Efficient CRISPR/Cas9-mediated gene disruption in the tetraploid protist Giardia intestinalis
Jazyk angličtina Země Anglie, Velká Británie Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
35472287
PubMed Central
PMC9042576
DOI
10.1098/rsob.210361
Knihovny.cz E-zdroje
- Klíčová slova
- CRISPR/Cas9, Giardia, gene knockout, multiploid,
- MeSH
- CRISPR-Cas systémy * MeSH
- editace genu metody MeSH
- Giardia lamblia * genetika MeSH
- lidé MeSH
- tetraploidie MeSH
- vodící RNA, systémy CRISPR-Cas MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- vodící RNA, systémy CRISPR-Cas MeSH
CRISPR/Cas9-mediated genome editing has become an extremely powerful technique used to modify gene expression in many organisms, including parasitic protists. Giardia intestinalis, a protist parasite that infects approximately 280 million people around the world each year, has been eluding the use of CRISPR/Cas9 to generate knockout cell lines due to its tetraploid genome. In this work, we show the ability of the in vitro assembled CRISPR/Cas9 components to successfully edit the genome of G. intestinalis. The cell line that stably expresses Cas9 in both nuclei of G. intestinalis showed effective recombination of the cassette containing the transcription units for the gRNA and the resistance marker. This highly efficient process led to the removal of all gene copies at once for three independent experimental genes, mem, cwp1 and mlf1. The method was also applicable to incomplete disruption of the essential gene, as evidenced by significantly reduced expression of tom40. Finally, testing the efficiency of Cas9-induced recombination revealed that homologous arms as short as 150 bp can be sufficient to establish a complete knockout cell line in G. intestinalis.
Zobrazit více v PubMed
Adam RD. 2021. Giardia duodenalis: biology and pathogenesis. Clin. Microbiol. Rev. 34, e00024-19. (10.1128/CMR.00024-19) PubMed DOI PMC
Einarsson E, Ma'ayeh S, Svärd SG. 2016. An up-date on Giardia and giardiasis. Curr. Opin. Microbiol. 34, 47-52. (10.1016/j.mib.2016.07.019) PubMed DOI
Bernander R, Palm JED, Svärd SG. 2001. Genome ploidy in different stages of the Giardia lamblia life cycle. Cell. Microbiol. 3, 55-62. (10.1046/j.1462-5822.2001.00094.x) PubMed DOI
Tůmová P, Hofštetrová K, Nohýnková E, Hovorka O, Král J. 2007. Cytogenetic evidence for diversity of two nuclei within a single diplomonad cell of Giardia. Chromosoma 116, 65-78. (10.1007/s00412-006-0082-4) PubMed DOI
Tůmová P, Uzlíková M, Jurczyk T, Nohýnková E. 2016. Constitutive aneuploidy and genomic instability in the single-celled eukaryote Giardia intestinalis. MicrobiologyOpen 5, 560-574. (10.1002/mbo3.351) PubMed DOI PMC
Xu F, Jex A, Svärd SG. 2020. A chromosome-scale reference genome for Giardia intestinalis WB. Sci. Data 7, 38. (10.1038/s41597-020-0377-y) PubMed DOI PMC
Tůmová P, Dluhošová J, Weisz F, Nohýnková E. 2019. Unequal distribution of genes and chromosomes refers to nuclear diversification in the binucleated Giardia intestinalis. Int. J. Parasitol. 49, 463-470. (10.1016/j.ijpara.2019.01.003) PubMed DOI
Cooper MA, Sterling CR, Gilman RH, Cama V, Ortega Y, Adam RD. 2010. Molecular analysis of household transmission of Giardia lamblia in a region of high endemicity in Peru. J. Infect. Dis. 202, 1713-1721. (10.1086/657142) PubMed DOI PMC
Cooper MA, Adam RD, Worobey M, Sterling CR. 2007. Population genetics provides evidence for recombination in Giardia. Curr. Biol. 17, 1984-1988. (10.1016/j.cub.2007.10.020) PubMed DOI
