Molecular Phylogeny Reveals the Past Transoceanic Voyages of Drywood Termites (Isoptera, Kalotermitidae)
Jazyk angličtina Země Spojené státy americké Médium print
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
35511685
PubMed Central
PMC9113494
DOI
10.1093/molbev/msac093
PII: 6577226
Knihovny.cz E-zdroje
- Klíčová slova
- historical biogeography, insects, long distance dispersal, molecular clock, social evolution, time-calibrated phylogenetic tree,
- MeSH
- buněčné jádro MeSH
- ekosystém MeSH
- fylogeneze MeSH
- genom mitochondriální * MeSH
- Isoptera * genetika MeSH
- lidé MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Termites are major decomposers in terrestrial ecosystems and the second most diverse lineage of social insects. The Kalotermitidae form the second-largest termite family and are distributed across tropical and subtropical ecosystems, where they typically live in small colonies confined to single wood items inhabited by individuals with no foraging abilities. How the Kalotermitidae have acquired their global distribution patterns remains unresolved. Similarly, it is unclear whether foraging is ancestral to Kalotermitidae or was secondarily acquired in a few species. These questions can be addressed in a phylogenetic framework. We inferred time-calibrated phylogenetic trees of Kalotermitidae using mitochondrial genomes of ∼120 species, about 27% of kalotermitid diversity, including representatives of 21 of the 23 kalotermitid genera. Our mitochondrial genome phylogenetic trees were corroborated by phylogenies inferred from nuclear ultraconserved elements derived from a subset of 28 species. We found that extant kalotermitids shared a common ancestor 84 Ma (75-93 Ma 95% highest posterior density), indicating that a few disjunctions among early-diverging kalotermitid lineages may predate Gondwana breakup. However, most of the ∼40 disjunctions among biogeographic realms were dated at <50 Ma, indicating that transoceanic dispersals, and more recently human-mediated dispersals, have been the major drivers of the global distribution of Kalotermitidae. Our phylogeny also revealed that the capacity to forage is often found in early-diverging kalotermitid lineages, implying the ancestors of Kalotermitidae were able to forage among multiple wood pieces. Our phylogenetic estimates provide a platform for critical taxonomic revision and future comparative analyses of Kalotermitidae.
California Academy of the Sciences San Francisco CA USA
Department of Ecology and Evolutionary Biology University of Kansas Lawrence KS USA
Division of Entomology Natural History Museum University of Kansas Lawrence KS USA
Evolutionary Biology and Ecology Université Libre de Bruxelles Bruxelles Belgium
Faculty of Tropical AgriSciences Czech University of Life Sciences Prague Czech Republic
Madagascar Biodiversity Center Parc Botanique et Zoologique de Tsimbazaza Antananarivo Madagascar
School of Biological Sciences University of Western Australia Perth WA 6009 Australia
Zobrazit více v PubMed
Abe T. 1984. Colonization of the Krakatau Islands by termites (Insecta: Isoptera). Physiol Ecol Japan 21:63–88.
Abe T. 1987. Evolution of life types in termites. In: Kawano S, Connell J, Hidaka T, editors. Evolution and coadaptation in biotic communities. Tokyo: University of Tokyo Press. p. 125–148.
Ayad LAK, Pissis SP. 2017. MARS: improving multiple circular sequence alignment using refined sequences. BMC Genomics 18:86. PubMed PMC
Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M, Kulikov AS, Alexander S, Lesin VM, Nikolenko SI, Pham S, et al. 2012. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol. 19:455–477. PubMed PMC
Barden P, Engel MS. 2021. Fossil social insects. In: Starr CK, editor. Encyclopedia of social insects. Cham: Springer International Publishing. p. 384–403.
Bordereau C, Pasteels JM. 2011. Pheromones and chemical ecology of dispersal and foraging in termites. In: Bignell DE, Roisin Y, Lo N, editors. Biology of termites: a modern synthesis. Dordrecht: Springer SBM. p. 279–320.
