Quantitative Analysis for ROS-Producing Activity and Regulation of Plant NADPH Oxidases in HEK293T Cells
Jazyk angličtina Země Spojené státy americké Médium print
Typ dokumentu časopisecké články
- Klíčová slova
- Human embryonic kidney 293T (HEK293T), Luminol, NADPH oxidase, Respiratory oxidase homolog (RBOH),
- MeSH
- HEK293 buňky MeSH
- ledviny metabolismus MeSH
- lidé MeSH
- NADPH-oxidasy * metabolismus MeSH
- reaktivní formy kyslíku metabolismus MeSH
- regulace genové exprese u rostlin * MeSH
- rostliny metabolismus MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- NADPH-oxidasy * MeSH
- reaktivní formy kyslíku MeSH
Reactive oxygen species (ROS) produced by plant NADPH oxidases, respiratory burst oxidase homologs (RBOHs), play key roles in biotic and abiotic stress responses and development in plants. While properly controlled amounts of ROS function as signaling molecules, excessive accumulation of ROS can cause undesirable side effects due to their ability to oxidize DNA, lipids, and proteins. To limit the damaging consequences of unrestricted ROS accumulation, RBOH activity is tightly controlled by post-translational modifications (PTMs) and protein-protein interactions. In order to analyze these elaborate regulatory mechanisms, it is crucial to quantitatively assess the ROS-producing activity of RBOHs. Given the high endogenous ROS generation in plants, however, it can be challenging in plant cells to measure ROS production derived from specific RBOHs and to analyze the contribution of regulatory events for their activation and inactivation. Here we describe human embryonic kidney 293T (HEK293T) cells as a heterologous expression system and a useful tool to quantitatively monitor ROS production by RBOHs. This system permits the reconstitution of regulatory events to dissect the effects of Ca2+, phosphorylation, and protein-protein interactions on RBOH-dependent ROS production.
Department of Applied Biological Science Tokyo University of Science Noda Chiba Japan
Department of Food Production Science Ehime University Matsuyama Ehime Japan
Ritsumeikan Global Innovation Research Organization Ritsumeikan University Kusatsu Shiga Japan
Zobrazit více v PubMed
Waszczak C, Carmody M, Kangasjärvi J (2018) Reactive oxygen species in plant signaling. Annu Rev Plant Biol 69:209–236. https://doi.org/10.1146/annurev-arplant-042817-040322 PubMed DOI
Kärkönen A, Kuchitsu K (2015) Reactive oxygen species in cell wall metabolism and development in plants. Phytochemistry 112:22–32. https://doi.org/10.1016/j.phytochem.2014.09.016 PubMed DOI
Groom QJ, Torres MA, Fordham-Skelton AP et al (1996) rbohA, a rice homologue of the mammalian gp91phox respiratory burst oxidase gene. Plant J 10:515–522. https://doi.org/10.1046/j.1365-313X.1996.10030515.x PubMed DOI
Keller T, Damude HG, Werner D et al (1998) A plant homolog of the neutrophil NADPH oxidase gp91 PubMed DOI PMC
Suzuki N, Miller G, Morales J et al (2011) Respiratory burst oxidases: the engines of ROS signaling. Curr Opin Plant Biol 14:691–699. https://doi.org/10.1016/j.pbi.2011.07.014 PubMed DOI
Ogawa K, Kanematsu S, Asada K (1997) Generation of superoxide anion and localization of CuZn-superoxide dismutase in the vascular tissue of spinach hypocotyls: their association with lignification. Plant Cell Physiol 38:1118–1126. https://doi.org/10.1093/oxfordjournals.pcp.a029096 PubMed DOI
Zhang H, Zhang F, Xia Y et al (2010) Excess copper induces production of hydrogen peroxide in the leaf of Elsholtzia haichowensis through apoplastic and symplastic CuZn-superoxide dismutase. J Hazard Mater 178:834–843. https://doi.org/10.1016/j.jhazmat.2010.02.014 PubMed DOI
Smirnoff N, Arnaud D (2019) Hydrogen peroxide metabolism and functions in plants. New Phytol 221:1197–1214. https://doi.org/10.1111/nph.15488 PubMed DOI
Chapman JM, Muhlemann JK, Gayomba SR et al (2019) RBOH-dependent ROS synthesis and ROS scavenging by plant specialized metabolites to modulate plant development and stress responses. Chem Res Toxicol 32:370–396. https://doi.org/10.1021/acs.chemrestox.9b00028 PubMed DOI PMC
Hu CH, Wang PQ, Zhang PP et al (2020) NADPH Oxidases: The vital performers and center hubs during plant growth and signaling. Cells 9:437. https://doi.org/10.3390/cells9020437 DOI PMC
Kadota Y, Liebrand TWH, Goto Y et al (2019) Quantitative phosphoproteomic analysis reveals common regulatory mechanisms between effector- and PAMP-triggered immunity in plants. New Phytol 221:2160–2175. https://doi.org/10.1111/nph.15523 PubMed DOI
Kimura S, Hunter K, Vaahtera L et al (2020) CRK2 and C-terminal phosphorylation of NADPH oxidase RBOHD regulate reactive oxygen species production in Arabidopsis. Plant Cell 32:1063–1080. https://doi.org/10.1105/tpc.19.00525 PubMed DOI PMC
