• This record comes from PubMed

The Effect of In Vitro Digestion on Matcha Tea (Camellia sinensis) Active Components and Antioxidant Activity

. 2022 Apr 30 ; 11 (5) : . [epub] 20220430

Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic

Document type Journal Article

Grant support
IGA/FT/2020/010 Tomas Bata University in Zlín

This study investigates the effects of in vitro digestion on the antioxidant activity and release of phenolics, xanthine alkaloids, and L-theanine contents of matcha. It establishes digestibility values between 61.2-65.8%. Considering native matcha, the rutin content (303-479 µg/g) reached higher values than catechin (10.2-23.1 µg/g). Chlorogenic acid (2090-2460 µg/g) was determined as predominant. Rutin, quercetin, ferulic, ellagic, and caffeic acid were the least-released phenolics, and their remaining residues reached 76-84%. Protocatechuic, hydroxybenzoic acid, epigallocatechin, and epigallocatechin-3-gallate were the best-released phenolics, with the remaining residues under 1%. Caffeine, L-theanine, and theobromine contents in native matcha reached 16.1, 9.85, and 0.27 mg/g, respectively. Only caffeine (3.66-5.26 mg/g) and L-theanine (0.09-0.15 mg/g) were monitored in the undigested residue, representing 13 and 0.1% of the remaining part, respectively. A chemiluminescence assay showed that water-soluble antioxidants showed significant antioxidant activity in native matcha, while lipid-soluble compounds showed higher antioxidant activity in the undigested samples. Cinnamic and neochlorogenic acids were determined as the main contributors to the ACW values in the undigested matcha, epicatechin, and quercetin in the ACL fraction. The application of the digestion process reduced the antioxidant activity by more than 94%. SEM has proved specific digestion patterns of in vitro digestibility of matcha.

See more in PubMed

Reto M., Fugueira M.E., Filipe H.M., Almeida C.M.M. Chemical composition of green tea (Camellia sinensis) infusions commercialized in Portugal. Plant Foods Hum. Nutr. 2007;62:139–144. doi: 10.1007/s11130-007-0054-8. PubMed DOI

Jakubczyk K., Kochman J., Kwiatkowska A., Kałduńska J., Dec K., Kawczuga D., Janda K. Antioxidant properties and nutritional composition of matcha green tea. Foods. 2020;9:483. doi: 10.3390/foods9040483. PubMed DOI PMC

He X., Li J., Zhao W., Liu R., Zhang L., Kong X. Chemical fingerprint analysis for quality control and identification of Ziyang green tea by HPLC. Food Chem. 2015;171:405–411. doi: 10.1016/j.foodchem.2014.09.026. PubMed DOI

Yüksel A.K., Yüksel M., Şat İ.G. Determination of certain physicochemical characteristics and sensory properties of green tea powder (matcha) added ice creams and detection of their organic acid and mineral contents. [(accessed on 25 October 2021)];Gıda J. Food. 2017 42:116–126. Available online: https://www.cabdirect.org/cabdirect/abstract/20173210303.

Das P.R., Kim Y., Hong S.-J., Eun J.-B. Profiling of volatile and non-phenolic metabolites—Amino acids, organic acids, and sugars, of green tea extracts obtained by different extraction techniques. Food Chem. 2019;296:69–77. doi: 10.1016/j.foodchem.2019.05.194. PubMed DOI

Fu Y.-Q., Wang J.-Q., Chen J.-X., Wang F., Yin J.-F., Zeng L., Shi J., Xu Y.-Q. Effect of baking on the flavour stability of green tea beverages. Food Chem. 2020;331:127258. doi: 10.1016/j.foodchem.2020.127258. PubMed DOI

Cai Z.-Y., Li X.-M., Liang J.-P., Xiang L.-P., Wang K.-R., Shi Y.-L., Yang R., Shi M., Ye J.-H., Lu J.-L., et al. Bioavailability of tea catechins and its improvement. Molecules. 2018;23:2346. doi: 10.3390/molecules23092346. PubMed DOI PMC

Kim J.M., Kang J.Y., Park S.K., Han H.J., Lee K.-Y., Kim A.-N., Choi S.-G., Heo H.J. Effect of storage temperature on the antioxidant activity and catechins stability of matcha (Camellia sinensis) Food Sci. Biotechnol. 2020;29:1261–1271. doi: 10.1007/s10068-020-00772-0. PubMed DOI PMC

