.09.016. PubMed DOI
Sharma A., Sah N., Kannan S., Kannan R.M. Targeted drug delivery for maternal and perinatal health: Challenges and opportunities. Adv. Drug Deliv. Rev. 2021;177:113950. doi: 10.1016/j.addr.2021.113950. PubMed DOI PMC
Schrepfer S., Deuse T., Reichenspurner H., Fischbein M.P., Robbins R.C., Pelletier M.P. Stem Cell Transplantation: The Lung Barrier. Transplant. Proc. 2007;39:573–576. doi: 10.1016/j.transproceed.2006.12.019. PubMed DOI
Nijagal A., Le T., Wegorzewska M., MacKenzie T.C. A mouse model of in Utero transplantation. J. Vis. Exp. 2010:e2303. doi: 10.3791/2303. PubMed DOI PMC
Mattar C.N.Z., Gil-Farina I., Rosales C., Johana N., Tan Y.Y.W., McIntosh J., Kaeppel C., Waddington S.N., Biswas A., Choolani M., et al. In Utero Transfer of Adeno-Associated Viral Vectors Produces Long-Term Factor IX Levels in a Cynomolgus Macaque Model. Mol. Ther. 2017;25:1843–1853. doi: 10.1016/j.ymthe.2017.04.003. PubMed DOI PMC
Palanki R., Peranteau W.H., Mitchell M.J. Delivery technologies for in utero gene therapy. Adv. Drug Deliv. Rev. 2021;169:51–62. doi: 10.1016/j.addr.2020.11.002. PubMed DOI PMC
European Medicines Agency EMEA/273974/2005-Note for Guidance on the Quality, Preclinical and Clinical Aspects of Gene Transfer Medicinal Products. [(accessed on 8 November 2018)]. Available online: https://www.ema.europa.eu/
European Commission . Guidelines on Good Clinical Practice specific to Advanced Therapy Medicinal Products. European Commission; Brussel, Belgium: 2019. C(2019)7140.
Jaeggi E.T., Carvalho J.S., De Groot E., Api O., Clur S.A.B., Rammeloo L., McCrindle B.W., Ryan G., Manlhiot C., Blom N.A. Comparison of transplacental treatment of fetal supraventricular tachyarrhythmias with digoxin, flecainide, and sotalol: Results of a nonrandomized multicenter study. Circulation. 2011;124:1747–1754. doi: 10.1161/CIRCULATIONAHA.111.026120. PubMed DOI
Cerveny L., Murthi P., Staud F. HIV in pregnancy: Mother-to-child transmission, pharmacotherapy, and toxicity. Biochim. Biophys. Acta-Mol. Basis Dis. 2021;1867:166206. doi: 10.1016/j.bbadis.2021.166206. PubMed DOI
Korth-Bradley J.M. The Path to Perfect Pediatric Posology—Drug Development in Pediatrics. J. Clin. Pharmacol. 2018;58:S48–S57. doi: 10.1002/jcph.1081. PubMed DOI
Manual R., Ray L. Breeding Strategies for Maintaining Colonies of Laboratory Mice: A Jackson Laboratory Resource Manual. Volume 83. The Jackson Laboratory; Bar Harbor, ME, USA: 2007. p. 29.
Ayuso M., Buyssens L., Stroe M., Valenzuela A., Allegaert K., Smits A., Annaert P., Mulder A., Carpentier S., Van Ginneken C., et al. The neonatal and juvenile pig in pediatric drug discovery and development. Pharmaceutics. 2021;13:44. doi: 10.3390/pharmaceutics13010044. PubMed DOI PMC
Trobridge G.D., Kiem H.P. Large animal models of hematopoietic stem cell gene therapy. Gene Ther. 2010;17:939–948. doi: 10.1038/gt.2010.47. PubMed DOI PMC
Story B.D., Miller M.E., Bradbury A.M., Million E.D., Duan D., Taghian T., Faissler D., Fernau D., Beecy S.J., Gray-Edwards H.L. Canine Models of Inherited Musculoskeletal and Neurodegenerative Diseases. Front. Vet. Sci. 2020;7:80. doi: 10.3389/fvets.2020.00080. PubMed DOI PMC
Chen Y., Niu Y., Ji W. Genome editing in nonhuman primates: Approach to generating human disease models. J. Intern. Med. 2016;280:246–251. doi: 10.1111/joim.12469. PubMed DOI
Sasaki E., Sakakibara Y., Kumita W., Ito R., Nozu R., Inoue T., Katano I., Okahara N., Okahara J., Shimizu Y., et al. Generation of a Nonhuman Primate Model of Severe Combined Immunodeficiency Using Highly Efficient Genome Editing. Cell Stem Cell. 2016;19:127–138. doi: 10.1016/j.stem.2016.06.003. PubMed DOI
Gray-Edwards H.L., Randle A.N., Maitland S.A., Benatti H.R., Hubbard S.M., Canning P.F., Vogel M.B., Brunson B.L., Hwang M., Ellis L.E., et al. Adeno-Associated Virus Gene Therapy in a Sheep Model of Tay-Sachs Disease. Hum. Gene Ther. 2018;29:312–326. doi: 10.1089/hum.2017.163. PubMed DOI
Kleine Holthaus S.M., Aristorena M., Maswood R., Semenyuk O., Hoke J., Hare A., Smith A.J., Mole S.E., Ali R.R. Gene Therapy Targeting the Inner Retina Rescues the Retinal Phenotype in a Mouse Model of CLN3 Batten Disease. Hum. Gene Ther. 2020;31:709–718. doi: 10.1089/hum.2020.038. PubMed DOI PMC
Song C., Dufour V.L., Cideciyan A.V., Ye G.J., Swider M., Newmark J.A., Timmers A.M., Robinson P.M., Knop D.R., Chulay J.D., et al. Dose Range Finding Studies with Two RPGR Transgenes in a Canine Model of X-Linked Retinitis Pigmentosa Treated with Subretinal Gene Therapy. Hum. Gene Ther. 2020;31:743–755. doi: 10.1089/hum.2019.337. PubMed DOI PMC
Hastings M.L., Brigande J.V. Fetal gene therapy and pharmacotherapy to treat congenital hearing loss and vestibular dysfunction. Hear. Res. 2020;394:107931. doi: 10.1016/j.heares.2020.107931. PubMed DOI PMC
Fåne A., Myhre M.R., Inderberg E.M., Wälchli S. In vivo experimental mouse model to test CD19CAR T cells generated with different methods. Methods Cell Biol. 2022;167:149–161. doi: 10.1016/BS.MCB.2021.11.001. PubMed DOI
Wang Y., Buck A., Grimaud M., Culhane A.C., Kodangattil S., Razimbaud C., Bonal D.M., De Nguyen Q., Zhu Z., Wei K., et al. Anti-CAIX BBζ CAR4/8 T cells exhibit superior efficacy in a ccRCC mouse model. Mol. Ther.-Oncolytics. 2022;24:385–399. doi: 10.1016/j.omto.2021.12.019. PubMed DOI PMC
Daher M., Basar R., Gokdemir E., Baran N., Uprety N., Nunez Cortes A.K., Mendt M., Kerbauy L.N., Banerjee P.P., Shanley M., et al. Targeting a cytokine checkpoint enhances the fitness of armored cord blood CAR-NK cells. Blood. 2021;137:624–636. doi: 10.1182/blood.2020007748. PubMed DOI PMC
Makkouk A., Yang X.C., Barca T., Lucas A., Turkoz M., Wong J.T.S., Nishimoto K.P., Brodey M.M., Tabrizizad M., Gundurao S.R.Y., et al. Off-the-shelf Vδ 1 gamma delta T cells engineered with glypican-3 (GPC-3)-specific chimeric antigen receptor (CAR) and soluble IL-15 display robust antitumor efficacy against hepatocellular carcinoma. J. Immunother. Cancer. 2021;9:e003441. doi: 10.1136/jitc-2021-003441. PubMed DOI PMC
Goyama S., Wunderlich M., Mulloy J.C. Xenograft models for normal and malignant stem cells. Blood. 2015;125:2630–2640. doi: 10.1182/blood-2014-11-570218. PubMed DOI
Radtke S., Humbert O., Kiem H.P. Mouse models in hematopoietic stem cell gene therapy and genome editing. Biochem. Pharmacol. 2020;174:113692. doi: 10.1016/j.bcp.2019.113692. PubMed DOI PMC
Mortellaro A., Hernandez R.J., Guerrini M.M., Carlucci F., Tabucchi A., Ponzoni M., Sanvito F., Doglioni C., Di Serio C., Biasco L., et al. Ex vivo gene therapy with lentiviral vectors rescues adenosine deaminase (ADA)-deficient mice and corrects their immune and metabolic defects. Blood. 2006;108:2979–2988. doi: 10.1182/blood-2006-05-023507. PubMed DOI
Young H.W.J., Molina J.G., Dimina D., Zhong H., Jacobson M., Chan L.-N.L., Chan T.-S., Lee J.J., Blackburn M.R. A 3 Adenosine Receptor Signaling Contributes to Airway Inflammation and Mucus Production in Adenosine Deaminase-Deficient Mice. J. Immunol. 2004;173:1380–1389. doi: 10.4049/jimmunol.173.2.1380. PubMed DOI
Blackburn M.R., Datta S.K., Kellems R.E. Adenosine deaminase-deficient mice generated using a two-stage genetic engineering strategy exhibit a combined immunodeficiency. J. Biol. Chem. 1998;273:5093–5100. doi: 10.1074/jbc.273.9.5093. PubMed DOI
Walia J.S., Altaleb N., Bello A., Kruck C., LaFave M.C., Varshney G.K., Burgess S.M., Chowdhury B., Hurlbut D., Hemming R., et al. Long-term correction of Sandhoff disease following intravenous delivery of rAAV9 to mouse neonates. Mol. Ther. 2015;23:414–422. doi: 10.1038/mt.2014.240. PubMed DOI PMC
Massaro G., Geard A.F., Liu W., Coombe-tennant O., Waddington S.N., Baruteau J., Gissen P., Rahim A.A. Gene therapy for lysosomal storage disorders: Ongoing studies and clinical development. Biomolecules. 2021;11:611. doi: 10.3390/biom11040611. PubMed DOI PMC
Scaramuzza S., Biasco L., Ripamonti A., Castiello M.C., Loperfido M., Draghici E., Hernandez R.J., Benedicenti F., Radrizzani M., Salomoni M., et al. Preclinical Safety and Efficacy of human CD34 + Cells transduced with lentiviral vector for the treatment of wiskott-aldrich syndrome. Mol. Ther. 2013;21:175–184. doi: 10.1038/mt.2012.23. PubMed DOI PMC