Shen J, Zhang J, Zhou M et al (2020) Persulfidation-based modification of cysteine desulfhydrase and the NADPH oxidase RBOHD controls guard cell abscisic acid signaling. Plant Cell 32:1000–1017. https://doi.org/10.1105/tpc.19.00826 PubMed DOI PMC
Lee DH, Lal NK, Lin ZJD et al (2020) Regulation of reactive oxygen species during plant immunity through phosphorylation and ubiquitination of RBOHD. Nat Commun 11:1838. https://doi.org/10.1038/s41467-020-15601-5 PubMed DOI PMC
Kaya H, Iwano M, Takeda S et al (2015) Apoplastic ROS production upon pollination by RbohH and RbohJ in Arabidopsis. Plant Signal Behav 10:3–6. https://doi.org/10.4161/15592324.2014.989050 DOI
Fichman Y, Miller G, Mittler R (2019) Whole-plant live imaging of reactive oxygen species. Mol Plant 12:1203–1210. https://doi.org/10.1016/j.molp.2019.06.003 PubMed DOI
Trujillo M (2016) Analysis of the lmmunity-related oxidative bursts by a luminol-based assay. Methods Mol Biol 1398:323–329. https://doi.org/10.1007/978-1-4939-3356-3_26 PubMed DOI
Camejo D, Guzmán-Cedeño Á, Moreno A (2016) Reactive oxygen species, essential molecules, during plant-pathogen interactions. Plant Physiol Biochem 103:10–23. https://doi.org/10.1016/j.plaphy.2016.02.035 PubMed DOI
Mignolet-Spruyt L, Xu E, Idänheimo N et al (2016) Spreading the news: subcellular and organellar reactive oxygen species production and signalling. J Exp Bot 67:3831–3844. https://doi.org/10.1093/jxb/erw080 PubMed DOI
Shang-Guan K, Wang M, Htwe NMPS et al (2018) Lipopolysaccharides trigger two successive bursts of reactive oxygen species at distinct cellular locations. Plant Physiol 176:2543–2556. https://doi.org/10.1104/pp.17.01637 PubMed DOI PMC
Bánfi B, Molnár G, Maturana A et al (2001) A Ca PubMed DOI
Bánfi B, Malgrange B, Knisz J et al (2004) NOX3, a superoxide-generating NADPH oxidase of the inner ear. J Biol Chem 279:46065–46072. https://doi.org/10.1074/jbc.M403046200 PubMed DOI
Dao VTV, Elbatreek MH, Altenhöfer S et al (2020) Isoform-selective NADPH oxidase inhibitor panel for pharmacological target validation. Free Radic Biol Med 148:60–69. https://doi.org/10.1016/j.freeradbiomed.2019.12.038 PubMed DOI
Shiose A, Kuroda J, Tsuruya K et al (2001) A novel superoxide-producing NAD(P)H oxidase in kidney. J Biol Chem 276:1417–1423. https://doi.org/10.1074/jbc.M007597200 PubMed DOI
Ogasawara Y, Kaya H, Hiraoka G et al (2008) Synergistic activation of the Arabidopsis NADPH oxidase AtrbohD by Ca PubMed DOI
Takeda S, Gapper C, Kaya H et al (2008) Local positive feedback regulation determines cell shape in root hair cells. Science 319:1241–1244. https://doi.org/10.1126/science.1152505 PubMed DOI
Takahashi S, Kimura S, Kaya H et al (2012) Reactive oxygen species production and activation mechanism of the rice NADPH oxidase OsRbohB. J Biochem 152:37–43. https://doi.org/10.1093/jb/mvs044 PubMed DOI
Kimura S, Kaya H, Kawarazaki T et al (2012) Protein phosphorylation is a prerequisite for the Ca PubMed DOI
Kaya H, Nakajima R, Iwano M et al (2014) Ca PubMed DOI PMC
Kaya H, Takeda S, Kobayashi MJ et al (2019) Comparative analysis of the reactive oxygen species-producing enzymatic activity of Arabidopsis NADPH oxidases. Plant J 98:291–300. https://doi.org/10.1111/tpj.14212 PubMed DOI
Kawarazaki T, Kimura S, Iizuka A et al (2013) A low temperature-inducible protein AtSRC2 enhances the ROS-producing activity of NADPH oxidase AtRbohF. Biochim Biophys Acta 1833:2775–2780. https://doi.org/10.1016/j.bbamcr.2013.06.024 PubMed DOI
Kimura S, Kawarazaki T, Nibori H et al (2013) The CBL-interacting protein kinase CIPK26 is a novel interactor of Arabidopsis NADPH oxidase AtRbohF that negatively modulates its ROS-producing activity in a heterologous expression system. J Biochem 153:191–195. https://doi.org/10.1093/jb/mvs132 PubMed DOI
Drerup MM, Schlücking K, Hashimoto K et al (2013) The calcineurin B-like calcium sensors CBL1 and CBL9 together with their interacting protein kinase CIPK26 regulate the Arabidopsis NADPH oxidase RBOHF. Mol Plant 6:559–569. https://doi.org/10.1093/mp/sst009 PubMed DOI
Zhang X, Köster P, Schlücking K et al (2018) CBL1-CIPK26-mediated phosphorylation enhances activity of the NADPH oxidase RBOHC, but is dispensable for root hair growth. FEBS Lett 592:2582–2593. https://doi.org/10.1002/1873-3468.13187 PubMed DOI
Han JP, Köster P, Drerup MM et al (2019) Fine-tuning of RBOHF activity is achieved by differential phosphorylation and Ca PubMed DOI
Fujita S, De Bellis D, Edel KH et al (2020) SCHENGEN receptor module drives localized ROS production and lignification in plant roots. EMBO J:1–18. https://doi.org/10.15252/embj.2019103894