Bouckaert RR, Drummond AJ. 2017. bModelTest: Bayesian phylogenetic site model averaging and model comparison. BMC Evol Biol. 17:1–11. PubMed PMC
Bouckaert R, Heled J, Kühnert D, Vaughan T, Wu C-H, Xie D, Suchard MA, Rambaut A, Drummond AJ. 2014. BEAST 2: a software platform for Bayesian evolutionary analysis. PLoS Comput Biol. 10:e1003537. PubMed PMC
Bourguignon T, Chisholm RA, Evans TA. 2016. The termite worker phenotype evolved as a dispersal strategy for fertile wingless individuals before eusociality. Am Nat. 187:372–387. PubMed
Bourguignon T, Lo N, Cameron SL, Šobotník J, Hayashi Y, Shigenobu S, Watanabe D, Roisin Y, Miura T, Evans TA. 2015. The evolutionary history of termites as inferred from 66 mitochondrial genomes. Mol Biol Evol. 32:406–421. PubMed
Bourguignon T, Lo N, Šobotník J, Ho SYW, Iqbal N, Coissac E, Lee M, Jendryka MM, Sillam-Dusses D, Křížková B, et al. 2017. Mitochondrial phylogenomics resolves the global spread of higher termites, ecosystem engineers of the tropics. Mol Biol Evol. 34:589–597. PubMed
Bourguignon T, Lo N, Šobotník J, Sillam-Dussès D, Roisin Y, Evans TA. 2016. Oceanic dispersal, vicariance and human introduction shaped the modern distribution of the termites Reticulitermes, Heterotermes and Coptotermes. Proc R Soc B Biol Sci. 283:20160179. PubMed PMC
Bourguignon T, Šobotník J, Dahlsjö CAL, Roisin Y. 2016. The soldierless Apicotermitinae: insights into a poorly known and ecologically dominant tropical taxon. Insect Soc. 63:39–50.
Bucek A, Šobotník J, He S, Shi M, McMahon DP, Holmes EC, Roisin Y, Lo N, Bourguignon T. 2019. Evolution of termite symbiosis informed by transcriptome-based phylogenies. Curr Biol. 29:3728–3734.e4. PubMed
Buchs DM, Arculus RJ, Baumgartner PO, Baumgartner-Mora C, Ulianov A. 2010. Late Cretaceous arc development on the SW margin of the Caribbean Plate: insights from the Golfito, Costa Rica, and Azuero, Panama, complexes. Geochem Geophys Geosyst. 11:Q07S24.
Cameron SL, Lo N, Bourguignon T, Svenson GJ, Evans TA. 2012. A mitochondrial genome phylogeny of termites (Blattodea: Termitoidae): robust support for interfamilial relationships and molecular synapomorphies define major clades. Mol Phylogenet Evol. 65:163–173. PubMed
Castresana J. 2000. Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. Mol Biol Evol. 17:540–552. PubMed
Charpentier T. 1843. Über einige fossile Insecten aus Radoboj in Croatien. Novorum Actorum Acad. Caesareae Leopoldino-Carolinae Naturae Curiosorum 20:399–410,Pl. XXI–XXIII.
Chiu C, Mullins AJ, Kuan K, Lin M, Su N, Li H. 2021. Termite salinity tolerance and potential for transoceanic dispersal through rafting. Ecol Entomol. 46:106–116.
Clamp M, Cuff J, Searle SM, Barton GJ. 2004. The Jalview Java alignment editor. Bioinformatics 20:426–427. PubMed
Dawson MR, West RM, Langston W, Hutchison JH. 1976. Paleogene terrestrial vertebrates: northernmost occurrence, Ellesmere Island, Canada. Science 192:781–782. PubMed
Dierckxsens N, Mardulyn P, Smits G. 2016. NOVOPlasty: de novo assembly of organelle genomes from whole genome data. Nucleic Acids Res. 45:e18. PubMed PMC
Drummond AJ, Ho SYW, Phillips MJ, Rambaut A. 2006. Relaxed phylogenetics and dating with confidence. PLoS Biol. 4:e88. PubMed PMC
Eggleton P, Bignell DE, Sands WA, Mawdsley NA, Lawton JH, Wood TG, Bignell NC. 1996. The diversity, abundance and biomass of termites under differing levels of disturbance in the Mbalmayo Forest Reserve, southern Cameroon. Philos Trans R Soc London Ser B Biol Sci. 351:51–68.
Eggleton P, Davies R. 2003. Isoptera, termites. In: Goodman SM, Benstead JP, editors. The natural history of Madagascar. Chicago and London: The University of Chicago Press. p. 654–660.
Eickwort GC, Eickwort JM, Gordon J, Eickwort MA, Wcislo WT. 1996. Solitary behavior in a high-altitude population of the social sweat bee Halictus rubicundus (Hymenoptera: Halictidae). Behav Ecol Sociobiol. 38:227–233.