Huo Y., McConnell S.C., Liu S., Zhang T., Yang R., Ren J., Ryan T.M. Humanized mouse models of Cooley’s anemia: Correct fetal-to-adult hemoglobin switching, disease onset, and disease pathology. Ann. N. Y. Acad. Sci. 2010;1202:45–51. doi: 10.1111/j.1749-6632.2010.05547.x. PubMed DOI PMC
Huo Y., McConnell S.C., Liu S.R., Yang R., Zhang T.T., Sun C.W., Wu L.C., Ryan T.M. Humanized Mouse Model of Cooley’s Anemia. J. Biol. Chem. 2009;284:4889–4896. doi: 10.1074/jbc.M805681200. PubMed DOI PMC
Ciavatta D.J., Ryan T.M., Farmer S.C., Townes T.M. Mouse model of human beta zero thalassemia: Targeted deletion of the mouse beta maj-and beta min-globin genes in embryonic stem cells. Proc. Natl. Acad. Sci. USA. 1995;92:9259–9263. doi: 10.1073/pnas.92.20.9259. PubMed DOI PMC
Shangaris P., Loukogeorgakis S.P., Subramaniam S., Flouri C., Jackson L.H., Wang W., Blundell M.P., Liu S., Eaton S., Bakhamis N., et al. In Utero Gene Therapy (IUGT) Using GLOBE Lentiviral Vector Phenotypically Corrects the Heterozygous Humanised Mouse Model and Its Progress Can Be Monitored Using MRI Techniques. Sci. Rep. 2019;9:11592. doi: 10.1038/s41598-019-48078-4. PubMed DOI PMC
Huo Y., McConnell S.C., Ryan T.M. Preclinical transfusion-dependent humanized mouse model of beta thalassemia major. Blood. 2009;113:4763–4770. doi: 10.1182/blood-2008-12-197012. PubMed DOI PMC
Casal M., Haskins M. Large animal models and gene therapy. Eur. J. Hum. Genet. 2006;14:266–272. doi: 10.1038/sj.ejhg.5201535. PubMed DOI
Chinnadurai R., Ng S., Velu V., Galipeau J. Challenges in animal modelling of mesenchymal stromal cell therapy for inflammatory bowel disease. World J. Gastroenterol. 2015;21:4779–4787. doi: 10.3748/wjg.v21.i16.4779. PubMed DOI PMC
Chinnadurai R., Garcia M.A., Sakurai Y., Lam W.A., Kirk A.D., Galipeau J., Copland I.B. Actin cytoskeletal disruption following cryopreservation alters the biodistribution of human mesenchymal stromal cells in vivo. Stem Cell Rep. 2014;3:60–72. doi: 10.1016/j.stemcr.2014.05.003. PubMed DOI PMC
Lee H.K., Lim S.H., Chung I.S., Park Y., Park M.J., Kim J.Y., Kim Y.G., Hong J.T., Kim Y., Han S.-B. Preclinical Efficacy and Mechanisms of Mesenchymal Stem Cells in Animal Models of Autoimmune Diseases. Immune Netw. 2014;14:81–88. doi: 10.4110/in.2014.14.2.81. PubMed DOI PMC
Lu S., Zhu K., Guo Y., Wang E., Huang J. Evaluation of animal models of Crohn’s disease with anal fistula (Review) Exp. Ther. Med. 2021;22:974. doi: 10.3892/etm.2021.10406. PubMed DOI PMC
Harman R.M., Marx C., Van de Walle G.R. Translational Animal Models Provide Insight Into Mesenchymal Stromal Cell (MSC) Secretome Therapy. Front. Cell Dev. Biol. 2021;9:654885. doi: 10.3389/fcell.2021.654885. PubMed DOI PMC
Hou H., Zhang L., Duan L., Liu Y., Han Z., Li Z., Cao X. Spatio-Temporal Metabolokinetics and Efficacy of Human Placenta-Derived Mesenchymal Stem/Stromal Cells on Mice with Refractory Crohn’s-like Enterocutaneous Fistula. Stem Cell Rev. Rep. 2020;16:1292–1304. doi: 10.1007/s12015-020-10053-2. PubMed DOI
Li Q., Lian Y., Deng Y., Chen J., Wu T., Lai X., Zheng B., Qiu C., Peng Y., Li W., et al. mRNA-engineered mesenchymal stromal cells expressing CXCR2 enhances cell migration and improves recovery in IBD. Mol. Ther.-Nucleic Acids. 2021;26:222–236. doi: 10.1016/j.omtn.2021.07.009. PubMed DOI PMC
Hansen M., Stahl L., Heider A., Hilger N., Sack U., Kirschner A., Cross M., Fricke S. Reduction of Graft-versus-Host-Disease in NOD.Cg-Prkdcscid Il2rgtm1Wjl/SzJ. (NSG) Mice by Cotransplantation of Syngeneic Human Umbilical Cord-Derived Mesenchymal Stromal Cells: M. Transplant. Cell. Ther. 2021;27:658.e1–658.e10. doi: 10.1016/j.jtct.2021.04.018. PubMed DOI
Augustine S., Cheng W., Avey M.T., Chan M.L., Lingappa S.M.C., Hutton B., Thébaud B. Are all stem cells equal? Systematic review, evidence map, and meta-analyses of preclinical stem cell-based therapies for bronchopulmonary dysplasia. Stem Cells Transl. Med. 2020;9:158–168. doi: 10.1002/sctm.19-0193. PubMed DOI PMC
Ee M.T., Thébaud B. The Therapeutic Potential of Stem Cells for Bronchopulmonary Dysplasia: “It’s About Time” or “Not so Fast”? Curr. Pediatr. Rev. 2018;14:227–238. doi: 10.2174/1573396314666180911100503. PubMed DOI PMC
Aslam M., Baveja R., Liang O.D., Fernandez-Gonzalez A., Lee C., Mitsialis S.A., Kourembanas S. Bone marrow stromal cells attenuate lung injury in a murine model of neonatal chronic lung disease. Am. J. Respir. Crit. Care Med. 2009;180:1122–1130. doi: 10.1164/rccm.200902-0242OC. PubMed DOI PMC
Tropea K.A., Leder E., Aslam M., Lau A.N., Raiser D.M., Lee J.H., Balasubramaniam V., Fredenburgh L.E., Mitsialis S.A., Kourembanas S., et al. Bronchioalveolar stem cells increase after mesenchymal stromal cell treatment in a mouse model of bronchopulmonary dysplasia. Am. J. Physiol.-Lung Cell. Mol. Physiol. 2012;302:829–837. doi: 10.1152/ajplung.00347.2011. PubMed DOI PMC
Hansmann G., Fernandez-Gonzalez A., Aslam M., Vitali S.H., Martin T., Alex Mitsialis S., Kourembanas S. Mesenchymal stem cell-mediated reversal of bronchopulmonary dysplasia and associated pulmonary hypertension. Pulm. Circ. 2012;2:170–181. doi: 10.4103/2045-8932.97603. PubMed DOI PMC
Zhang H., Fang J., Su H., Yang M., Lai W., Mai Y., Wu Y. Bone marrow mesenchymal stem cells attenuate lung inflammation of hyperoxic newborn rats. Pediatr. Transplant. 2012;16:589–598. doi: 10.1111/j.1399-3046.2012.01709.x. PubMed DOI
Khemani R.G., Smith L., Lopez-Fernandez Y.M., Kwok J., Morzov R., Klein M.J., Yehya N., Willson D., Kneyber M.C.J., Lillie J., et al. Paediatric acute respiratory distress syndrome incidence and epidemiology (PARDIE): An international, observational study. Lancet Respir. Med. 2019;7:115–128. doi: 10.1016/S2213-2600(18)30344-8. PubMed DOI PMC
Behnke J., Kremer S., Shahzad T., Chao C.M., Böttcher-Friebertshäuser E., Morty R.E., Bellusci S., Ehrhardt H. MSC based therapies—new perspectives for the injured lung. J. Clin. Med. 2020;9:682. doi: 10.3390/jcm9030682. PubMed DOI PMC
Chen J., Luo L., Tian R., Yu C. A review and update for registered clinical studies of stem cells for non-tumorous and non-hematological diseases. Regen. Ther. 2021;18:355–362. doi: 10.1016/j.reth.2021.09.001. PubMed DOI PMC
Sondhi D., Peterson D.A., Edelstein A.M., del Fierro K., Hackett N.R., Crystal R.G. Survival advantage of neonatal CNS gene transfer for late infantile neuronal ceroid lipofuscinosis. Exp. Neurol. 2008;213:18–27. doi: 10.1016/j.expneurol.2008.04.022. PubMed DOI PMC
Ahmed S.S., Li H., Cao C., Sikoglu E.M., Denninger A.R., Su Q., Eaton S., Liso Navarro A.A., Xie J., Szucs S., et al. A single intravenous rAAV injection as late as P20 achieves efficacious and sustained CNS gene therapy in Canavan mice. Mol. Ther. 2013;21:2136–2147. doi: 10.1038/mt.2013.138. PubMed DOI PMC
Foust K.D., Wang X., McGovern V.L., Braun L., Bevan A.K., Haidet A.M., Le T.T., Morales P.R., Rich M.M., Burghes A.H.M., et al. Rescue of the spinal muscular atrophy phenotype in a mouse model by early postnatal delivery of SMN. Nat. Biotechnol. 2010;28:271–274. doi: 10.1038/nbt.1610. PubMed DOI PMC
Cabrera-Salazar M.A., Roskelley E.M., Bu J., Hodges B.L., Yew N., Dodge J.C., Shihabuddin L.S., Sohar I., Sleat D.E., Scheule R.K., et al. Timing of therapeutic intervention determines functional and survival outcomes in a mouse model of late infantile batten disease. Mol. Ther. 2007;15:1782–1788. doi: 10.1038/sj.mt.6300249. PubMed DOI
Fu H., Cataldi M.P., Ware T.A., Zaraspe K., Meadows A.S., Murrey D.A., McCarty D.M. Functional correction of neurological and somatic disorders at later stages of disease in MPS IIIA mice by systemic scAAV9-hSGSH gene delivery. Mol. Ther.-Methods Clin. Dev. 2016;3:16036. doi: 10.1038/mtm.2016.36. PubMed DOI PMC
Johnson R., Rafuse M., Selvakumar P.P., Tan W. Effects of recipient age, heparin release and allogeneic bone marrow-derived stromal cells on vascular graft remodeling. Acta Biomater. 2021;125:172–182. doi: 10.1016/j.actbio.2021.02.028. PubMed DOI PMC