Ankarklev J, Lebbad M, Einarsson E, Franzén O, Ahola H, Troell K, Svärd SG. 2018. A novel high-resolution multilocus sequence typing of Giardia intestinalis Assemblage A isolates reveals zoonotic transmission, clonal outbreaks and recombination. Infect. Genet. Evol. 60, 7-16. (10.1016/J.MEEGID.2018.02.012) PubMed DOI
Birky CW. 2010. Giardia sex? Yes, but how and how much? Trends Parasitol. 26, 70-74. (10.1016/J.PT.2009.11.007) PubMed DOI
Ankarklev J, Svärd SG, Lebbad M. 2012. Allelic sequence heterozygosity in single Giardia parasites. BMC Microbiol. 12, 1-10. (10.1186/1471-2180-12-65) PubMed DOI PMC
Poxleitner MK, Carpenter ML, Mancuso JJ, Wang C-JR, Dawson SC, Cande WZ. 2008. Evidence for karyogamy and exchange of genetic material in the binucleate intestinal parasite Giardia intestinalis. Science 319, 1530-1533. (10.1126/science.1153752) PubMed DOI
Yee J, Nash TE. 1995. Transient transfection and expression of firefly luciferase in Giardia lamblia. Proc. Natl Acad. Sci. USA 92, 5615-5619. (10.1073/pnas.92.12.5615) PubMed DOI PMC
Singer SM, Yee J, Nash TE. 1998. Episomal and integrated maintenance of foreign DNA in Giardia lamblia. Mol. Biochem. Parasitol. 92, 59-69. (10.1016/S0166-6851(97)00225-9) PubMed DOI
Sun CH, Chou CF, Tai JH. 1998. Stable DNA transfection of the primitive protozoan pathogen Giardia lamblia. Mol. Biochem. Parasitol. 92, 123-132. (10.1016/S0166-6851(97)00239-9) PubMed DOI
Yu DC, Wang AL, Wu CH, Wang CC. 1995. Virus-mediated expression of firefly luciferase in the parasitic protozoan Giardia lamblia. Mol. Cell. Biol. 15, 4867-4872. PubMed PMC
Kim J, Park S. 2019. Roles of end-binding 1 protein and gamma-tubulin small complex in cytokinesis and flagella formation of Giardia lamblia. Microbiol. Open 8, 1-20. (10.1002/mbo3.748) PubMed DOI PMC
Krtková J, Thomas EB, Alas GCM, Schraner EM, Behjatnia HR, Hehl AB, Paredez AR. 2016. Rac regulates Giardia lamblia encystation by coordinating cyst wall protein trafficking and secretion. mBio 7, 1-10. (10.1128/mBio.01003-16) PubMed DOI PMC
Hardin WR, Li R, Xu J, Shelton AM, Alas GCM, Minin VN, Paredez AR. 2017. Myosin-independent cytokinesis in Giardia utilizes flagella to coordinate force generation and direct membrane trafficking. Proc. Natl Acad. Sci. USA 114, E5854-E5863. (10.1073/pnas.1705096114) PubMed DOI PMC
Kim J, Nagami S, Lee K-H, Park S-J. 2014. Characterization of microtubule-binding and dimerization activity of Giardia lamblia end-binding 1 protein. PLoS ONE 9, e97850. (10.1371/journal.pone.0097850) PubMed DOI PMC
Carpenter ML, Cande WZ. 2009. Using morpholinos for gene knockdown in Giardia intestinalis. Eukaryotic Cell 8, 916-919. (10.1128/EC.00041-09) PubMed DOI PMC
McInally SG, Hagen KD, Nosala C, Williams J, Nguyen K, Booker J, Jones K, Dawson SC. 2019. Robust and stable transcriptional repression in Giardia using CRISPRi. Mol. Biol. Cell 30, 119-130. (10.1091/mbc.E18-09-0605) PubMed DOI PMC
Shih H-W, Alas GC, Rydell DS, Zhang B, Hamilton GA, Paredez AR. 2021. An early signaling transcription factor regulates differentiation in Giardia. bioRxiv, 2021.05.27.446072. (10.1101/2021.05.27.446072) DOI
Lin Z-Q, Gan S-W, Tung S-Y, Ho C-C, Su L-H, Sun C-H. 2019. Development of CRISPR/Cas9-mediated gene disruption systems in Giardia lamblia. PLoS ONE 14, e0213594. (10.1371/journal.pone.0213594) PubMed DOI PMC
