The Release of Organic Acids and Low Molecular Weight Carbohydrates from Matcha Tea After In Vitro Digestion

. 2024 Nov 26 ; 16 (23) : . [epub] 20241126

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid39683452

Grantová podpora
IGA/FT/2024/006 Tomas Bata University

BACKGROUND/OBJECTIVES: This study tested the influence of in vitro digestion on the release of organic acids and low molecular weight saccharides of matcha. METHODS: The concentrations of analytes in the raw and undigested portion of matcha were measured using HPLC with spectrometric and refractometric detection to establish their residual values after a two-step enzymatic digestion that was finally presented as a retention factor. RESULTS: It was established that dry matter digestibility values after simulated gastric and both gastric and intestinal phases were 67.3 and 85.9%, respectively. Native matcha, citric acid (44.8 mg/g), malic acid (32.2 mg/g), trehalose (36.1 mg/g), and L-arabinose (8.20 mg/g) reached the highest values and were predominant, whereas D-fructose, xylose, maltose, and saccharose were not detected. Regarding gastric phase digestion, succinic and malic acids, trehalose and D-glucose were the worst-releasing compounds and their remaining factors reached 34, 19, 18, and 50%, respectively, whereas L-arabinose was completely released. Focusing on gastric and small intestinal digestion, the least-releasing compounds of matcha tea leaves were succinic acid and trehalose, with their retention factors at 7 and 13%, which can proceed with the leaf matrix to the large intestine. CONCLUSIONS: Malic, oxalic, and citric acids, the carbohydrates D-glucose, L-arabinose, and L-rhamnose, are almost entirely released from matcha tea during digestion in the stomach and small intestine and can be available for absorption in the small intestine. In the measurement of oxalic acid, considering that the process of shading tea leaves increases the concentration of this acid and its retention factor value is too small, it would be appropriate in the future to evaluate the recommended maximum daily intake of matcha tea for people sensitive to the formation of urinal stones.

Zobrazit více v PubMed

Prasanth M.I., Sivamaruthi B.S., Chaiasut C., Tencomnao T. Review of the role of green tea (Camellia sinensis) in antiphotoaging, stress resistance, neuroprotection, and autophagy. Nutrients. 2019;11:474. doi: 10.3390/nu11020474. PubMed DOI PMC

Rusak G., Šola I., Bok V.V. Matcha and Sencha green tea extracts with regard to their phenolics pattern and antioxidant and antidiabetic activity during in vitro digestion. J. Food Sci. Technol. 2021;58:3568–3578. doi: 10.1007/s13197-021-05086-5. PubMed DOI PMC

Ku K.M., Choi J.N., Kim J., Kim J.K., Yoo L.G., Lee S.J., Hong Y.-S., Lee C.H. Metabolomics analysis reveals the compositional differences of shade grown tea (Camellia sinensis L.) J. Aric. Food Chem. 2010;58:418–426. doi: 10.1021/jf902929h. PubMed DOI

Baba R., Amano Y., Wada Y., Kumazawa K. Characterization of the potent odorants contributing to the characteristic aroma of Matcha by gas chromatography-olfactometry techniques. J. Agric. Food Chem. 2017;65:2984–2989. doi: 10.1021/acs.jafc.7b00421. PubMed DOI

Fujioka K., Iwamoto T., Shima H., Tomaru K., Saito H., Ohtsuka M., Yoshidome A., Kawamura Y., Manome Y. The powdering process with a set of ceramic mills for green tea promoted catechin extraction and the ROS inhibition effect. Molecules. 2016;21:474. doi: 10.3390/molecules21040474. PubMed DOI PMC

Ujihara T., Hayashi N., Ikezaki H. Objective evaluation of astringent and umami taste intensities of matcha using a taste sensor system. Food Sci. Technol. Res. 2013;19:1099–1105. doi: 10.3136/fstr.19.1099. DOI

Jakubczyk K., Kochman J., Kwiatkowska A., Kałduńska J., Dec K., Kawczuga D., Janda K. Antioxidant properties and nutritional composition of matcha green tea. Foods. 2020;9:483. doi: 10.3390/foods9040483. PubMed DOI PMC

Shirai N. Gas chromatographic analysis of organic acids in Japanese green tea leaves. [(accessed on 5 October 2024)];J. Oleo Sci. 2019 68:1271–1277. doi: 10.5650/jos.ess19208. Available online: https://www.jstage.jst.go.jp/article/jos/68/12/68_ess19208/_pdf. PubMed DOI

Kika J., Jakubczyk K., Ligenza A., Maciejewska-Markiewicz D., Szymczykowska K., Janda-Milczarek K. Matcha green tea: Chemical composition, phenolic acids, caffeine and fatty acid profile. Foods. 2024;13:1167. doi: 10.3390/foods13081167. PubMed DOI PMC