Themis M., Waddington S.N., Schmidt M., von Kalle C., Wang Y., Al-Allaf F., Gregory L.G., Nivsarkar M., Themis M., Holder M.V., et al. Oncogenesis following delivery of a nonprimate lentiviral gene therapy vector to fetal and neonatal mice. Mol. Ther. 2005;12:763–771. doi: 10.1016/j.ymthe.2005.07.358. PubMed DOI
Nowrouzi A., Cheung W.T., Li T., Zhang X., Arens A., Paruzynski A., Waddington S.N., Osejindu E., Reja S., von Kalle C., et al. The fetal mouse is a sensitive genotoxicity model that exposes lentiviral-associated mutagenesis resulting in liver oncogenesis. Mol. Ther. 2013;21:324–337. doi: 10.1038/mt.2012.224. PubMed DOI PMC
Riley R.S., Kashyap M.V., Billingsley M.M., White B., Alameh M.G., Bose S.K., Zoltick P.W., Li H., Zhang R., Cheng A.Y., et al. Ionizable lipid nanoparticles for in utero mRNA delivery. Sci. Adv. 2021;7:eaba1028. doi: 10.1126/sciadv.aba1028. PubMed DOI PMC
Borrell V., Yoshimura Y., Callaway E.M. Targeted gene delivery to telencephalic inhibitory neurons by directional in utero electroporation. J. Neurosci. Methods. 2005;143:151–158. doi: 10.1016/j.jneumeth.2004.09.027. PubMed DOI
Joyeux L., Danzer E., Limberis M.P., Zoltick P.W., Radu A., Flake A.W., Davey M.G. In utero lung gene transfer using adeno-associated viral and lentiviral vectors in mice. Hum. Gene Ther. Methods. 2014;25:197–205. doi: 10.1089/hgtb.2013.143. PubMed DOI PMC
Sabatino D.E., MacKenzie T.C., Peranteau W., Edmonson S., Campagnoli C., Liu Y.L., Flake A.W., High K.A. Persistent expression of hF.IX after tolerance induction by in utero or neonatal administration of AAV-1-F.IX in hemophilia B mice. Mol. Ther. 2007;15:1677–1685. doi: 10.1038/sj.mt.6300219. PubMed DOI
Bose S.K., White B.M., Kashyap M.V., Dave A., De Bie F.R., Li H., Singh K., Menon P., Wang T., Teerdhala S., et al. In utero adenine base editing corrects multi-organ pathology in a lethal lysosomal storage disease. Nat. Commun. 2021;12:4291. doi: 10.1038/s41467-021-24443-8. PubMed DOI PMC
Massaro G., Mattar C.N.Z., Wong A.M.S., Sirka E., Buckley S.M.K., Herbert B.R., Karlsson S., Perocheau D.P., Burke D., Heales S., et al. Fetal gene therapy for neurodegenerative disease of infants. Nat. Med. 2018;24:1317–1323. doi: 10.1038/s41591-018-0106-7. PubMed DOI PMC
Rossidis A.C., Stratigis J.D., Chadwick A.C., Hartman H.A., Ahn N.J., Li H., Singh K., Coons B.E., Li L., Lv W., et al. In utero CRISPR-mediated therapeutic editing of metabolic genes. Nat. Med. 2018;24:1513–1518. doi: 10.1038/s41591-018-0184-6. PubMed DOI PMC
Chan J.K.Y.Y., Gil-Farina I., Johana N., Rosales C., Tan Y.W., Ceiler J., Mcintosh J., Ogden B., Waddington S.N., Schmidt M., et al. Therapeutic expression of human clotting factors IX and × following adeno-associated viral vector-mediated intrauterine gene transfer in early-gestation fetal macaques. FASEB J. 2019;33:3954–3967. doi: 10.1096/fj.201801391R. PubMed DOI PMC
Alapati D., Zacharias W.J., Hartman H.A., Rossidis A.C., Stratigis J.D., Ahn N.J., Coons B., Zhou S., Li H., Singh K., et al. In utero gene editing for monogenic lung disease. Sci. Transl. Med. 2019;11:eaav8375. doi: 10.1126/scitranslmed.aav8375. PubMed DOI PMC
Dighe N.M., Tan K.W., Tan L.G., Shaw S.S.W., Buckley S.M.K., Sandikin D., Johana N., Tan Y.W., Biswas A., Choolani M., et al. A comparison of intrauterine hemopoietic cell transplantation and lentiviral gene transfer for the correction of severe β-thalassemia in a HbbTh3/+ murine model. Exp. Hematol. 2018;62:45–55. doi: 10.1016/j.exphem.2018.03.006. PubMed DOI PMC
Ricciardi A.S., Bahal R., Farrelly J.S., Quijano E., Bianchi A.H., Luks V.L., Putman R., López-Giráldez F., Coşkun S., Song E., et al. In utero nanoparticle delivery for site-specific genome editing. Nat. Commun. 2018;9:2481. doi: 10.1038/s41467-018-04894-2. PubMed DOI PMC
Kumar P., Gao K., Wang C., Pivetti C., Lankford L., Farmer D., Wang A. In Utero Transplantation of Placenta-Derived Mesenchymal Stromal Cells for Potential Fetal Treatment of Hemophilia A. Cell Transplant. 2018;27:130–139. doi: 10.1177/0963689717728937. PubMed DOI PMC
Hayashi S., Abdulmalik O., Peranteau W.H., Ashizuka S., Campagnoli C., Chen Q., Horiuchi K., Asakura T., Flake A.W. Mixed chimerism following in utero hematopoietic stem cell transplantation in murine models of hemoglobinopathy. Exp. Hematol. 2003;31:176–184. doi: 10.1016/S0301-472X(02)01024-X. PubMed DOI
Meza N.W., Alonso-Ferrero M.E., Navarro S., Quintana-Bustamante O., Valeri A., Garcia-Gomez M., Bueren J.A., Bautista J.M., Segovia J.C. Rescue of pyruvate kinase deficiency in mice by gene therapy using the human isoenzyme. Mol. Ther. 2009;17:2000–2009. doi: 10.1038/mt.2009.200. PubMed DOI PMC
Loukogeorgakis S.P., Shangaris P., Bertin E., Franzin C., Piccoli M., Pozzobon M., Subramaniam S., Tedeschi A., Kim A.G., Li H., et al. In Utero Transplantation of Expanded Autologous Amniotic Fluid Stem Cells Results in Long-Term Hematopoietic Engraftment. Stem Cells. 2019;37:1176–1188. doi: 10.1002/stem.3039. PubMed DOI PMC
Shangaris P., Loukogeorgakis S.P., Blundell M.P., Petra E., Shaw S.W., Ramachandra D.L., Maghsoudlou P., Urbani L., Thrasher A.J., De Coppi P., et al. Long-Term Hematopoietic Engraftment of Congenic Amniotic Fluid Stem Cells After in Utero Intraperitoneal Transplantation to Immune Competent Mice. Stem Cells Dev. 2018;27:515–523. doi: 10.1089/scd.2017.0116. PubMed DOI PMC
Hayashi M., Muramatsu H., Nakano M., Ito H., Inoie M., Tomizuka Y., Inoue M., Yoshimoto S. Experience of using cultured epithelial autografts for the extensive burn wounds in eight patients. Ann. Plast. Surg. 2014;73:25–29. doi: 10.1097/SAP.0000000000000200. PubMed DOI
Hoburg A., Löer I., Körsmeier K., Siebold R., Niemeyer P., Fickert S., Ruhnau K. Matrix-Associated Autologous Chondrocyte Implantation Is an Effective Treatment at Midterm Follow-up in Adolescents and Young Adults. Orthop. J. Sport. Med. 2019;7:1–7. doi: 10.1177/2325967119841077. PubMed DOI PMC
Schmidt C. Gintuit cell therapy approval signals shift at US regulator. Nat. Biotechnol. 2012;30:479. doi: 10.1038/nbt0612-479. PubMed DOI
Takaya K., Kato T., Ishii T., Sakai S., Okabe K., Aramaki-Hattori N., Asou T., Kishi K. Clinical Analysis of Cultured Epidermal Autograft (JACE) Transplantation for Giant Congenital Melanocytic Nevus. Plast. Reconstr. Surg.-Glob. Open. 2021;9:e3380. doi: 10.1097/GOX.0000000000003380. PubMed DOI PMC
Eudy M., Eudy C.L., Roy S. Apligraf as an Alternative to Skin Grafting in the Pediatric Population. Cureus. 2021;13:e16226. doi: 10.7759/cureus.16226. PubMed DOI PMC
Mavilio F., Pellegrini G., Ferrari S., Di Nunzio F., Di Iorio E., Recchia A., Maruggi G., Ferrari G., Provasi E., Bonini C., et al. Correction of junctional epidermolysis bullosa by transplantation of genetically modified epidermal stem cells. Nat. Med. 2006;12:1397–1402. doi: 10.1038/nm1504. PubMed DOI
Hirsch T., Rothoeft T., Teig N., Bauer J.W., Pellegrini G., De Rosa L., Scaglione D., Reichelt J., Klausegger A., Kneisz D., et al. Regeneration of the entire human epidermis using transgenic stem cells. Nature. 2017;551:327–332. doi: 10.1038/nature24487. PubMed DOI PMC
Di W.L., Lwin S.M., Petrova A., Bernadis C., Syed F., Farzaneh F., Moulding D., Martinez A.E., Sebire N.J., Rampling D., et al. Generation and Clinical Application of Gene-Modified Autologous Epidermal Sheets in Netherton Syndrome: Lessons Learned from a Phase 1 Trial. Hum. Gene Ther. 2019;30:1067–1078. doi: 10.1089/hum.2019.049. PubMed DOI
Siprashvili Z., Nguyen N.T., Gorell E.S., Loutit K., Khuu P., Furukawa L.K., Lorenz H.P., Leung T.H., Keene D.R., Rieger K.E., et al. Safety and Wound Outcomes Following Genetically Corrected Autologous Epidermal Grafts in Patients with Recessive Dystrophic Epidermolysis Bullosa. JAMA. 2016;316:1808–1817. doi: 10.1001/jama.2016.15588. PubMed DOI
European Medicines Agency PRIME: Priority Medicines|European Medicines Agency. [(accessed on 30 December 2021)]. Available online: https://www.ema.europa.eu/en/human-regulatory/research-development/prime-priority-medicines.