Emerson AE. 1942. The relations of a relict South African Termite (Isoptera, Hodotermitidae, Stolotermes). Am Museum Novit. 1187:1–12.
Emerson AE. 1969. A revision of the Tertiary Fossil Species of the Kalotermitidae (Isoptera). Am Museum Novit. 2359:1–57.
Emerson AE. 1971. Tertiary fossil species of the Rhinotermitidae (Isoptera), phylogeny of genera, and reciprocal phylogeny of associated Flagellata (Protozoa) and the Staphylinidae (Coleoptera). Bull Am Museum Nat Hist. 146:243–304.
Engel MS. 2008. Two new termites in Baltic Amber (Isoptera). J Kansas Entomol Soc. 81:194–203.
Engel MS, Barden P, Riccio ML, Grimaldi DA. 2016. Morphologically specialized termite castes and advanced sociality in the early cretaceous. Curr Biol. 26:522–530. PubMed
Engel MS, Delclòs X. 2010. Primitive Termites in Cretaceous Amber from Spain and Canada (Isoptera). J Kansas Entomol Soc. 83:111–128.
Engel MS, Grimaldi DA, Krishna K. 2007a. A synopsis of Baltic amber termites (Isoptera). Stuttgarter Beiträge Zur Naturkd Ser. B 372:1–20.
Engel MS, Grimaldi DA, Krishna K. 2007b. Primitive termites from the early Cretaceous of Asia (Isoptera). Stuttgarter Beiträge Naturkd. Ser. B 371:1–32.
Engel MS, Grimaldi DA, Krishna K. 2009. Termites (Isoptera): their phylogeny, classification, and rise to ecological dominance. Am Museum Novit. 3650:1–27.
Engel M, Grimaldi D, Nascimbene P, Singh H. 2011. The termites of Early Eocene Cambay amber, with the earliest record of the Termitidae (Isoptera). Zookeys 148:105–123. PubMed PMC
Engel MS, Hinojosa-Diaz IA, Rasnitsyn AP. 2009. A honey bee from the Miocene of Nevada and the biogeography of Apis (Hymenoptera: Apidae: Apini). Proc Calif Acad Sci. 60:23–38.
Engel MS, Kaulfuss U. 2017. Diverse, primitive termites (Isoptera: Kalotermitidae, incertae sedis) from the early Miocene of New Zealand. Austral Entomol. 56:94–103.
Engel MS, Krishna K. 2007a. Drywood termites in Dominican amber (Isoptera: Kalotermitidae). Beiträge Zur Entomol. 57:263–275.
Engel MS, Krishna K. 2007b. New Dolichorhinotermes from Ecuador and in Mexican amber (Isoptera: Rhinotermitidae). Am Museum Novit. 2811:1–8.
Engel MS, Nel A. 2015. A new fossil drywood termite species from the Late Eocene of France allied to Cryptotermes and Procryptotermes (Isoptera: Kalotermitidae). Novit Paleoentomologicae. 1–7.
Evans TA, Forschler BT, Grace JK. 2013. Biology of invasive termites: a worldwide review. Annu Rev Entomol. 58:455–474. PubMed
Evans TA, Inta R, Lai JCS, Prueger S, Foo NW, Fu EW, Lenz M. 2009. Termites eavesdrop to avoid competitors. Proc R Soc B Biol Sci. 276:4035–4041. PubMed PMC
Faircloth BC. 2016. PHYLUCE is a software package for the analysis of conserved genomic loci. Bioinformatics 32:786–788. PubMed
Gathorne-Hardy FJ, Jones DT. 2000. The recolonization of the Krakatau islands by termites (Isoptera), and their biogeographical origins. Biol J Linn Soc. 71:251–267.
Ghesini S, Simon D, Marini M. 2014. Kalotermes sinaicus Kemner (Isoptera, Kalotermitidae): new morphological and genetic evidence, and assignment to the new genus Longicaputermes gen. nov. Insectes Soc. 61:123–131.
Gibbons AD, Whittaker JM, Müller RD. 2013. The breakup of East Gondwana: assimilating constraints from Cretaceous ocean basins around India into a best-fit tectonic model. J Geophys Res Solid Earth. 118:808–822.