Kochman J., Jakubczyk K., Antoniewicz J., Mruk H., Janda K. Health benefits and chemical composition of Matcha green tea: A review. Molecules. 2021;26:85. doi: 10.3390/molecules26010085. PubMed DOI PMC

Shirai N. Organic acid analysis in green tea leaves using high-performance liquid chromatography. [(accessed on 5 October 2024)];J. Oleo Sci. 2022 71:1413–1419. doi: 10.5650/jos.ess22135. Available online: https://www.jstage.jst.go.jp/article/jos/71/9/71_ess22135/_pdf. PubMed DOI

Megías-Pérez R., Shevchuk A., Zemedie Y., Kuhnert N. Characterization of commercial green tea leaves by the analysis of low molecular weight carbohydrates and other quality indicators. Food Chem. 2019;290:159–167. doi: 10.1016/j.foodchem.2019.03.069. PubMed DOI

Nakamura E., Tomita I., Matsuura T. Composition and functionality of “matcha” of different qualities. Jpn. J. Food Chem. Saf. 2018;25:7–14. doi: 10.18891/jjfcs.25.1_7. DOI

Shanmugavelan P., Kim S.Y., Kim J.B., Kim H.W., Cho S.M., Kim S.N., Kim S.Y., Cho Y.S., Kim H.R. Evaluation of sugar content and composition in commonly consumed Korean vegetables, fruits, cereals, seed plants, and leaves by HPLC-ELSD. Carbohydr. Res. 2013;380:112–117. doi: 10.1016/j.carres.2013.06.024. PubMed DOI

Shevchuk A., Megías-Pérez R., Zemedie Y., Kuhnert N. Evaluation of carbohydrates and quality parameters in six types of commercial teas by targeted statistical analysis. Food Res. Int. 2020;133:109122. doi: 10.1016/j.foodres.2020.109122. PubMed DOI

Qu F.-F., Li X.-H., Wang P.-Q., Han Y.-H., Wu Y., Hu J.-H., Zhang X. Effect of thermal process on the key aroma components of green tea with chestnut-like aroma. J. Sci. Food Agric. 2022;103:657–665. doi: 10.1002/jsfa.12177. PubMed DOI

Chen H., Yu F., Kang J., Li Q., Warusawitharana H.K., Li B. Quality chemistry, physiological functions, and health benefits of organic acids from tea (Camellia sinensis) Molecules. 2023;28:2339. doi: 10.3390/molecules28052339. PubMed DOI PMC

Kaneko S., Kumazawa K., Masuda H., Henze A., Hofmann T. Molecular and sensory studies on the umami taste of Japanese green tea. J. Agric. Food Chem. 2006;54:2688–2694. doi: 10.1021/jf0525232. PubMed DOI

Koláčková T., Sumczynski D., Minařík A., Yalçin E., Orsavová J. The effect of in vitro digestion on matcha tea (Camellia sinensis) active components and antioxidant activity. Antioxidants. 2022;11:889. doi: 10.3390/antiox11050889. PubMed DOI PMC

Yu J., Li W., You B., Yang S., Xian W., Deng Y., Huang W., Yang R. Phenolic profiles, bioaccessibility and antioxidant activity of plum (Prunus salicina Lindl) Food Res. Int. 2021;143:110300. doi: 10.1016/j.foodres.2021.110300. PubMed DOI

Cai Z.-Y., Li X.-M., Liang J.-P., Xiang L.-P., Wang K.-R., Shi Y.-L., Yang R., Shi M., Ye J.-H., Lu J.-L., et al. Bioavailability of tea catechins and its improvement. Molecules. 2018;23:2346. doi: 10.3390/molecules23092346. PubMed DOI PMC

Sumczynski D., Fišera M., Salek R.N., Orsavová J. The effect of flake production and in vitro digestion on releasing minerals and trace elements from wheat flakes: The extended study of dietary intakes for individual life stage groups. Nutrients. 2023;15:2509. doi: 10.3390/nu15112509. PubMed DOI PMC

Hu X., Fang C., Lu L., Hu Z., Shao Y., Zhu Z. Determination of soluble sugar profile in rice. J. Chromatogr. B. 2017;1058:19–23. doi: 10.1016/j.jchromb.2017.05.001. PubMed DOI

Snow L., Trass M., Klein M., Orlowicz S., Rivera B. Fast and Robust Analysis of Organic Acids from Wine Using HPLC-UV. Technical Notes TN-1189. [(accessed on 16 August 2024)]. Available online: https://phenomenexcn.blob.core.chinacloudapi.cn/documents/0d4a0bb0-f83c-4a26-b928-43649c3ed58a.pdf.

