Short-Chained Alcohols Make Membrane Surfaces Conducive for Melittin Action: Implication for the Physiological Role of Alcohols in Cells
Language English Country Switzerland Media electronic
Document type Journal Article, Research Support, Non-U.S. Gov't
PubMed
35741057
PubMed Central
PMC9221640
DOI
10.3390/cells11121928
PII: cells11121928
Knihovny.cz E-resources
- Keywords
- 1H-NMR, ERP of spin probes, alcohols, heart rate, melittin, mitochondrial ATP production, non-bilayer structures,
- MeSH
- Adenosine Triphosphate MeSH
- Alcohols pharmacology MeSH
- Lipids MeSH
- Liposomes MeSH
- Melitten * chemistry metabolism pharmacology MeSH
- Bee Venoms * pharmacology MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Adenosine Triphosphate MeSH
- Alcohols MeSH
- Lipids MeSH
- Liposomes MeSH
- Melitten * MeSH
- Bee Venoms * MeSH
Alcohols are a part of cellular metabolism, but their physiological roles are not well understood. We investigated the effects of short-chain alcohols on Daphnia pulex and model membranes mimicking the lipid composition of eukaryotic inner mitochondrial membranes. We also studied the synergistic effects of alcohols with the bee venom membrane-active peptide, melittin, which is structurally similar to endogenous membrane-active peptides. The alcohols, from ethanol to octanol, gradually decreased the heart rate and the mitochondrial ATP synthesis of daphnia; in contrast, in combination with melittin, which exerted no sizeable effect, they gradually increased both the heart rate and the ATP synthesis. Lipid packing and the order parameter of oriented films, monitored by EPR spectroscopy of the spin-labeled probe 5-doxylstrearic acid, revealed gradual alcohol-assisted bilayer to non-bilayer transitions in the presence of melittin; further, while the alcohols decreased, in combination with melittin they increased the order parameter of the film, which is attributed to the alcohol-facilitated association of melittin with the membrane. A 1H-NMR spectroscopy of the liposomes confirmed the enhanced induction of a non-bilayer lipid phase that formed around the melittin, without the permeabilization of the liposomal membrane. Our data suggest that short-chain alcohols, in combination with endogenous peptides, regulate protein functions via modulating the lipid polymorphism of membranes.
Biological Research Centre Eötvös Loránd Research Network Temesvári krt 62 H 6726 Szeged Hungary
Department of Physics Faculty of Science University of Ostrava 710 00 Ostrava Czech Republic
STEM Program Science Department Chaoyang KaiWen Academy Beijing 100018 China
See more in PubMed
Abe A., Hiraoka M., Matsuzawa F., Aikawa S.-I., Niimura Y. Esterification of side-chain oxysterols by lysosomal phospholipase A2. Biochim. Biophys. Acta Mol. Cell. Biol. Lipids. 2020;1865:158787. doi: 10.1016/j.bbalip.2020.158787. PubMed DOI
Yamamuro D., Yamazaki H., Osuga J., Okada K., Wakabayashi T., Takei A., Takei S., Takahashi M., Nagashima S., Holleboom A.G., et al. Esterification of 4β-hydroxycholesterol and other oxysterols in human plasma occurs independently of LCAT. J. Lipid Res. 2020;61:1287–1299. doi: 10.1194/jlr.RA119000512. PubMed DOI PMC
Huang M., Lin Y., Wang L., You X., Wang S., Zhao J., Bai M., Li Z., Chen Y. Adipose tissue lipolysis is regulated by PAQR11 via altering protein stability of phosphodiesterase 4D. Mol. Metab. 2021;47:101182. doi: 10.1016/j.molmet.2021.101182. PubMed DOI PMC
Hubel E., Fishman S., Holopainen M., Käkelä R., Shaffer O., Houri I., Zvibel I., Shibolet O. Repetitive amiodarone administration causes liver damage via adipose tissue ER stress-dependent lipolysis, leading to hepatotoxic free fatty acid accumulation. Am. J. Physiol. Gastrointest. Liver Physiol. 2021;321:G298–G307. doi: 10.1152/ajpgi.00458.2020. PubMed DOI
Federico A., Cotticelli G., Festi D., Schiumerini R., Addolorato G., Ferrulli A., Merli M., Lucidi C., Milani S., Panella C., et al. The effects of alcohol on gastrointestinal tract, liver and pancreas: Evidence-based suggestions for clinical management. Eur. Rev. Med. Pharm. Sci. 2015;19:1922–1940. PubMed