Gnanapragasam NC. 2018. Insect pests of tea: shot hole borers, termites and nematodes. In: Global tea science. Cambridge UK & Philadelphia USA: Burleigh Dodds Science Publishing Limited. p. 201–240.
Goetsch W. 1936. Beiträge zur Biologie des Termitenstaates. Zeitschrift Morphol Ökologie Tiere 31:490–560.
Grimaldi DA, Engel MS. 2005. Evolution of the insects. Cambridge: Cambridge University Press.
Grimaldi DA, Engel MS, Krishna K. 2008. The species of Isoptera (Insecta) from the early Cretaceous Crato Formation: a revision. Am Museum Novit. 3626:1.
Hellemans S, Wang M, Hasegawa N, Šobotník J, Scheffrahn RH, Bourguignon T. 2021. Using ultraconserved elements to reconstruct the termite tree of life. BioRxiv 12.09.472027. doi:10.1101/2021.12.09.472027 PubMed DOI
Hemachandra II, Edirisinghe JP, Karunaratne WAIP, Gunatilleke CVS, Fernando RHSS. 2014. Diversity and distribution of termite assemblages in montane forests in the Knuckles Region, Sri Lanka. Int J Trop Insect Sci. 34:41–52.
Hill GF. 1942. Termites (Isoptera) from the Australian Region. Melbourne: CSIR
Ho SYW, Phillips MJ. 2009. Accounting for calibration uncertainty in phylogenetic estimation of evolutionary divergence times. Syst Biol. 58:367–380. PubMed
Holt BG, Lessard J-P, Borregaard MK, Fritz SA, Araújo MB, Dimitrov D, Fabre P-H, Graham CH, Graves GR, Jønsson KA, et al. 2013. An update of Wallace’s zoogeographic regions of the world. Science 339:74–78. PubMed
Inward DJG, Vogler AP, Eggleton P. 2007. A comprehensive phylogenetic analysis of termites (Isoptera) illuminates key aspects of their evolutionary biology. Mol Phylogenet Evol. 44:953–967. PubMed
Jones DT, Eggleton P. 2011. Global biogeography of termites: a compilation of sources. In: Bignell DE, Roisin Y, Lo N, editors. Biology of termites: a modern synthesis. Dordrecht: Springer SBM. p. 477–498.
Kalyaanamoorthy S, Minh BQ, Wong TKF, Haeseler Av, Jermiin LS. 2017. ModelFinder: fast model selection for accurate phylogenetic estimates. Nat Methods. 14:587–589. PubMed PMC
Kambhampati S, Kjer KM, Thorne BL. 1996. Phylogenetic relationship among termite families based on DNA sequence of mitochondrial 16S ribosomal RNA gene. Insect Mol Biol. 5:229–238. PubMed
Kasinski JR, Kramarska R, Slodkowska B, Sivkov V, Piwocki M. 2020. Paleocene and Eocene deposits on the eastern margin of the Gulf of Gdańsk (Yantarny P-1 borehole, Kaliningrad region, Russia). Geol Q. 64:29–53.
Katoh K, Standley DM. 2013. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol. 30:772–780. PubMed PMC
Kinjo Y, Saitoh S, Tokuda G. 2015. An efficient strategy developed for next-generation sequencing of endosymbiont genomes performed using crude DNA isolated from host tissues: a case study of Blattabacterium cuenoti inhabiting the fat bodies of cockroaches. Microbes Environ. 30:208–220. PubMed PMC
Kotthoff U, Wappler T, Engel MS. 2013. Greater past disparity and diversity hints at ancient migrations of European honey bee lineages into Africa and Asia. J Biogeogr. 40:1832–1838.
Krishna K. 1961. A generic revision and phylogenetic study of the family Kalotermitidae (Isoptera). Bull Am Mus Nat Hist. 122:303–408.
Krishna K. 1996. New fossil species of termites of the subfamily Nasutitermitinae from Dominican and Mexican amber (Isoptera, Termitidae). Am Museum Novit. 3176:1–13.
Krishna K, Grimaldi DA. 2003. The first Cretaceous Rhinotermitidae (Isoptera): a new species, genus, and subfamily in Burmese amber. Am Museum Novit. 3390:1–10.
Krishna K, Grimaldi D. 2009. Diverse Rhinotermitidae and Termitidae (Isoptera) in Dominican amber. Am Museum Novit. 3640:1–48.