Topuz A., Dinçer G., Torun M., Tontul İ., Şahin-Nadeem H., Haznedar A., Özdemir F. Physico-chemical properties of Turkish green tea powder: Effects of shooting period, shading, and clone. Turk. J. Agric. For. 2014;38:233–241. doi: 10.3906/tar-1307-17. DOI

Sano T., Horie H., Matsunaga A., Hirono Y. Effect of shading intensity on morphological and color traits and on chemical components of new tea (Camellia sinensis L.) shoots under direct covering cultivation. J. Sci. Food Agric. 2018;98:5666–5676. doi: 10.1002/jsfa.9112. PubMed DOI

Xia Z., Ni Y., Kokot S. Simultaneous determination of caffeine, theophylline and theobromine in food samples by a kinetic spectrophotometric method. Food Chem. 2013;141:4087–4093. doi: 10.1016/j.foodchem.2013.06.121. PubMed DOI

Boros K., Jedlinszki N., Csupor D. Theanine and caffeine content of infusions prepared from commercial tea samples. Pharmacogn. Mag. 2016;12:75–79. doi: 10.4103/0973-1296.176061. PubMed DOI PMC

Adhikary R., Mandal V. L-Theanine: A potential multifaceted natural bioactive amide as health supplement. Asian Pac. J. Trop. Biomed. 2017;7:842–848. doi: 10.1016/j.apjtb.2017.08.005. DOI

Azevedo R.S.A., Teixeira B.S., da Silva Sauthier M.C., Santana M.V.A., dos Santos W.N.L., de Andrade Santana D. Multivariate analysis of the composition of bioactive in tea of the species Camellia sinensis. Food Chem. 2019;273:39–44. doi: 10.1016/j.foodchem.2018.04.030. PubMed DOI

Swetha M.P., Radha C., Muthukumar S.P. Bioaccessibility and bioavailability of Moringa oleifera seed flour polyphenols. J. Food Meas. Charact. 2018;12:1917–1926. doi: 10.1007/s11694-018-9806-4. DOI

Yu J., Li W., You B., Yang S., Xian W., Deng Y., Huang W., Yang R. Phenolic profiles, bioaccessibility and antioxidant activity of plum (Prunus salicina Lindl) Food Res. Int. 2021;143:110300. doi: 10.1016/j.foodres.2021.110300. PubMed DOI

ISO 1573. ISO; Geneva, Switzerland: 1980. Tea. Determination of Loss in Mass at 103°C. Geneva.

ISO 1575. ISO; Geneva, Switzerland: 1980. Tea. Determination of Total Ash. Geneva.

Koláčková T., Kolofiková K., Sytařová I., Snopek L., Sumczynski D., Orsavová J. Matcha tea: Analysis of nutritional composition, phenolics and antioxidant activity. Plant Foods Hum. Nutr. 2020;75:48–53. doi: 10.1007/s11130-019-00777-z. PubMed DOI

de Quirós R.-B., Lage-Yusty M.A., López-Hernández J. Determination of phenolic compounds in macroalgae for human consumption. Food Chem. 2010;121:634–638. doi: 10.1016/j.foodchem.2009.12.078. DOI

Esposto S., Veneziani G., Taticchi A., Urbani S., Selvaggini R., Sordini B., Daidone L., Gironi G., Servili M. Chemical composition, antioxidant activity, and sensory characterization of commercial pomegranate juices. Antioxidants. 2021;10:1381. doi: 10.3390/antiox10091381. PubMed DOI PMC

Besco E., Braccioli E., Vertuani S., Ziosi P., Brazzo F., Bruni R. The use of photochemiluminiscence for the measurement of the integral antioxidant capacity of baobab products. Food Chem. 2007;102:1352–1356. doi: 10.1016/j.foodchem.2006.05.067. DOI

Gramza-Michałowska A., Kobus-Cisowska J., Kmiecik D., Korczak J., Helak B., Dziedzic K., Górecka D. Antioxidative potential, nutritional value and sensory profiles of confectionery fortified with green and yellow tea leaves (Camellia sinensis) Food Chem. 2016;211:448–454. doi: 10.1016/j.foodchem.2016.05.048. PubMed DOI

Ministry of Agriculture . Regulation for Tea, Coffee and Coffee Substitutes. Ministry of Agriculture; Prague, Czech Republic: 1997. Reg. No. 330.

ISO 11287. ISO; Geneva, Switzerland: 2011. Green Tea. Definition and Basic Requirements.

Rehman S.U., Almas K., Shahzadi N., Bhatti N., Saleem A. Effect of time and temperature on infusion of tannins from commercial brands of tea. [(accessed on 25 October 2021)];Int. J. Agric. Biol. 2002 4:285–287. Available online: http://www.fspublishers.org/published_papers/46716_..pdf.