Inacio P. Amicus Discontinues Gene Therapy Program for CLN6 Batten Disease. [(accessed on 28 February 2022)]. Available online: https://battendiseasenews.com/2022/01/21/amicus-discontinues-cln6-gene-therapy-program/
Pearson A.D.J., Rossig C., Lesa G., Diede S.J., Weiner S., Anderson J., Gray J., Geoerger B., Minard-Colin V., Marshall L.V., et al. ACCELERATE and European Medicines Agency. Paediatric Strategy Forum for medicinal product development of checkpoint inhibitors for use in combination therapy in paediatric patients. Eur. J. Cancer. 2020;127:52–66. doi: 10.1016/j.ejca.2019.12.029. PubMed DOI
Buckland K.F., Bobby Gaspar H. Gene and cell therapy for children--new medicines, new challenges? Adv. Drug Deliv. Rev. 2014;73:162–169. doi: 10.1016/j.addr.2014.02.010. PubMed DOI PMC
Marktel S., Scaramuzza S., Cicalese M.P., Giglio F., Galimberti S., Lidonnici M.R., Calbi V., Assanelli A., Bernardo M.E., Rossi C., et al. Intrabone hematopoietic stem cell gene therapy for adult and pediatric patients affected by transfusion-dependent ß-thalassemia. Nat. Med. 2019;25:234–241. doi: 10.1038/s41591-018-0301-6. PubMed DOI
DeWeerdt S. Prenatal gene therapy offers the earliest possible cure. Nature. 2018;564:S6–S8. doi: 10.1038/d41586-018-07643-z. PubMed DOI
Escolar M.L., Poe M.D., Provenzale J.M., Richards K.C., Allison J., Wood S., Wenger D.A., Pietryga D., Wall D., Champagne M., et al. Transplantation of Umbilical-Cord Blood in Babies with Infantile Krabbe’s Disease. N. Engl. J. Med. 2005;352:2069–2081. doi: 10.1056/NEJMoa042604. PubMed DOI
Gray S.J. Timing of Gene Therapy Interventions: The Earlier, the Better. Mol. Ther. 2016;24:1017–1018. doi: 10.1038/mt.2016.20. PubMed DOI PMC
Garrison L.P., Jackson T., Paul D., Kenston M. Value-based pricing for emerging gene therapies: The economic case for a higher cost-effectiveness threshold. J. Manag. Care Spec. Pharm. 2019;25:793–799. doi: 10.18553/jmcp.2019.18378. PubMed DOI PMC
Conti R., Gruber J., Ollendorf D., Neumann P. Valuing Rare Pediatric Drugs: An Economics Perspective. SSRN Electron. J. 2021 doi: 10.2139/ssrn.3718890. NBER Working Paper No. w27978. DOI
Bolous N.S., Chen Y., Wang H., Davidoff A.M., Devidas M., Jacobs T.W., Meagher M.M., Nathwani A.C., Neufeld E.J., Piras B.A., et al. The cost-effectiveness of gene therapy for severe hemophilia B: A microsimulation study from the United States perspective. Blood. 2021;138:1677–1690. doi: 10.1182/blood.2021010864. PubMed DOI
Aiuti A., Roncarolo M.G., Naldini L. Gene therapy for ADA-SCID, the first marketing approval of an ex vivo gene therapy in Europe: Paving the road for the next generation of advanced therapy medicinal products. EMBO Mol. Med. 2017;9:737–740. doi: 10.15252/emmm.201707573. PubMed DOI PMC
Fumagalli F., Calbi V., Natali Sora M.G., Sessa M., Baldoli C., Rancoita P.M.V., Ciotti F., Sarzana M., Fraschini M., Zambon A.A., et al. Lentiviral haematopoietic stem-cell gene therapy for early-onset metachromatic leukodystrophy: Long-term results from a non-randomised, open-label, phase 1/2 trial and expanded access. Lancet. 2022;399:372–383. doi: 10.1016/S0140-6736(21)02017-1. PubMed DOI PMC
Matteini F., Mulaw M.A., Florian M.C. Aging of the Hematopoietic Stem Cell Niche: New Tools to Answer an Old Question. Front. Immunol. 2021;12:738204. doi: 10.3389/fimmu.2021.738204. PubMed DOI PMC
Garcia O., Carraro G., Navarro S., Bertoncello I., McQualter J., Driscoll B., Jesudason E., Warburton D. Cell-based therapies for lung disease. Br. Med. Bull. 2012;101:147–161. doi: 10.1093/bmb/ldr051. PubMed DOI PMC
Alofisel|European Medicines Agency. [(accessed on 30 December 2021)]. Available online: https://www.ema.europa.eu/en/medicines/human/EPAR/alofisel.
Kuçi Z., Bönig H., Kreyenberg H., Bunos M., Jauch A., Janssen J.W.G., Škifić M., Michel K., Eising B., Lucchini G., et al. Mesenchymal stromal cells from pooled mononuclear cells of multiple bone marrow donors as rescue therapy in pediatric severe steroid-refractory graft-versus-host disease: A multicenter survey. Haematologica. 2016;101:985–994. doi: 10.3324/haematol.2015.140368. PubMed DOI PMC
Kurtzberg J., Prockop S., Teira P., Bittencourt H., Lewis V., Chan K.W., Horn B., Yu L., Talano J.A., Nemecek E., et al. Allogeneic human mesenchymal stem cell therapy (Remestemcel-L, Prochymal) as a rescue agent for severe refractory acute graft-versus-host disease in pediatric patients. Biol. Blood Marrow Transplant. 2014;20:229–235. doi: 10.1016/j.bbmt.2013.11.001. PubMed DOI
Lucchini G., Introna M., Dander E., Rovelli A., Balduzzi A., Bonanomi S., Salvadè A., Capelli C., Belotti D., Gaipa G., et al. Platelet-lysate-expanded mesenchymal stromal cells as a salvage therapy for severe resistant graft-versus-host disease in a pediatric population. Biol. Blood Marrow Transplant. 2010;16:1293–1301. doi: 10.1016/j.bbmt.2010.03.017. PubMed DOI
Prasad V.K., Lucas K.G., Kleiner G.I., Talano J.A.M., Jacobsohn D., Broadwater G., Monroy R., Kurtzberg J. Efficacy and Safety of Ex Vivo Cultured Adult Human Mesenchymal Stem Cells (ProchymalTM) in Pediatric Patients with Severe Refractory Acute Graft-Versus-Host Disease in a Compassionate Use Study. Biol. Blood Marrow Transplant. 2011;17:534–541. doi: 10.1016/j.bbmt.2010.04.014. PubMed DOI
Zilberberg J., Friedman T.M., Korngold R., Szabolcs P., Visani G., Locatelli F., Kleiner G., Nishida T., Onizuka M., Inamoto Y., et al. Treatment Of Steroid-Refractory Acute GVHD with Mesenchymal Stem Cells Improves Outcomes In Pediatric Patients; Results Of The Pediatric Subset In A Phase III Randomized, Placebo-Controlled Study. Biol. Blood Marrow Transplant. 2010;16:S298. doi: 10.1016/j.bbmt.2009.12.425. DOI
MacMillan M.L., Blazar B.R., DeFor T.E., Wagner J.E. Transplantation of ex-vivo culture-expanded parental haploidentical mesenchymal stem cells to promote engraftment in pediatric recipients of unrelated donor umbilical cord blood: Results of a phase I-II clinical trial. Bone Marrow Transplant. 2009;43:447–454. doi: 10.1038/bmt.2008.348. PubMed DOI
Lee S.H., Lee M.W., Yoo K.H., Kim D.S., Son M.H., Sung K.W., Cheuh H., Choi S.J., Oh W., Yang Y.S., et al. Co-transplantation of third-party umbilical cord blood-derived MSCs promotes engraftment in children undergoing unrelated umbilical cord blood transplantation. Bone Marrow Transplant. 2013;48:1040–1045. doi: 10.1038/bmt.2013.7. PubMed DOI
Bernardo M.E., Ball L.M., Cometa A.M., Roelofs H., Zecca M., Avanzini M.A., Bertaina A., Vinti L., Lankester A., MacCario R., et al. Co-infusion of ex vivo-expanded, parental MSCs prevents life-threatening acute GVHD, but does not reduce the risk of graft failure in pediatric patients undergoing allogeneic umbilical cord blood transplantation. Bone Marrow Transplant. 2011;46:200–207. doi: 10.1038/bmt.2010.87. PubMed DOI
Voynow J.A. “New” bronchopulmonary dysplasia and chronic lung disease. Paediatr. Respir. Rev. 2017;24:17–18. doi: 10.1016/j.prrv.2017.06.006. PubMed DOI
Möbius M.A., Thébaud B. Cell Therapy for Bronchopulmonary Dysplasia: Promises and Perils. Paediatr. Respir. Rev. 2016;20:33–41. doi: 10.1016/j.prrv.2016.06.001. PubMed DOI
Fujinaga H., Baker C.D., Ryan S.L., Markham N.E., Seedorf G.J., Balasubramaniam V., Abman S.H. Hyperoxia disrupts vascular endothelial growth factor-nitric oxide signaling and decreases growth of endothelial colony-forming cells from preterm infants. Am. J. Physiol.-Lung Cell. Mol. Physiol. 2009;297:1160–1169. doi: 10.1152/ajplung.00234.2009. PubMed DOI PMC
Chang Y.S., Ahn S.Y., Yoo H.S., Sung S.I., Choi S.J., Oh W.I., Park W.S. Mesenchymal Stem Cells for Bronchopulmonary Dysplasia: Phase 1 Dose-Escalation Clinical Trial. J. Pediatr. 2014;164:966–972.e6. doi: 10.1016/j.jpeds.2013.12.011. PubMed DOI
Ahn S.Y., Chang Y.S., Kim J.H., Sung S.I., Park W.S. Two-Year Follow-Up Outcomes of Premature Infants Enrolled in the Phase I Trial of Mesenchymal Stem Cells Transplantation for Bronchopulmonary Dysplasia. J. Pediatr. 2017;185:49–54.e2. doi: 10.1016/j.jpeds.2017.02.061. PubMed DOI
Medipost Co Ltd Long-Term Safety and Efficacy Follow-Up Study of PNEUMOSTEM® in Patients Who Completed PNEUMOSTEM® Phase-I Study. [(accessed on 8 December 2021)]; Available online: https://clinicaltrials.gov/ct2/show/NCT02023788.