Krishna K, Grimaldi DA, Krishna V, Engel MS. 2013. Treatise on the Isoptera of the World 1. Introduction. Bull Am Museum Nat Hist. 377:1–200.
Kück P, Meusemann K. 2010. FASconCAT: convenient handling of data matrices. Mol Phylogenet Evol. 56:1115–1118. PubMed
Langmead B, Salzberg SL. 2012. Fast gapped-read alignment with Bowtie 2. Nat Methods 9:357–359. PubMed PMC
Legendre F, Whiting MF, Bordereau C, Cancello EM, Evans TA, Grandcolas P. 2008. The phylogeny of termites (Dictyoptera: Isoptera) based on mitochondrial and nuclear markers: implications for the evolution of the worker and pseudergate castes, and foraging behaviors. Mol Phylogenet Evol. 48:615–627. PubMed
Lieberman BS. 2002. Phylogenetic biogeography with and without the fossil record: gauging the effects of extinction and paleontological incompleteness. Palaeogeogr Palaeoclimatol Palaeoecol. 178:39–52.
Light SF. 1937. Contributions to the biology and taxonomy of Kalotermes (Paraneotermes) simplicicornis Banks (Isoptera). Univ Calif Publ Entomol. 6:423–464.
Martins-Neto RG, Mancuso A, Gallego OF. 2005. The Triassic insect fauna from Argentina. Blattoptera and Coleoptera from the Ischichuca Formation (Bermejo Basin), la Rioja Province. Ameghiniana 42:705–723.
Matzke NJ. 2013. Probabilistic historical biogeography: new models for founder-event speciation, imperfect detection, and fossils allow improved accuracy and model-testing. Front Biogeogr. 5(4):242–248.
Meng G, Li Y, Yang C, Liu S. 2019. MitoZ: a toolkit for animal mitochondrial genome assembly, annotation and visualization. Nucleic Acids Res. 47:e63. PubMed PMC
Meseguer AS, Lobo JM, Ree R, Beerling DJ, Sanmartín I. 2015. Integrating fossils, phylogenies, and niche models into biogeography to reveal ancient evolutionary history: the case of Hypericum (Hypericaceae). Syst Biol. 64:215–232. PubMed PMC
Minh BQ, Nguyen MAT, von Haeseler A. 2013. Ultrafast approximation for phylogenetic bootstrap. Mol Biol Evol. 30:1188–1195. PubMed PMC
Mizumoto N, Bourguignon T. 2020. Modern termites inherited the potential of collective construction from their common ancestor. Ecol Evol. 10:6775–6784. PubMed PMC
Morgan FD. 1959. The ecology and external morphology of Stolotermes ruficeps Brauer (Isoptera: Hodotermitidae). Trans R Soc New Zeal. 86:155–195.
Mörs T, Reguero M, Vasilyan D. 2020. First fossil frog from Antarctica: implications for Eocene high latitude climate conditions and Gondwanan cosmopolitanism of Australobatrachia. Sci Rep. 10:5051. PubMed PMC
Myles TG. 1999. Review of secondary reproduction in termites (Insecta: Isoptera) with comments on its role in termite ecology and social evolution. Sociobiology 333:1–91.
Nakamine H, Yamamoto S, Takahashi Y. 2020. Hidden diversity of small predators: new thorny lacewings from mid-Cretaceous amber from northern Myanmar (Neuroptera: Rhachiberothidae: Paraberothinae). Geol Mag. 157:1149–1175.
Nel A, Bourguet E. 2006. Termite of the Early Eocene amber of France (Isoptera: Mastotermitidae. Kalotermitidae). Neues Jahrb Für Geol Und Paläontologie – Monatshefte. 2006:101–115.
Nel A, Paicheler J-C. 1993. Les Isoptera fossiles. État actuel des connaissances, implications paléoécologiques et paléoclimatologiques [Insecta. Dictyoptera]. In: Nel A, Martinez-Delclos X, Paicheler J-C, editors. Essai de révision des Aeschnidoidea [Insecta, Isoptera, Anisoptera] - Les Isoptera fossiles [Insecta, Dictyoptera]. Paris: Cahiers Paléontologie, CNRS Éditions. p. 101–179.