Pfeiffer D., Jurisch D., Neef M., Hagendoff A. Alcohol and arrhythmias. Herz. 2016;41:498–502. doi: 10.1007/s00059-016-4463-z. PubMed DOI
Mukamal K.J., Chiuve S.E., Rimm E.B. Alcohol consumption and risk for coronary heart disease in men with healthy lifestyles. Arch. Intern. Med. 2006;166:2145–2150. doi: 10.1001/archinte.166.19.2145. PubMed DOI
Klatsky A.L. Alcohol and cardiovascular diseases: A historical overview. Ann. N. Y. Acad. Sci. 2002;957:7–15. doi: 10.1111/j.1749-6632.2002.tb02901.x. PubMed DOI
Fernández-Solà J. Cardiovascular risks and benefits of moderate and heavy alcohol consumption. Nat. Rev. Cardiol. 2015;12:576–587. doi: 10.1038/nrcardio.2015.91. PubMed DOI
Urbano-Márquez A., Fernández-Solà J. Effects of alcohol on skeletal and cardiac muscle. Muscle Nerve. 2004;30:689–707. doi: 10.1002/mus.20168. PubMed DOI
Holt N.R., Nickson C.P. Severe methanol poisoning with neurological sequelae: Implications for diagnosis and management. Intern. Med. J. 2018;48:335–339. doi: 10.1111/imj.13725. PubMed DOI
Jahan K., Mahmood D., Fahim M. Effects of methanol in blood pressure and heart rate in the rat. J. Phar. Bioallied Sci. 2015;7:60–64. doi: 10.4103/0975-7406.148747. PubMed DOI PMC
Schlangen C., Hämmerle M., Hilgert K., Moos R. Determination of volatile alcohols in fruit and vegetable juices by an amperometric enzyme electrode measuring in the headspace above the liquid; Proceedings of the IMCS 2012—The 14th International Meeting on Chemical Sensors; Bayreuth, Germany. 20–23 May 2012.
Treistman S.N., Martin G.M. BK Channels: Mediators and models for alcohol tolerance. Trends Neurosci. 2009;32:629–637. doi: 10.1016/j.tins.2009.08.001. PubMed DOI PMC
Fernández-Solà J. The effects of ethanol on the heart: Alcoholic cardiomyopathy. Nutrients. 2020;12:572. doi: 10.3390/nu12020572. PubMed DOI PMC
Ingólfsoon H.I., Andersen O.S. Alcohol’s effects on lipid bilayer properties. Biophys. J. 2011;101:847–855. doi: 10.1016/j.bpj.2011.07.013. PubMed DOI PMC
Pringle M.J., Brown K.B., Miller K.W. Can the lipid theories of anesthesia account for the cutoff in anesthetic potency in homologous series of alcohols? Mol. Pharmacol. 1981;19:49–55. PubMed
Tkaczyk A., Bownik A., Dudka J., Kowal K., Ślaska B. Daphnia magna model in the toxicity assessment of pharmaceuticals: A review. Sci. Total Environ. 2021;763:143038. doi: 10.1016/j.scitotenv.2020.143038. PubMed DOI
Averin A.S., Nenov M.N., Starkov V.G., Tsetlin V.I., Utkin Y.N. Effects of cardiotoxins from Naja oxiana cobra venom on rat heart muscle and aorta: A comparative study of toxin-induced contraction mechanisms. Toxins. 2022;14:88. doi: 10.3390/toxins14020088. PubMed DOI PMC
Averin A.S., Utkin Y.N. Cardiovascular effects of snake toxins: Cardiotoxicity and cardioprotection. Acta Nat. 2021;13:4–14. doi: 10.32607/actanaturae.11375. PubMed DOI PMC
Averin A.S., Astashev M.E., Andreeva T.V., Tsetlin V.I., Utkin Y.N. Cardiotoxins from cobra Naja oxiana change the force of contraction and the character of rhythmoinotropic phenomena in the rat myocardium. Dokl. Biochem. Biophys. 2019;487:282–286. doi: 10.1134/S1607672919040094. PubMed DOI
Li F., Shrivastava I.H., Hanlon P., Dagda R.K., Gasanoff E.S. Molecular mechanism by which cobra venom cardiotoxins interact with the outer mitochondrial membrane. Toxins. 2020;12:425. doi: 10.3390/toxins12070425. PubMed DOI PMC
Zhang B., Li F., Chen Z., Shrivastava I.H., Gasanoff E.S., Dagda R.K. Naja mossambica mossambica cobra cardiotoxin targets mitochondria to disrupt mitochondrial membrane structure and function. Toxins. 2019;11:152. doi: 10.3390/toxins11030152. PubMed DOI PMC
Gasanov S.E., Dagda R.K., Rael E.D. Snake venom cytotoxins, phospholipase A2s, and Zn2+-dependent metalloproteinases: Mechanisms of action and pharmacological relevance. J. Clin. Toxicol. 2014;4:1000181. doi: 10.4172/2161-0495.1000181. PubMed DOI PMC
Xu Y., Hanlon P., Rael E.D., Gasanoff E.S. Bee venom melittin modulates phospholipase A2 activity by affecting substrate interface on the surface of phosphatidylcholine membrane. Ann. Toxicol. 2020;2:26–35.