Powell S.B., Silvestri J.M. Safety of Intratracheal Administration of Human Umbilical Cord Blood Derived Mesenchymal Stromal Cells in Extremely Low Birth Weight Preterm Infants. J. Pediatr. 2019;210:209–213.e2. doi: 10.1016/j.jpeds.2019.02.029. PubMed DOI
Jouvet P., Thomas N.J., Willson D.F., Erickson S., Khemani R., Smith L., Zimmerman J., Dahmer M., Flori H., Quasney M., et al. Pediatric Acute Respiratory Distress Syndrome: Consensus Recommendations from the Pediatric Acute Lung Injury Consensus Conference. Pediatr. Crit. Care Med. 2015;16:428–439. doi: 10.1097/PCC.0000000000000350. PubMed DOI PMC
Heidemann S.M., Nair A., Bulut Y., Sapru A. Pathophysiology and Management of Acute Respiratory Distress Syndrome in Children. Pediatr. Clin. N. Am. 2017;64:1017–1037. doi: 10.1016/j.pcl.2017.06.004. PubMed DOI PMC
Thompson B.T., Chambers R.C., Liu K.D. Acute Respiratory Distress Syndrome. N. Engl. J. Med. 2017;377:562–572. doi: 10.1056/NEJMra1608077. PubMed DOI
Wilson J.G., Liu K.D., Zhuo H., Caballero L., McMillan M., Fang X., Cosgrove K., Vojnik R., Calfee C.S., Lee J.W., et al. Mesenchymal stem (stromal) cells for treatment of ARDS: A phase 1 clinical trial. Lancet Respir. Med. 2015;3:24–32. doi: 10.1016/S2213-2600(14)70291-7. PubMed DOI PMC
Weiss D.J. Cell-based therapies for acute respiratory distress syndrome. Lancet Respir. Med. 2019;7:105–106. doi: 10.1016/S2213-2600(18)30477-6. PubMed DOI
Matthay M.A., Calfee C.S., Zhuo H., Thompson B.T., Wilson J.G., Levitt J.E., Rogers A.J., Gotts J.E., Wiener-Kronish J.P., Bajwa E.K., et al. Treatment with allogeneic mesenchymal stromal cells for moderate to severe acute respiratory distress syndrome (START study): A randomised phase 2a safety trial. Lancet Respir. Med. 2019;7:154–162. doi: 10.1016/S2213-2600(18)30418-1. PubMed DOI PMC
Ahmed S., Flinn I.W., Mei M., Riedell P.A., Armand P., Grover N.S., Engert A., Lapteva N., Nadler P.I., Myo A., et al. Safety and Efficacy Profile of Autologous CD30.CAR-T-Cell Therapy in Patients with Relapsed or Refractory Classical Hodgkin Lymphoma (CHARIOT Trial) Blood. 2021;138:3847–3850. doi: 10.1182/blood-2021-146100. DOI
Tessa Therapeutics Phase 2 Study Evaluating Autologous CD30.CAR-T Cells in Patients with Relapsed/Refractory Hodgkin Lymphoma (CHARIOT) [(accessed on 21 March 2022)]; Available online: https://clinicaltrials.gov/ct2/show/NCT04268706.
Nichols H., Eides R. Vertex and CRISPR Therapeutics Present New Data in 22 Patients with Greater than 3 Months Follow-Up Post-Treatment with Investigational CRISPR/Cas9 Gene-Editing Therapy, CTX001TM. [(accessed on 21 March 2022)]. Available online: https://investors.vrtx.com/news-releases/news-release-details/vertex-and-crispr-therapeutics-present-new-data-22-patients.
CRISPRTX A Safety and Efficacy Study Evaluating CTX001 in Subjects with Severe Sickle Cell Disease. [(accessed on 21 March 2022)]; Available online: https://clinicaltrials.gov/ct2/show/NCT03745287.
Aiuiti, A and IRCCS San Raffaele Gene Therapy for Transfusion Dependent Beta-thalassemia (TIGET-BTHAL) [(accessed on 27 February 2022)]; Available online: https://clinicaltrials.gov/ct2/show/NCT02453477.
Orchard Therapeutics Long-Term Follow-Up of Subjects Treated with OTL-300 for Transfusion-Dependent Beta-Thalassemia Study (TIGET-BTHAL) [(accessed on 21 March 2022)]; Available online: https://clinicaltrials.gov/ct2/show/NCT03275051.
Kohn D.B., Booth C., Sevilla J., Rao G.R., Almarza E., Terrazas D., Nicoletti E., Fernandes A., Kuo C., de Oliveira S., et al. A Phase 1/2 Study of Lentiviral-Mediated Ex-Vivo Gene Therapy for Pediatric Patients with Severe Leukocyte Adhesion Deficiency-I (LAD-I): Interim Results. Blood. 2021;138:2932. doi: 10.1182/blood-2021-151898. DOI
Kohn D.B., Rao G.R., Almarza E., Terrazas D., Nicoletti E., Fernandes A., Kuo C., De Oliveira S.N., Moore T.B., Law K.M., et al. A Phase 1/2 Study of Lentiviral-Mediated Ex-Vivo Gene Therapy for Pediatric Patients with Severe Leukocyte Adhesion Deficiency-I (LAD-I): Results from Phase 1. Blood. 2020;136:15. doi: 10.1182/blood-2020-142484. DOI
Rocket Pharmaceuticals Inc A Clinical Trial to Evaluate the Safety and Efficacy of RP-L201 in Subjects with Leukocyte Adhesion Deficiency-I. [(accessed on 21 March 2022)]; Available online: https://clinicaltrials.gov/ct2/show/NCT03812263.
Aiuiti, A and IRCCS San Raffaele Gene Therapy with Modified Autologous Hematopoietic Stem Cells for the Treatment of Patients with Mucopolysaccharidosis Type I, Hurler Variant (TigetT10_MPSIH) [(accessed on 21 March 2022)]; Available online: https://clinicaltrials.gov/ct2/show/NCT03488394.
Gentner B., Tucci F., Galimberti S., Fumagalli F., De Pellegrin M., Silvani P., Camesasca C., Pontesilli S., Darin S., Ciotti F., et al. Hematopoietic Stem-and Progenitor-Cell Gene Therapy for Hurler Syndrome. N. Engl. J. Med. 2021;385:1929–1940. doi: 10.1056/NEJMoa2106596. PubMed DOI
National Institutes of Health Clinical Center (CC) and National Institute of Allergy and Infectious Diseases (NIAID) Lentiviral Gene Transfer for Treatment of Children Older than 2 Years of Age with X-Linked Severe Combined Immunodeficiency (LVXSCID-OC) [(accessed on 21 March 2022)]; Available online: https://clinicaltrials.gov/ct2/show/NCT01306019.
De Ravin S.S., Anaya O’Brien S., Kwatemaa N., Theobald N., Liu S., Lee J., Kardava L., Liu T., Goldman F., Moir S., et al. Enhanced Transduction Lentivector Gene Therapy for Treatment of Older Patients with X-Linked Severe Combined Immunodeficiency. Blood. 2019;134((Suppl. 1)):608. doi: 10.1182/blood-2019-127439. DOI
Mamcarz E., Zhou S., Lockey T., Abdelsamed H., Cross S.J., Kang G., Ma Z., Condori J., Dowdy J., Triplett B., et al. Lentiviral gene therapy combined with low-dose busulfan in infants with SCID-X1. N. Engl. J. Med. 2019;380:1525–1534. doi: 10.1056/NEJMoa1815408. PubMed DOI PMC
St. Jude Children′s Research Hospital Gene Transfer for X-Linked Severe Combined Immunodeficiency in Newly Diagnosed Infants (LVXSCID-ND) [(accessed on 21 March 2022)]; Available online: https://clinicaltrials.gov/ct2/show/NCT01512888.
ExCellThera Inc US Phase I Study of ECT-001-CB in Patients with Sickle-Cell Disease. [(accessed on 21 March 2022)]; Available online: https://clinicaltrials.gov/ct2/show/results/NCT04594031.
ExCellThera Inc US Study of ECT-001-CB in Pediatric and Young Adult Patients with High-Risk Myeloid Malignancies. [(accessed on 21 March 2022)]; Available online: https://clinicaltrials.gov/ct2/show/NCT04990323.
Rocket Pharmaceuticals Inc A Clinical Trial to Evaluate the Safety of RP-L102 in Pediatric Subjects with Fanconi Anemia Subtype A. [(accessed on 21 March 2022)]; Available online: https://clinicaltrials.gov/ct2/show/NCT03814408.
Czechowicz A., Roncarolo M.G., Beard B.C., Law K., Nicoletti E., Río P., Bueren J.A., Schwartz J.D., Soni S. Changing the Natural History of Fanconi Anemia Complementation Group-A with Gene Therapy: Early Results of U.S. Phase I Study of Lentiviral-Mediated Ex-VivoFANCA Gene Insertion in Human Stem and Progenitor Cells. Blood. 2019;134:3350. doi: 10.1182/blood-2019-127352. DOI
Rocket Pharmaceuticals Inc Gene Therapy for Fanconi Anemia, Complementation Group A. [(accessed on 21 March 2022)]; Available online: https://clinicaltrials.gov/ct2/show/NCT04248439.
Rocket Pharmaceuticals Inc Lentiviral-Mediated Gene Therapy for Pediatric Patients with Fanconi Anemia Subtype A. [(accessed on 21 March 2022)]; Available online: https://clinicaltrials.gov/ct2/show/NCT04069533.
bluebird bio Longterm Follow-Up of Subjects with Hemoglobinopathies Treated with Ex Vivo Gene Therapy. [(accessed on 21 March 2022)]; Available online: https://clinicaltrials.gov/ct2/show/NCT02633943.
AlloVir Study of Viralym-M (ALVR105) for Multi-Virus Prevention in Patients Post-Allogeneic Hematopoietic Cell Transplant. [(accessed on 21 March 2022)]; Available online: https://clinicaltrials.gov/ct2/show/NCT04693637.
Dadwal S.S., Shuster M., Myers G.D., Boundy K., Warren M., Stoner E., Truong T., Hill J.A. Posoleucel (ALVR105), an Off-the-Shelf, Multivirus-Specific T-Cell Therapy, for the Prevention of Viral Infections Post-HCT: Results from an Open-Label Cohort of a Phase 2 Trial. Blood. 2021;138:1760. doi: 10.1182/blood-2021-152553. DOI
AlloVir Study to Evaluate Viralym-M (ALVR105) for the Treatment of Virus-Associated Hemorrhagic Cystitis (HC) [(accessed on 21 March 2022)]; Available online: https://clinicaltrials.gov/ct2/show/NCT04390113.