Chen Y-C, Tung S-Y, Huang C-W, Gan S-W, Lin B-C, Chen C-W, Lin Z-Q, Sun C-H, Casamassimi A. 2021. A novel Spo11 homologue functions as a positive regulator in cyst differentiation in Giardia lamblia. Int. J. Mol. Sci 22, 11902. (10.3390/IJMS222111902) PubMed DOI PMC
Ebneter JA, Heusser SD, Schraner EM, Hehl AB, Faso C. 2016. Cyst-Wall-Protein-1 is fundamental for Golgi-like organelle neogenesis and cyst-wall biosynthesis in Giardia lamblia. Nat. Commun. 7, 13859. (10.1038/ncomms13859) PubMed DOI PMC
Xue C, Greene E. 2021. DNA repair pathway choices in CRISPR-Cas9-mediated genome editing. Trends Genet. TIG 37, 639-656. (10.1016/J.TIG.2021.02.008) PubMed DOI PMC
Nenarokova A, Záhonová K, Krasilnikov M, Gahura O, McCulloch R, Zíková A, Yurchenko V, Lukeš J. 2019. Causes and effects of loss of classical nonhomologous end joining pathway in parasitic eukaryotes. mBio 10, e01541-19. (10.1128/mBio.01541-19) PubMed DOI PMC
Mowatt M, Luján H, Cotten D, Bowers B, Yee J, Nash T, Stibbs H. 1995. Developmentally regulated expression of a Giardia lamblia cyst wall protein gene. Mol. Microbiol. 15, 955-963. (10.1111/J.1365-2958.1995.TB02364.X) PubMed DOI
Ramakrishna S, Kwaku Dad AB, Beloor J, Gopalappa R, Lee SK, Kim H. 2014. Gene disruption by cell-penetrating peptide-mediated delivery of Cas9 protein and guide RNA. Genome Res. 24, 1020-1027. (10.1101/gr.171264.113) PubMed DOI PMC
Lauwaet T, et al. 2007. Protein phosphatase 2A plays a crucial role in Giardia lamblia differentiation. Mol. Biochem. Parasitol. 152, 80-89. (10.1016/j.molbiopara.2006.12.001) PubMed DOI PMC
Dolezal P, Smíd O, Rada P, Zubácová Z, Bursać D, Suták R, Nebesárová J, Lithgow T, Tachezy J. 2005. Giardia mitosomes and trichomonad hydrogenosomes share a common mode of protein targeting. Proc. Natl Acad. Sci. USA 102, 10 924-10 929. (10.1073/pnas.0500349102) PubMed DOI PMC
Peirasmaki D, Ma'ayeh SY, Xu F, Ferella M, Campos S, Liu J, Svärd SG. 2020. High cysteine membrane proteins (HCMPs) are up-regulated during Giardia–host cell interactions. Front. Genet. 11, 1-17. (10.3389/FGENE.2020.00913) PubMed DOI PMC
Esvelt KM, Smidler AL, Catteruccia F, Church GM. 2014. Concerning RNA-guided gene drives for the alteration of wild populations. eLife 3, 1-21. (10.7554/eLife.03401) PubMed DOI PMC
Dagley MJ, Dolezal P, Likic VA, Smid O, Purcell AW, Buchanan SK, Tachezy J, Lithgow T. 2009. The protein import channel in the outer mitosomal membrane of Giardia intestinalis. Mol. Biol. Evol. 26, 1941-1947. (10.1093/molbev/msp117) PubMed DOI PMC
Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, Charpentier E. 2012. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 337, 816-821. (10.1126/science.1225829) PubMed DOI PMC
Ran FA, Hsu PD, Wright J, Agarwala V, Scott DA, Zhang F. 2013. Genome engineering using the CRISPR-Cas9 system. Nat. Protocols 8, 2281-2308. (10.1038/nprot.2013.143) PubMed DOI PMC
Grzybek M, Golonko A, Górska A, Szczepaniak K, Strachecka A, Lass A, Lisowski P. 2018. The CRISPR/Cas9 system sheds new lights on the biology of protozoan parasites. Appl. Microbiol. Biotechnol. 102, 4629-4640. (10.1007/s00253-018-8927-3) PubMed DOI PMC
Broeders M, Herrero-Hernandez P, Ernst MPT, van der Ploeg AT, Pijnappel WWMP. 2020. Sharpening the molecular scissors: advances in gene-editing technology. iScience 23, 100789. (10.1016/j.isci.2019.100789) PubMed DOI PMC
Najdrová V, Stairs CW, Vinopalová M, Voleman L, Doležal P. 2020. The evolution of the Puf superfamily of proteins across the tree of eukaryotes. BMC Biol. 18, 1-18. (10.1186/s12915-020-00814-3) PubMed DOI PMC