Nguyen L-T, Schmidt HA, von Haeseler A, Minh BQ. 2015. IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol Biol Evol. 32:268–274. PubMed PMC
Nurk S, Meleshko D, Korobeynikov A, Pevzner PA. 2017. metaSPAdes: a new versatile metagenomic assembler. Genome Res. 27:824–834. PubMed PMC
Nutting WL. 1969. Flight and colony foundation. In: Krishna K, Weesner FM, editors Biology of termites. Vol. I. New York: Academic Press. p. 233–282.
Parham J, Donoghue PCJ, Bell CJ, Calway TD, Head JJ, Holroyd PA, Inoue JG, Irmis RB, Joyce WG, Ksepka DT, et al. 2012. Best practices for justifying fossil calibrations. Syst Biol. 61:346–359. PubMed PMC
Park LE, Downing KF. 2001. Paleoecology of an exceptionally preserved arthropod fauna from lake deposits of the Miocene Barstow Formation, Southern California, U.S.A. Palaios 16:175–184.
Piton L, Théobald N. 1937. Les Lignites et Schistes bitumineux de Menat (Puy-de-Dôme). II : Les insectes fossiles de Menat. Rev Sci Nat Auvergne. 3:9–21.
Rambaut A, Drummond AJ, Xie D, Baele G, Suchard MA. 2018. Posterior summarization in Bayesian phylogenetics using Tracer 1.7. Syst Biol. 67:901–904. PubMed PMC
Ree RH, Smith SA. 2008. Maximum likelihood inference of geographic range evolution by dispersal, local extinction, and cladogenesis. Syst Biol. 57:4–14. PubMed
Reguero MA, Gelfo JN, López GM, Bond M, Abello A, Santillana SN, Marenssi SA. 2014. Final Gondwana breakup: the Paleogene South American native ungulates and the demise of the South America–Antarctica land connection. Glob Planet Change. 123:400–413.
Rice P, Longden I, Bleasby A. 2000. EMBOSS: the European molecular biology open software suite. Trends Genet. 16:276–277. PubMed
Robinson JT, Thorvaldsdóttir H, Winckler W, Guttman M, Lander ES, Getz G, Mesirov JP. 2011. Integrative genomics viewer. Nat Biotechnol. 29:24–26. PubMed PMC
Roisin Y, Korb J. 2011. Social organisation and the status of workers in termites. In: Bignell DE, Roisin Y, Lo N, editors. Biology of termites: a modern synthesis. Dordrecht: Springer SBM. p. 133–164.
Ronquist F, Huelsenbeck JP. 2003. MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19:1572–1574. PubMed
Sanmartín I, Ronquist F. 2004. Southern hemisphere biogeography inferred by event-based models: plant versus animal patterns. Syst Biol. 53:216–243. PubMed
Scheffrahn RH. 2014. Incisitermes nishimurai, a new drywood termite species (Isoptera: Kalotermitidae) from the highlands of Central America. Zootaxa 3878:471–478. PubMed
Scheffrahn RH, Bourguignon T, Akama PD, Sillam-Dussès D, Šobotník J. 2018. Roisinitermes ebogoensis gen. & sp. n., an outstanding drywood termite with snapping soldiers from Cameroon (Isoptera, Kalotermitidae). Zookeys 787:91–105. PubMed PMC
Scheffrahn R, Krecek J. 1999. Termites of the Genus Cryptotermes Banks (Isoptera: Kalotermitidae) from the West Indies. Insecta Mundi. 13:111–171.
Scheffrahn RH, Křeček J, Chase JA, Maharajh B, Mangold JR. 2006. Taxonomy, biogeography, and notes on termites (Isoptera: Kalotermitidae, Rhinotermitidae, Termitidae) of the Bahamas and Turks and Caicos Islands. Ann Entomol Soc Am. 99:463–486.
Scheffrahn RH, Postle A. 2013. New termite species and newly recorded genus for Australia: Marginitermes absitus (Isoptera: Kalotermitidae). Aust J Entomol. 52:199–205.
Schlemmermeyer T, Cancello EM. 2000. New fossil termite species: Dolichorhinotermes dominicanus from Dominican amber. Pap Avulsos Zool. 41:303–311.
Scotese RS. 2004. Cenozoic and mesozoic paleogeography: changing terrestrial biogeographic pathways. In: Lomolino MV, Heaney LR, editors. Frontiers of biogeography: new directions in the geography of nature. Sunderland, MA: Sinauer Associates. p. 9–26
Sillam-Dussès D, Sémon E, Robert A, Bordereau C. 2009. (Z)-Dodec-3-en-1-ol, a common major component of the trail-following pheromone in the termites Kalotermitidae. Chemoecology 19:103–108.