Elbashir S.M., Martinez J., Patkaniowska A., Lendeckel W., Tuschl T. Functional anatomy of siRNAs for mediating efficient RNAi in Drosophila melanogaster embryo lysate. EMBO J. 2001;20:6877–6888. doi: 10.1093/emboj/20.23.6877. PubMed DOI PMC
Ahn S.Y., Chang Y.S., Lee M.H., Sung S.I., Lee B.S., Kim K.S., Kim A.R., Park W.S. Stem cells for bronchopulmonary dysplasia in preterm infants: A randomized controlled phase II trial. Stem Cells Transl. Med. 2021;10:1129–1137. doi: 10.1002/sctm.20-0330. PubMed DOI PMC
Medipost Co Ltd Follow-Up Safety and Efficacy Evaluation on Subjects Who Completed PNEUMOSTEM® Phase-II Clinical Trial. [(accessed on 8 December 2021)]; Available online: https://clinicaltrials.gov/ct2/show/NCT01897987.
Lee Farmer D., University of California, Davis Cellular Therapy for In Utero Repair of Myelomeningocele—The CuRe Trial. [(accessed on 11 December 2021)]; Available online: https://www.clinicaltrials.gov/ct2/show/NCT04652908.
Götherström, C and Karolinska Institutet Boost Brittle Bones before Birth (BOOSTB4) [(accessed on 11 December 2021)]; Available online: https://www.clinicaltrials.gov/ct2/show/NCT03706482.
Schneider H., Faschingbauer F., Schuepbach-Mallepell S., Körber I., Wohlfart S., Dick A., Wahlbuhl M., Kowalczyk-Quintas C., Vigolo M., Kirby N., et al. Prenatal Correction of X-Linked Hypohidrotic Ectodermal Dysplasia. N. Engl. J. Med. 2018;378:1604–1610. doi: 10.1056/NEJMoa1714322. PubMed DOI
Kreger E.M., Singer S.T., Witt R.G., Sweeters N., Lianoglou B., Lal A., Mackenzie T.C., Vichinsky E. Favorable outcomes after in utero transfusion in fetuses with alpha thalassemia major: A case series and review of the literature. Prenat. Diagn. 2016;36:1242–1249. doi: 10.1002/pd.4966. PubMed DOI
Mackenzie T., University of California, San Francisco In Utero Hematopoietic Stem Cell Transplantation for Alpha-Thalassemia Major (ATM) [(accessed on 11 December 2021)]; Available online: https://www.clinicaltrials.gov/ct2/show/NCT02986698.
MacKenzie T.C., Frascoli M., Sper R., Lianoglou B.R., Gonzalez Velez J., Dvorak C.C., Kharbanda S., Vichinsky E. In Utero Stem Cell Transplantation in Patients with Alpha Thalassemia Major: Interim Results of a Phase 1 Clinical Trial. Blood. 2020;136((Suppl. 1)):1. doi: 10.1182/blood-2020-142698. PubMed DOI
Dimitri P., Pignataro V., Lupo M., Bonifazi D., Henke M., Musazzi U.M., Ernst F., Minghetti P., Redaelli D.F., Antimisiaris S.G., et al. Medical device development for children and young people—reviewing the challenges and opportunities. Pharmaceutics. 2021;13:2178. doi: 10.3390/pharmaceutics13122178. PubMed DOI PMC
Fesnak A., O’Doherty U. Clinical development and manufacture of chimeric antigen receptor T cells and the role of leukapheresis. Eur. Oncol. Haematol. 2017;13:28–34. doi: 10.17925/EOH.2017.13.01.28. DOI
Cattoglio C., Facchini G., Sartori D., Antonelli A., Miccio A., Cassani B., Schmidt M., Von Kalle C., Howe S., Thrasher A.J., et al. Hot spots of retroviral integration in human CD34+ hematopoietic cells. Blood. 2007;110:1770–1778. doi: 10.1182/blood-2007-01-068759. PubMed DOI
Uchida N., Sutton R.E., Friera A.M., He D., Reitsma M.J., Chang W.C., Veres G., Scollay R., Weissman I.L. HIV, but not murine leukemia virus, vectors mediate high efficiency gene transfer into freshly isolated G0/G1 human hematopoietic stem cells. Proc. Natl. Acad. Sci. USA. 1998;95:11939–11944. doi: 10.1073/pnas.95.20.11939. PubMed DOI PMC
Lu H., Zhao X., Li Z., Hu Y., Wang H. From CAR-T Cells to CAR-NK Cells: A Developing Immunotherapy Method for Hematological Malignancies. Front. Oncol. 2021;11:720501. doi: 10.3389/fonc.2021.720501. PubMed DOI PMC
Tonn T., Becker S., Esser R., Schwabe D., Seifried E. Cellular immunotherapy of malignancies using the clonal natural killer cell line NK-92. J. Hematother. Stem Cell Res. 2001;10:535–544. doi: 10.1089/15258160152509145. PubMed DOI
Bjordahl R., Gaidarova S., Goodridge J.P., Mahmood S., Bonello G., Robinson M., Ruller C., Pribadi M., Lee T., Abujarour R., et al. FT576: A Novel Multiplexed Engineered Off-the-Shelf Natural Killer Cell Immunotherapy for the Dual-Targeting of CD38 and Bcma for the Treatment of Multiple Myeloma. Blood. 2019;134:3214. doi: 10.1182/blood-2019-131373. DOI
Goodridge J.P., Mahmood S., Zhu H., Gaidarova S., Blum R., Bjordahl R., Cichocki F., Chu H., Bonello G., Lee T., et al. FT596: Translation of First-of-Kind Multi-Antigen Targeted Off-the-Shelf CAR-NK Cell with Engineered Persistence for the Treatment of B Cell Malignancies. Blood. 2019;134:301. doi: 10.1182/blood-2019-129319. DOI
Haspel R., Miller K. Hematopoietic Stem Cells: Source Matters. Curr. Stem Cell Res. Ther. 2008;3:229–236. doi: 10.2174/157488808786734033. PubMed DOI
Styczynski J., Balduzzi A., Gil L., Labopin M., Hamladji R.M., Marktel S., Yesilipek M.A., Fagioli F., Ehlert K., Matulova M., et al. Risk of complications during hematopoietic stem cell collection in pediatric sibling donors: A prospective European Group for Blood and Marrow Transplantation Pediatric Diseases Working Party study. Blood. 2012;119:2935–2942. doi: 10.1182/blood-2011-04-349688. PubMed DOI
Drabko K. Autologous hematopoietic stem cell transplantation (auto-HSCT) in children in Poland: 2021 indications and practice. Acta Haematol. Pol. 2021;52:234–236. doi: 10.5603/AHP.2021.0045. DOI
Ohara Y., Ohto H., Tasaki T., Sano H., Mochizuki K., Akaihata M., Kobayashi S., Waragai T., Ito M., Hosoya M., et al. Comprehensive technical and patient-care optimization in the management of pediatric apheresis for peripheral blood stem cell harvesting. Transfus. Apher. Sci. 2016;55:338–343. doi: 10.1016/j.transci.2016.09.014. PubMed DOI
Karakukcu M., Unal E. Stem cell mobilization and collection from pediatric patients and healthy children. Transfus. Apher. Sci. 2015;53:17–22. doi: 10.1016/j.transci.2015.05.010. PubMed DOI
Lipton J.M. Peripheral blood as a stem cell source for hematopoietic cell transplantation in children: Is the effort in vein? Pediatr. Transplant. 2003;7:65–70. doi: 10.1034/j.1399-3046.7.s3.10.x. PubMed DOI
DiPersio J.F., Karpova D., Rettig M.P. Mobilized peripheral blood: An updated perspective. F1000Research. 2019;8:2125. doi: 10.12688/f1000research.21129.1. PubMed DOI PMC
Luzzi J.R., Borba C.C., Miyaji S.C., Brito C.A., Navarro-Xavier R., Dinardo C.L. Reduced volume of red blood cell priming is safe for pediatric patients undergoing therapeutic plasma exchange. Transfus. Apher. Sci. 2021;60:103005. doi: 10.1016/j.transci.2020.103005. PubMed DOI
Luo C., Wang L., Wu G., Huang X., Zhang Y., Ma Y., Xie M., Sun Y., Huang Y., Huang Z., et al. Comparison of the efficacy of hematopoietic stem cell mobilization regimens: A systematic review and network meta-analysis of preclinical studies. Stem Cell Res. Ther. 2021;12:310. doi: 10.1186/s13287-021-02379-6. PubMed DOI PMC
Tajer P., Pike-Overzet K., Arias S., Havenga M., Staal F. Ex Vivo Expansion of Hematopoietic Stem Cells for Therapeutic Purposes: Lessons from Development and the Niche. Cells. 2019;8:169. doi: 10.3390/cells8020169. PubMed DOI PMC
Baldwin K., Urbinati F., Romero Z., Campo-Fernandez B., Kaufman M.L., Cooper A.R., Masiuk K., Hollis R.P., Kohn D.B. Enrichment of human hematopoietic stem/progenitor cells facilitates transduction for stem cell gene therapy. Stem Cells. 2015;33:1532–1542. doi: 10.1002/stem.1957. PubMed DOI PMC
Jiang W., Xu J. Immune modulation by mesenchymal stem cells. Cell Prolif. 2020;53:e12712. doi: 10.1111/cpr.12712. PubMed DOI PMC
Ullah I., Subbarao R.B., Rho G.J. Human mesenchymal stem cells-Current trends and future prospective. Biosci. Rep. 2015;35:e00191. doi: 10.1042/BSR20150025. PubMed DOI PMC
Nehlin J.O., Jafari A., Tencerova M., Kassem M. Aging and lineage allocation changes of bone marrow skeletal (stromal)stem cells. Bone. 2019;123:265–273. doi: 10.1016/j.bone.2019.03.041. PubMed DOI
Seo Y., Shin T.H., Kim H.S. Current strategies to enhance adipose stem cell function: An update. Int. J. Mol. Sci. 2019;20:3827. doi: 10.3390/ijms20153827. PubMed DOI PMC