Jiménez-García LF. 2017. The nucleolus of Giardia lamblia. MOJ Anat. Physiol. 3, 41-43. (10.15406/mojap.2017.03.00083) DOI
Markus BM, Bell GW, Lorenzi HA, Lourido S. 2019. Optimizing systems for Cas9 expression in Toxoplasma gondii. mSphere 4, e00386-19. (10.1128/msphere.00386-19) PubMed DOI PMC
Janssen BD, Chen Y-P, Molgora BM, Wang SE, Simoes-Barbosa A, Johnson PJ. 2018. CRISPR/Cas9-mediated gene modification and gene knock out in the human-infective parasite Trichomonas vaginalis. Sci. Rep. 8, 270. (10.1038/s41598-017-18442-3) PubMed DOI PMC
Keister DB. 1983. Axenic culture of Giardia lamblia in TYI-S-33 medium supplemented with bile. Trans. R. Soc. Trop. Med. Hyg. 77, 487-488. (10.1016/0035-9203(83)90120-7) PubMed DOI
Voleman L, et al. 2017. Giardia intestinalis mitosomes undergo synchronized fission but not fusion and are constitutively associated with the endoplasmic reticulum. BMC Biol. 15, 1-27. (10.1186/s12915-017-0361-y) PubMed DOI PMC
Einarsson E, Troell K, Hoeppner MP, Grabherr M, Ribacke U, Svärd SG. 2016. Coordinated changes in gene expression throughout encystation of Giardia intestinalis. PLoS Negl. Trop. Dis. 10, e0004571. (10.1371/journal.pntd.0004571) PubMed DOI PMC
Morrison HG, et al. 2007. Genomic minimalism in the early diverging intestinal parasite Giardia lamblia. Science 317, 1921-1926. (10.1126/science.1143837) PubMed DOI
Martincová E, et al. 2012. Live imaging of mitosomes and hydrogenosomes by HaloTag technology. PLoS ONE 7, e36314. (10.1371/journal.pone.0036314) PubMed DOI PMC
Hughes CS, Moggridge S, Müller T, Sorensen PH, Morin GB, Krijgsveld J. 2019. Single-pot, solid-phase-enhanced sample preparation for proteomics experiments. Nat. Protocols 14, 68-85. (10.1038/s41596-018-0082-x) PubMed DOI
Rappsilber J, Mann M, Ishihama Y. 2007. Protocol for micro-purification, enrichment, pre-fractionation and storage of peptides for proteomics using StageTips. Nat. Protocols 2, 1896-1906. (10.1038/nprot.2007.261) PubMed DOI
Hebert AS, Richards AL, Bailey DJ, Ulbrich A, Coughlin EE, Westphall MS, Coon JJ. 2014. The one hour yeast proteome. Mol. Cell. Proteom. 13, 339-347. (10.1074/mcp.M113.034769) PubMed DOI PMC
Cox J, Mann M. 2008. MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification. Nat. Biotechnol. 26, 1367-1372. (10.1038/nbt.1511) PubMed DOI
Cox J, Hein MY, Luber CA, Paron I, Nagaraj N, Mann M. 2014. Accurate proteome-wide label-free quantification by delayed normalization and maximal peptide ratio extraction, termed MaxLFQ. Mol. Cell. Proteom. 13, 2513-2526. (10.1074/mcp.M113.031591) PubMed DOI PMC
Tyanova S, Temu T, Sinitcyn P, Carlson A, Hein MY, Geiger T, Mann M, Cox J. 2016. The Perseus computational platform for comprehensive analysis of (prote)omics data. Nat. Methods 13, 731-740. (10.1038/nmeth.3901) PubMed DOI
Tůmová P, Voleman L, Klingl A, Nohýnková E, Wanner G, Doležal P. 2021. Inheritance of the reduced mitochondria of Giardia intestinalis is coupled to the flagellar maturation cycle. BMC Biol. 19, 1-20. (10.1186/S12915-021-01129-7) PubMed DOI PMC
Horáčková V, et al. 2022. Efficient CRISPR/Cas9-mediated gene disruption in the tetraploid protist Giardia intestinalis. Figshare. (10.6084/m9.figshare.c.5953852) PubMed DOI PMC
Adaptation of the late ISC pathway in the anaerobic mitochondrial organelles of Giardia intestinalis
Efficient CRISPR/Cas9-mediated gene disruption in the tetraploid protist Giardia intestinalis
figshare
10.6084/m9.figshare.c.5953852