Snyder TE. 1949. Catalog of the termites (Isoptera) of the world. Smithson Misc Collect. 112:1–490.
Stöver BC, Müller KF. 2010. TreeGraph 2: combining and visualizing evidence from different phylogenetic analyses. BMC Bioinform. 11:7. PubMed PMC
Suyama M, Torrents D, Bork P. 2006. PAL2NAL: robust conversion of protein sequence alignments into the corresponding codon alignments. Nucleic Acids Res. 34:W609–W612. PubMed PMC
Thiel M, Haye P. 2006. The ecology of rafting in the marine environment. III. Biogeographical and evolutionary consequences. In: Gibson RN, Atkinson RJA, Gordon DM, editors. Oceanography and marine biology: an annual review. Boca Raton: CRC Press. p. 323–429.
Thompson WL. 1934. Notes on Neotermes castaneus Burm. Florida Entomol. 18:33.
Thompson GJ, Miller LR, Lenz M, Crozier RH. 2000. Phylogenetic analysis and trait evolution in Australian lineages of Drywood Termites (Isoptera, Kalotermitidae). Mol Phylogenet Evol. 17:419–429. PubMed
Thorne BL. 1997. Evolution of eusociality in termites. Annu Rev Ecol Syst. 28:27–54.
Thorne BL, Haverty MI. 1991. A review of intercolony, intraspecific and interspecific agonism in termites. Sociobiology 19:115–145.
Upchurch P. 2008. Gondwanan break-up: legacies of a lost world? Trends Ecol Evol. 23:229–236. PubMed
van der Valk T, Pečnerová P, Díez-del-Molino D, Bergström A, Oppenheimer J, Hartmann S, Xenikoudakis G, Thomas JA, Dehasque M, Sağlıcan E, et al. 2021. Million-year-old DNA sheds light on the genomic history of mammoths. Nature 591:265–269. PubMed PMC
Vilhelmsen L, Perrichot V, Shaw SR. 2010. Past and present diversity and distribution in the parasitic wasp family Megalyridae (Hymenoptera). Syst Entomol. 35:658–677.
Wallace AR. 1876. The geographical distribution of animals. Cambridge: Cambridge Univ. Press.
Wang M, Buček A, Šobotník J, Sillam-Dussès D, Evans TA, Roisin Y, Lo N, Bourguignon T. 2019. Historical biogeography of the termite clade Rhinotermitinae (Blattodea: Isoptera). Mol Phylogenet Evol. 132:100–104. PubMed
Waterhouse DF. 1993. Biological control: pacific prospects – Supplement 2. Canberra: Australian Centre for International Agricultural Research.
Watson JAL, Sewell JJ. 1985. Caste development in Mastotermes and Kalotermes: which is primitive? In: Watson JAL, Okot-Kotber BM, Noirot C, editors. Caste differentiation in social insects. Oxford: Pergamon Press Ltd. p. 27–40.
Wilson EO. 1971. The insect societies. Masachusetts: Harvard Unviersity Press.
Wisz MS, Pottier J, Kissling WD, Pellissier L, Lenoir J, Damgaard CF, Dormann CF, Forchhammer MC, Grytnes J-A, Guisan A, et al. 2013. The role of biotic interactions in shaping distributions and realised assemblages of species: implications for species distribution modelling. Biol Rev. 88:15–30. PubMed PMC
Yu Y, Blair C, He X. 2020. RASP 4: ancestral state reconstruction tool for multiple genes and characters. Mol Biol Evol. 37:604–606. PubMed
Yu Y, Harris AJ, Blair C, He X. 2015. RASP (reconstruct ancestral state in phylogenies): a tool for historical biogeography. Mol Phylogenet Evol. 87:46–49. PubMed
Zachos J. 2001. Trends, rhythms, and aberrations in global climate 65 Ma to present. Science 292:686–693. PubMed
Zhao Z, Yin X, Shih C, Gao T, Ren D. 2020. Termite colonies from mid-Cretaceous Myanmar demonstrate their early eusocial lifestyle in damp wood. Natl Sci Rev. 7:381–390. PubMed PMC
Evidence of cospeciation between termites and their gut bacteria on a geological time scale
Termite dispersal is influenced by their diet
Termite nest evolution fostered social parasitism by termitophilous rove beetles