Kuca-Warnawin E., Skalska U., Janicka I., Musiałowicz U., Bonek K., Głuszko P., Szczęsny P., Olesińska M., Kontny E. The Phenotype and Secretory Activity of Adipose-Derived Mesenchymal Stem Cells (ASCs) of Patients with Rheumatic Diseases. Cells. 2019;8:1659. doi: 10.3390/cells8121659. PubMed DOI PMC
Ding D.C., Chang Y.H., Shyu W.C., Lin S.Z. Human umbilical cord mesenchymal stem cells: A new era for stem cell therapy. Cell Transplant. 2015;24:339–347. doi: 10.3727/096368915X686841. PubMed DOI
Goldman S.A., Schanz S., Windrem M.S. Stem cell-based strategies for treating pediatric disorders of myelin. Hum Mol. Genet. 2008;17:R76–R83. doi: 10.1093/hmg/ddn052. PubMed DOI
Peng Y., Tang L., Zhou Y. Subretinal Injection: A Review on the Novel Route of Therapeutic Delivery for Vitreoretinal Diseases. Ophthalmic Res. 2017;58:217–226. doi: 10.1159/000479157. PubMed DOI
Ramachandra D.L., Shaw S.S.W., Shangaris P., Loukogeorgakis S., Guillot P.V., De Coppi P., David A.L. In utero therapy for congenital disorders using amniotic fluid stem cells. Front. Pharmacol. 2014;5:270. doi: 10.3389/fphar.2014.00270. PubMed DOI PMC
Biological K. Non Viral Vectors in Gene Therapy-An Overview. J. Clin. Diagn. Res. 2015;9:GE01–GE06. doi: 10.7860/JCDR/2015/10443.5394. PubMed DOI PMC
Boulaiz H., Marchal J.A., Prados J., Melguizo C., Aránega A. Non-viral and viral vectors for gene therapy. Cell. Mol. Biol. 2005;51:3–22. PubMed
Richter M., Stone D., Miao C., Humbert O., Kiem H.P., Papayannopoulou T., Lieber A. In Vivo Hematopoietic Stem Cell Transduction. Hematol. Oncol. Clin. N. Am. 2017;31:771–785. doi: 10.1016/j.hoc.2017.06.001. PubMed DOI PMC
Murai N., Ohtaki H., Watanabe J., Xu Z., Sasaki S., Yagura K., Shioda S., Nagasaka S., Honda K., Izumizaki M. Intrapancreatic injection of human bone marrow-derived mesenchymal stem/stromal cells alleviates hyperglycemia and modulates the macrophage state in streptozotocin-induced type 1 diabetic mice. PLoS ONE. 2017;12:e0186637. doi: 10.1371/journal.pone.0186637. PubMed DOI PMC
Li C., Georgakopoulou A., Mishra A., Gil S., Hawkins R.D., Yannaki E., Lieber A. In vivo HSPC gene therapy with base editors allows for efficient reactivation of fetal γ-globin in β-YAC mice. Blood Adv. 2021;5:1122–1135. doi: 10.1182/bloodadvances.2020003702. PubMed DOI PMC
Schaefer S., Lange S., Werner J., Machka C., Neumann K., Knuebel G., Vogel H., Lindner I., Glass Ä., Escobar H.M., et al. Engraftment Effects after Intra-Bone Marrow versus Intravenous Allogeneic Stem Cell Transplantation in a Reduced-Intensity Conditioning Dog Leukocyte Antigen-Identical Canine Model. Transplant. Cell. Ther. 2021;28:70.e1–70.e5. doi: 10.1016/j.jtct.2021.11.010. PubMed DOI
Greber U.F., Gomez-Gonzalez A. Adenovirus-a blueprint for gene delivery. Curr. Opin. Virol. 2021;48:49–56. doi: 10.1016/j.coviro.2021.03.006. PubMed DOI
Chen W., Yao S., Wan J., Tian Y., Huang L., Wang S., Akter F., Wu Y., Yao Y., Zhang X. BBB-crossing adeno-associated virus vector: An excellent gene delivery tool for CNS disease treatment. J. Control. Release. 2021;333:129–138. doi: 10.1016/j.jconrel.2021.03.029. PubMed DOI
Jacobs L., De Smidt E., Geukens N., Declerck P., Hollevoet K. Electroporation outperforms in vivo-jetPEI for intratumoral DNA-based reporter gene transfer. Sci. Rep. 2020;10:19532. doi: 10.1038/s41598-020-75206-2. PubMed DOI PMC
Kerstan A., Niebergall-Roth E., Esterlechner J., Schröder H.M., Gasser M., Waaga-Gasser A.M., Goebeler M., Rak K., Schrüfer P., Endres S., et al. Ex vivo-expanded highly pure ABCB5+ mesenchymal stromal cells as Good Manufacturing Practice-compliant autologous advanced therapy medicinal product for clinical use: Process validation and first in-human data. Cytotherapy. 2021;23:165–175. doi: 10.1016/j.jcyt.2020.08.012. PubMed DOI PMC
Weiss R., Gerdes W., Berthold R., Sack U., Koehl U., Hauschildt S., Grahnert A. Comparison of Three CD3-Specific Separation Methods Leading to Labeled and Label-Free T Cells. Cells. 2021;10:2824. doi: 10.3390/cells10112824. PubMed DOI PMC
Han L., Zhou J., Li L., Zhou K., Zhao L., Zhu X., Yin Q., Li Y., You H., Zhang J., et al. Culturing adequate CAR-T cells from less peripheral blood to treat B-cell malignancies. Cancer Biol. Med. 2021;18:1066–1079. doi: 10.20892/j.issn.2095-3941.2021.0040. PubMed DOI PMC
Patsali P., Turchiano G., Papasavva P., Romito M., Loucari C.C., Stephanou C., Christou S., Sitarou M., Mussolino C., Cornu T.I., et al. Correction of IVS I-110(G>A) β-thalassemia by CRISPR/Cas-and TALEN-mediated disruption of aberrant regulatory elements in human hematopoietic stem and progenitor cells. Haematologica. 2019;104:e497–e501. doi: 10.3324/haematol.2018.215178. PubMed DOI PMC
Stephanou C., Papasavva P., Zachariou M., Patsali P., Epitropou M., Ladas P., Al-Abdulla R., Christou S., Antoniou M.N., Lederer C.W., et al. Suitability of small diagnostic peripheral-blood samples for cell-therapy studies. Cytotherapy. 2017;19:311–326. doi: 10.1016/j.jcyt.2016.11.007. PubMed DOI
Robbins G.M., Wang M., Pomeroy E.J., Moriarity B.S. Nonviral genome engineering of natural killer cells. Stem Cell Res. Ther. 2021;12:350. doi: 10.1186/s13287-021-02406-6. PubMed DOI PMC
Kim J.Y., Choi J.H., Kim S.H., Park H., Lee D., Kim G.J. Efficacy of Gene Modification in Placenta-Derived Mesenchymal Stem Cells Based on Nonviral Electroporation. Int. J. Stem Cells. 2021;14:112–118. doi: 10.15283/ijsc20117. PubMed DOI PMC
Holstein M., Mesa-Nuñez C., Miskey C., Almarza E., Poletti V., Schmeer M., Grueso E., Ordóñez Flores J.C., Kobelt D., Walther W., et al. Efficient Non-viral Gene Delivery into Human Hematopoietic Stem Cells by Minicircle Sleeping Beauty Transposon Vectors. Mol. Ther. 2018;26:1137–1153. doi: 10.1016/j.ymthe.2018.01.012. PubMed DOI PMC
Lattanzi A., Meneghini V., Pavani G., Amor F., Ramadier S., Felix T., Antoniani C., Masson C., Alibeu O., Lee C., et al. Optimization of CRISPR/Cas9 Delivery to Human Hematopoietic Stem and Progenitor Cells for Therapeutic Genomic Rearrangements. Mol. Ther. 2019;27:137–150. doi: 10.1016/j.ymthe.2018.10.008. PubMed DOI PMC
Russkamp N.F., Myburgh R., Kiefer J.D., Neri D., Manz M.G. Anti-CD117 immunotherapy to eliminate hematopoietic and leukemia stem cells. Exp. Hematol. 2021;95:31–45. doi: 10.1016/j.exphem.2021.01.003. PubMed DOI
Mangeot P.E., Risson V., Fusil F., Marnef A., Laurent E., Blin J., Mournetas V., Massouridès E., Sohier T.J.M., Corbin A., et al. Genome editing in primary cells and in vivo using viral-derived Nanoblades loaded with Cas9-sgRNA ribonucleoproteins. Nat. Commun. 2019;10:45. doi: 10.1038/s41467-018-07845-z. PubMed DOI PMC
Li C., Psatha N., Wang H., Singh M., Samal H.B., Zhang W., Ehrhardt A., Izsvák Z., Papayannopoulou T., Lieber A. Integrating HDAd5/35++ Vectors as a New Platform for HSC Gene Therapy of Hemoglobinopathies. Mol. Ther.-Methods Clin. Dev. 2018;9:142–152. doi: 10.1016/j.omtm.2018.02.004. PubMed DOI PMC
Banskota S., Raguram A., Suh S., Du S.W., Davis J.R., Choi E.H., Wang X., Nielsen S.C., Newby G.A., Randolph P.B., et al. Engineered virus-like particles for efficient in vivo delivery of therapeutic proteins. Cell. 2022;185:250–265. doi: 10.1016/j.cell.2021.12.021. PubMed DOI PMC
Zu H., Gao D. Non-viral Vectors in Gene Therapy: Recent Development, Challenges, and Prospects. AAPS J. 2021;23:78. doi: 10.1208/s12248-021-00608-7. PubMed DOI PMC
Mangeot P.E., Guiguettaz L., Sohier T.J.M., Ricci E.P. Delivery of the Cas9/sgRNA Ribonucleoprotein Complex in Immortalized and Primary Cells via Virus-like Particles (“Nanoblades”) J. Vis. Exp. 2021;169:e62245. doi: 10.3791/62245. PubMed DOI
He X., Urip B.A., Zhang Z., Ngan C.C., Feng B. Evolving AAV-delivered therapeutics towards ultimate cures. J. Mol. Med. 2021;99:593–617. doi: 10.1007/s00109-020-02034-2. PubMed DOI PMC
Definition-Nanomaterials-Environment-European Commission. [(accessed on 13 January 2021)]. Available online: https://ec.europa.eu/environment/chemicals/nanotech/faq/definition_en.htm.