Damiani E., Bacchetti T., Padella L., Tiano L., Carloni P. Antioxidant activity of different white teas: Comparison of hot and cold tea infusions. J. Food Compos. Anal. 2014;33:59–66. doi: 10.1016/j.jfca.2013.09.010. DOI

Song R., Kelman D., Johns K.L., Wright A.D. Correlation between leaf age, shade levels, and characteristic beneficial natural constituents of tea (Camellia sinensis) grown in Hawaii. Food Chem. 2012;133:707–714. doi: 10.1016/j.foodchem.2012.01.078. DOI

Horie H., Ema K., Sumikawa O. Chemical components of matcha and powdered green tea. [(accessed on 15 September 2021)];J. Cook. Sci. Jpn. 2017 50:182–188. Available online: https://www.jstage.jst.go.jp/article/cookeryscience/50/5/50_182/_pdf.

Sęczyk Ł., Sugier D., Świeca M., Gawlik-Dziki U. The effect of in vitro digestion, food matrix, and hydrothermal treatment on the potential bioaccessibility of selected phenolic compounds. Food Chem. 2021;344:128581. doi: 10.1016/j.foodchem.2020.128581. PubMed DOI

Drawbridge P.C., Apea-Bah F., Hornung P.S., Beta T. Bioaccessibility of phenolic acids in Canadian hulled barley varieties. Food Chem. 2021;358:129905. doi: 10.1016/j.foodchem.2021.129905. PubMed DOI

Dai W., Ruan C., Zhang Y., Wang J., Han J., Shao Z., Sun Y., Liang J. Bioavailability enhancement of EGCG by structural modification and nano-delivery: A review. J. Funct. Foods. 2020;65:103732. doi: 10.1016/j.jff.2019.103732. DOI

Qie X., Wu Y., Chen Y., Liu C., Zeng M., Qin F., Wang Z., Chen J., He Z. Competitive interactions among tea catechins, proteins, and digestive enzymes modulate in vitro protein digestibility, catechin bioaccessibility, and antioxidant activity of milk tea beverage model systems. Food Res. Int. 2021;140:110050. doi: 10.1016/j.foodres.2020.110050. PubMed DOI

Venditti E., Bacchetti T., Tiano L., Carloni P., Greci L., Damiani E. Hot vs. cold water steeping of different teas: Do they affect antioxidant activity? Food Chem. 2010;119:1597–1604. doi: 10.1016/j.foodchem.2009.09.049. DOI

Farooq S., Sehgal A. Antioxidant activity of different forms of green tea: Loose leaf, bagged and matcha. Curr. Res. Nutr. Food Sci. 2018;6:35–40. doi: 10.12944/CRNFSJ.6.1.04. DOI

Friedman M., Kim S.-Y., Lee S.-J., Han G.-P., Han J.-S., Han J.-S., Lee K.-R., Kozukue N. Distribution of catechins, theaflavins, caffeine, and theobromine in 77 teas consumed in the United States. J. Food Sci. 2005;70:C550–C559. doi: 10.1111/j.1365-2621.2005.tb08304.x. DOI

de Paula Lima J., Farah A. Methylxanthines in stimulant foods and beverages commonly consumed in Brazil. J. Food Compos. Anal. 2019;78:75–85. doi: 10.1016/j.jfca.2019.02.001. DOI

Sharma V., Gulati A., Ravindranath S.D., Kumar V. A simple and convenient method for analysis of tea biochemicals by reverse phase HPLC. J. Food Compos. Anal. 2005;18:583–594. doi: 10.1016/j.jfca.2004.02.015. DOI

Heo H.J., Kim Y.J., Chung D., Kim D.-O. Antioxidant capacities of individual and combined phenolics in a model system. Food. Chem. 2007;104:87–92. doi: 10.1016/j.foodchem.2006.11.002. DOI

Reber J.D., Eggett D.L., Parker T.L. Antioxidant capacity interactions and a chemical/structural model of phenolic compounds found in strawberries. Int. J. Food Sci. Nutr. 2011;62:445–452. doi: 10.3109/09637486.2010.549115. PubMed DOI

Shu Y., Li J., Yang X., Dong X., Wang X. Effect of particle size on the bioacessibility of polyphenols and polysaccharides in green tea powder and its antioxidant activity after simulated human digestion. J. Food Sci. Technol. 2019;56:1127–1133. doi: 10.1007/s13197-019-03573-4. PubMed DOI PMC

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...