McGinley M. Optimizing the Analysis of Sugar Alcohol Excipients in Pharmaceutical Tablet Formulations Using RezexTM Ion Exclusion HPLC Columns. Technical Notes TN-1054. [(accessed on 16 August 2024)]. Available online: https://www.phenomenex.com/documents/2020/11/04/23/59/sugar-alcohol-excipients-by-ion-exclusion-hplc-tn1054.

Regulation for Tea, Coffee and Coffee Substitutes. Ministry of Agriculture; Prague, Czech Republic: 2023.

Green Tea. Definition and Basic Requirements. International Organization for Standardization; Geneva, Switzerland: 2011.

Topuz A., Dinçer G., Torun M., Tontul İ., Şahin-Nadeem H., Haznedar A., Özdemir F. Physico-chemical properties of Turkish green tea powder: Effects of shooting period, shading, and clone. Turk. J. Agric. For. 2014;38:233–241. doi: 10.3906/tar-1307-17. DOI

Koláčková T., Kolofiková K., Sytařová I., Snopek L., Sumczynski D., Orsavová J. Matcha tea: Analysis of nutritional composition, phenolics and antioxidant activity. Plant Foods Hum. Nutr. 2020;75:48–53. doi: 10.1007/s11130-019-00777-z. PubMed DOI

Das P.R., Kim Y., Hong S.-J., Eun J.-B. Profiling of volatile and non-phenolic metabolites-amino acids, organic acids, and sugars of green tea extracts obtained by different extraction techniques. Food Chem. 2019;296:69–77. doi: 10.1016/j.foodchem.2019.05.194. PubMed DOI

Morita A., Tuji M. Nitrate and oxalate contents if tea plants (Camellia sinensis L.) with special reference to types of green tea and effect of shading. Soil Sci. Plant Nutr. 2002;48:547–553. doi: 10.1080/00380768.2002.10409237. DOI

Wingler A., Delatte T.L., O’Hara L.E., Primavesi L.F., Jhuhrreea D., Paul M.J., Schluepmann H. Trehalose 6-phosphate is required for the onset of leaf senescence associated with high carbon availability. Plant Physiol. 2012;158:1241–1251. doi: 10.1104/pp.111.191908. PubMed DOI PMC

Ele-Ekouna J.-P., Pau-Roblot C., Courtois B., Courtois J. Chemical characterization of pectin from green tea (Camellia sinensis) Carbohydr. Polym. 2011;83:1232–1239. doi: 10.1016/j.carbpol.2010.09.028. DOI

Moldoveanu S.M., Scott W., Zhu J. Analysis of small carbohydrates in several bioactive botanicals by gas chromatography with mass spectrometry and liquid chromatography with tandem mass spectrometry. J. Sep. Sci. 2015;38:3677–3686. doi: 10.1002/jssc.201500573. PubMed DOI

Wierzejska R. Tea and health—A review of the current state of knowledge. [(accessed on 15 September 2024)];Przegląd Epidemiol. 2014 68:501–506. Available online: https://www.przeglepidemiol.pzh.gov.pl/pdf-180418-100980?filename=Tea%20and%20health%20_%20a%20review.pdf. PubMed

Cabrera C., Artacho R., Giménez R. Beneficial effects of green tea—A review. J. Am. Colleague Nutr. 2006;25:79–99. doi: 10.1080/07315724.2006.10719518. PubMed DOI

Wu Z.B., Jiang T., Lin G.B., Wang Y.X., Zhou Y., Chen Z.Q., Xu Y.M., Ye H.B., Chen B.J., Bao X.Z. Tea consumption is associated with increased risk of kidney stones in Nothern Chinese: A cross-sectional study. Biomed. Environ. Sci. 2017;30:922–926. doi: 10.3967/bes2017.124. PubMed DOI

Xiang S., Ge Y., Zhang Y., Bao X., Su X., Shi L., Xia Y., Han H., Ying J., Lai S., et al. L-arabinose exert probiotic functions by improving gut microbiota and metabolism in vivo and in vitro. J. Funct. Foods. 2024;113:106047. doi: 10.1016/j.jff.2024.106047. DOI

Choi M.-H., Kim G.-H., Park K.-H., Kim Y.-S., Shim S.-M. Bioaccessibility of total sugars in carbonated beverages and fermented milks. J. Korean Soc. Appl. Biol. Chem. 2011;54:778–782. doi: 10.1007/BF03253159. DOI

Richards A.B., Krakowka S., Dexter L.B., Schmid H., Wolterbeek A.P.M., Waalkens-Berendsen D.H., Shigoyuki A., Kurimoto M. Trehalose: A review of properties, history of use and human tolerance, and results of multiple safety studies. Food Chem. Toxicol. 2002;40:871–898. doi: 10.1016/S0278-6915(02)00011-X. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...