Mitchell M.J., Billingsley M.M., Haley R.M., Wechsler M.E., Peppas N.A., Langer R. Engineering precision nanoparticles for drug delivery. Nat. Rev. Drug Discov. 2021;20:101–124. doi: 10.1038/s41573-020-0090-8. PubMed DOI PMC
DeLong R.K., Reynolds C.M., Malcolm Y., Schaeffer A., Severs T., Wanekaya A. Functionalized gold nanoparticles for the binding, stabilization, and delivery of therapeutic DNA, RNA, and other biological macromolecules. Nanotechnol. Sci. Appl. 2010;3:53–63. doi: 10.2147/NSA.S8984. PubMed DOI PMC
Rai R., Alwani S., Badea I. Polymeric nanoparticles in gene therapy: New avenues of design and optimization for delivery applications. Polymers. 2019;11:745. doi: 10.3390/polym11040745. PubMed DOI PMC
Tetro N., Moushaev S., Rubinchik-Stern M., Eyal S. The Placental Barrier: The Gate and the Fate in Drug Distribution. Pharm. Res. 2018;35:71. doi: 10.1007/s11095-017-2286-0. PubMed DOI
Muoth C., Aengenheister L., Kucki M., Wick P., Buerki-Thurnherr T. Nanoparticle transport across the placental barrier: Pushing the field forward. Nanomedicine. 2016;11:941–957. doi: 10.2217/nnm-2015-0012. PubMed DOI
Cruz L.J., van Dijk T., Vepris O., Li T.M.W.Y., Schomann T., Baldazzi F., Kurita R., Nakamura Y., Grosveld F., Philipsen S., et al. PLGA-Nanoparticles for Intracellular Delivery of the CRISPR-Complex to Elevate Fetal Globin Expression in Erythroid Cells. Biomaterials. 2021;268:120580. doi: 10.1016/j.biomaterials.2020.120580. PubMed DOI
King A., Ndifon C., Lui S., Widdows K., Kotamraju V.R., Agemy L., Teesalu T., Glazier J.D., Cellesi F., Tirelli N., et al. Tumor-homing peptides as tools for targeted delivery of payloads to the placenta. Sci. Adv. 2016;2:e1600349. doi: 10.1126/sciadv.1600349. PubMed DOI PMC
Kaitu’u-Lino T.J., Pattison S., Ye L., Tuohey L., Sluka P., MacDiarmid J., Brahmbhatt H., Johns T., Horne A.W., Brown J., et al. Targeted nanoparticle delivery of doxorubicin into placental tissues to treat ectopic pregnancies. Endocrinology. 2013;154:911–919. doi: 10.1210/en.2012-1832. PubMed DOI
Li L., Li H., Xue J., Chen P., Zhou Q., Zhang C. Nanoparticle-Mediated Simultaneous Downregulation of Placental Nrf2 and sFlt1 Improves Maternal and Fetal Outcomes in a Preeclampsia Mouse Model. ACS Biomater. Sci. Eng. 2020;6:5866–5873. doi: 10.1021/acsbiomaterials.0c00826. PubMed DOI
EUR-Lex-32007R1394-EN-EUR-Lex. [(accessed on 13 January 2021)]. Available online: https://eur-lex.europa.eu/legal-content/EN/ALL/?uri=CELEX%3A32007R1394.
Promising mRNA Tech Comes with Regulatory, CMC Headaches|RAPS. [(accessed on 13 January 2021)]. Available online: https://www.raps.org/news-and-articles/news-articles/2020/11/euro-convergence-regulatory-and-cmc-considerations.
Singh V.P., McKinney S., Gerton J.L. Persistent DNA Damage and Senescence in the Placenta Impacts Developmental Outcomes of Embryos. Dev. Cell. 2020;54:333–347.e7. doi: 10.1016/j.devcel.2020.05.025. PubMed DOI
Pritchard N., Kaitu’u-Lino T., Harris L., Tong S., Hannan N. Nanoparticles in pregnancy: The next frontier in reproductive therapeutics. Hum. Reprod. Update. 2020;27:280–304. doi: 10.1093/humupd/dmaa049. PubMed DOI PMC
Irvin-Choy N.S., Nelson K.M., Gleghorn J.P., Day E.S. Design of nanomaterials for applications in maternal/fetal medicine. J. Mater. Chem. B. 2020;8:6548–6561. doi: 10.1039/D0TB00612B. PubMed DOI PMC
Tsukamoto M., Ochiya T., Yoshida S., Sugimura T., Terada M. Gene transfer and expression in progeny after intravenous DNA injection into pregnant mice. Nat. Genet. 1995;9:243–248. doi: 10.1038/ng0395-243. PubMed DOI
Cornford E.M., Hyman S., Cornford M.E., Chytrova G., Rhee J., Suzuki T., Yamagata T., Yamakawa K., Penichet M.L., Pardridge W.M. Non-invasive gene targeting to the fetal brain after intravenous administration and transplacental transfer of plasmid DNA using PEGylated immunoliposomes. J. Drug Target. 2016;24:58–67. doi: 10.3109/1061186X.2015.1055569. PubMed DOI
Ellah N.A., Taylor L., Troja W., Owens K., Ayres N., Pauletti G., Jones H. Development of non-viral, trophoblast-specific gene delivery for placental therapy. PLoS ONE. 2015;10:e0140879. doi: 10.1371/journal.pone.0140879. PubMed DOI PMC
Giubilato E., Cazzagon V., Amorim M.J.B., Blosi M., Bouillard J., Bouwmeester H., Costa A.L., Fadeel B., Fernandes T.F., Fito C., et al. Risk Management Framework for Nano-Biomaterials Used in Medical Devices and Advanced Therapy Medicinal Products. Materials. 2020;13:4532. doi: 10.3390/ma13204532. PubMed DOI PMC
BIOmaterial RIsk MAnagement|BIORIMA Project|H2020|CORDIS|European Commission. [(accessed on 13 January 2021)]. Available online: https://cordis.europa.eu/project/id/760928.
Caplan H., Olson S.D., Kumar A., George M., Prabhakara K.S., Wenzel P., Bedi S., Toledano-Furman N.E., Triolo F., Kamhieh-Milz J., et al. Mesenchymal Stromal Cell Therapeutic Delivery: Translational Challenges to Clinical Application. Front. Immunol. 2019;10:1645. doi: 10.3389/fimmu.2019.01645. PubMed DOI PMC
Bonig H., Kuçi Z., Kuçi S., Bakhtiar S., Basu O., Bug G., Dennis M., Greil J., Barta A., Kállay K.M., et al. Children and Adults with Refractory Acute Graft-versus-Host Disease Respond to Treatment with the Mesenchymal Stromal Cell Preparation “MSC-FFM”-Outcome Report of 92 Patients. Cells. 2019;8:1577. doi: 10.3390/cells8121577. PubMed DOI PMC
Namba F. Mesenchymal stem cells for the prevention of bronchopulmonary dysplasia. Pediatr. Int. 2019;61:945–950. doi: 10.1111/ped.14001. PubMed DOI
Delhove J., Osenk I., Prichard I., Donnelley M. Public Acceptability of Gene Therapy and Gene Editing for Human Use: A Systematic Review. Hum. Gene Ther. 2020;31:20–46. doi: 10.1089/hum.2019.197. PubMed DOI
Seoane-Vazquez E., Shukla V., Rodriguez-Monguio R. Innovation and competition in advanced therapy medicinal products. EMBO Mol. Med. 2019;11:e9992. doi: 10.15252/emmm.201809992. PubMed DOI PMC
Lipsitz Y.Y., Milligan W.D., Fitzpatrick I., Stalmeijer E., Farid S.S., Tan K.Y., Smith D., Perry R., Carmen J., Chen A., et al. A roadmap for cost-of-goods planning to guide economic production of cell therapy products. Cytotherapy. 2017;19:1383–1391. doi: 10.1016/j.jcyt.2017.06.009. PubMed DOI
Walpole S.C., Prieto-Merino D., Edwards P., Cleland J., Stevens G., Roberts I. The weight of nations: An estimation of adult human biomass. BMC Public Health. 2012;12:439. doi: 10.1186/1471-2458-12-439. PubMed DOI PMC
Janssen P.A., Thiessen P., Klein M.C., Whitfield M.F., Macnab Y.C., Cullis-Kuhl S.C. Standards for the measurement of birth weight, length and head circumference at term in neonates of European, Chinese and South Asian ancestry. Open Med. 2007;1:e74–e88. PubMed PMC
Shaw S.W.S.S., Blundell M.P., Pipino C., Shangaris P., Maghsoudlou P., Ramachandra D.L., Georgiades F., Boyd M., Thrasher A.J., Porada C.D., et al. Sheep CD34+ amniotic fluid cells have hematopoietic potential and engraft after autologous in utero transplantation. Stem Cells. 2015;33:122–132. doi: 10.1002/stem.1839. PubMed DOI
Aurich B., Jacqz-Aigrain E. Drug safety in translational paediatric research: Practical points to consider for paediatric safety profiling and protocol development: A scoping review. Pharmaceutics. 2021;13:695. doi: 10.3390/pharmaceutics13050695. PubMed DOI PMC
Ceci A., Felisi M., Baiardi P., Bonifazi F., Catapano M., Giaquinto C., Nicolosi A., Sturkenboom M., Neubert A., Wong I. Medicines for children licensed by the European Medicines Agency. (EMEA): The balance after 10 years. Eur. J. Clin. Pharmacol. 2006;62:947–952. doi: 10.1007/s00228-006-0193-0. PubMed DOI
Giannuzzi V., Conte R., Landi A., Ottomano S.A., Bonifazi D., Baiardi P., Bonifazi F., Ceci A. Orphan medicinal products in Europe and United States to cover needs of patients with rare diseases: An increased common effort is to be foreseen. Orphanet J. Rare Dis. 2017;12:64. doi: 10.1186/s13023-017-0617-1. PubMed DOI PMC
TEDDY – European Network of Excellence for Paediatric Clinical Research. European Paediatric Medicines Database (EPMD) [(accessed on 26 October 2021)]. Available online: https://www.teddynetwork.net/european-paediatric-medicines-database-epmd/
Pierce G.F. Uncertainty in an era of transformative therapy for haemophilia: Addressing the unknowns. Haemophilia. 2021;27:103–113. doi: 10.1111/hae.14023. PubMed DOI
Brooks S.P., Bubela T. Application of protection motivation theory to clinical trial enrolment for pediatric chronic conditions. BMC Pediatr. 2020;20:123. doi: 10.1186/s12887-020-2014-5. PubMed DOI PMC
Bushman F.D. Retroviral Insertional Mutagenesis in Humans: Evidence for Four Genetic Mechanisms Promoting Expansion of Cell Clones. Mol. Ther. 2020;28:352–356. doi: 10.1016/j.ymthe.2019.12.009. PubMed DOI PMC
Gene therapy needs a long-term approach. Nat. Med. 2021;27:563. doi: 10.1038/s41591-021-01333-6. PubMed DOI
Blattner G., Cavazza A., Thrasher A.J., Turchiano G. Gene Editing and Genotoxicity: Targeting the Off-Targets. Front. Genome Ed. 2020;2:613252. doi: 10.3389/fgeed.2020.613252. PubMed DOI PMC
Almeida-Porada G., Waddington S.N., Chan J.K.Y., Peranteau W.H., MacKenzie T., Porada C.D. In Utero Gene Therapy Consensus Statement from the IFeTIS. Mol. Ther. 2019;27:705–707. doi: 10.1016/j.ymthe.2019.02.015. PubMed DOI PMC