Li J., Hanlon P., Gasanoff E.S. Interaction of bee venom melittin, a potential anti-cancer drug, with phosphatidylcholine membrane enriched with phosphatidylserine. EC Pharmacol. Toxicol. 2020;8:119–129.
Gasanoff E., Liu Y., Li F., Hanlon P., Garab G. Bee venom melittin disintegrates the respiration of mitochondria in healthy cells and lymphoblasts, and induces the formation of non-bilayer structures in model inner mitochondrial membranes. Int. J. Mol. Sci. 2021;22:11122. doi: 10.3390/ijms222011122. PubMed DOI PMC
Gasanov S.E., Alsarraj M.A., Gasanov N.E., Rael E.D. Cobra venom cytotoxin free of phospholipase A2 and its effect on model membranes and T leukemia cells. J. Membr. Biol. 1997;155:133–142. doi: 10.1007/s002329900165. PubMed DOI
Segal N.K., Gasanov S.E., Palamarchuk L.A., Ius’kovich A.K., Kolesova G.M., Mansurova S.E., Iaguzhinskii L.S. Mitochondrial proteolipids. Biokhimiia. 1993;58:1812–1819. PubMed
Gasanov S.E., Kim A.A., Yaguzhinski L.S., Dagda R.K. Non-bilayer structures in mitochondrial membranes regulate ATP synthase activity. Biochim. Biophys. Acta. 2018;1860:586–599. doi: 10.1016/j.bbamem.2017.11.014. PubMed DOI PMC
Drew B., Leeuwenburgh C. Method for measuring ATP production in isolated mitochondria: ATP production in brain and liver mitochondria of Fischer-344 rats with age and caloric restriction. Am. J. Phys. 2003;285:R1259–R1267. doi: 10.1152/ajpregu.00264.2003. PubMed DOI
Ball W.B., Neff J.K., Gohil V.M. The role of nonbilayer phospholipids in mitochondrial structure and function. FEBS Lett. 2017;592:1273–1290. doi: 10.1002/1873-3468.12887. PubMed DOI PMC
Aripov T.F., Gasanov S.E., Salakhutdinov B.A., Sadykov A.S. Interaction of cobra venom cytotoxin with oriented phospholipid multibilayers. Dokl. Akad. Nauk. SSSR. 1986;288:728–730. PubMed
Gasanoff E.S., Yaguzhinsky L.S., Garab G. Cardiolipin, non-bilayer structures and mitochondrial bioenergetics: Relevance to cardiovascular disease. Cells. 2021;10:1721. doi: 10.3390/cells10071721. PubMed DOI PMC
Gasanov S.E., Gasanov N.E., Rael E.D. Phospholipase A2 and cobra venom cytotoxin V5 interactions and membrane structure. Gen. Physiol. Biophys. 1995;14:107–123. PubMed
Gasanov S.E., Kamaev F.G., Salakhutdinov B.A., Aripov T.F. Nauchnye Doklady Vysshei Shkoly. Biologicheskie Nauki; Moscow, Russian: 1990. The fusogenic properties of the cytotoxins of cobra venom in a model membrane system; pp. 42–50. PubMed
Gasanov S.E., Gasanov E.E. An asymmetric enlargement of the monolayer surfaces mechanism of membrane fusion. J. Biol. Phys. 1994;19:235–242. doi: 10.1007/BF00700663. DOI
Gasanov S.E., Vernon L.P., Aripov T.F. Modification of phospholipid membrane structure by the plant toxic peptide Pyrularia thionin. Arch. Biochem. Biophys. 1993;301:367–374. doi: 10.1006/abbi.1993.1157. PubMed DOI
Gasanov S.E., Shrivastava I.H., Israilov F.S., Kim A.A., Rylova K.A., Zhang B., Dagda R.K. Naja naja oxiana cobra cenom cytotoxins CTI and CTII disrupt mitochondrial membrane integrity: Implications for basic three-fingered cytotoxins. PLoS ONE. 2015;10:e0129248. doi: 10.1371/journal.pone.0129248. PubMed DOI PMC
Aripov T.F., Gasanov S.E., Salakhutdinov B.A., Rozenshtein I.A., Kamaev F.G. Central Asian cobra venom cytotoxins-induced aggregation, permeability and fusion of liposomes. Gen. Physiol. Biophys. 1989;8:459–473. PubMed
Berliner L.J. Methods of Spin Labels. Mir; Moscow, Russian: 1979.
Terama E., Ollila O.H., Ollila O.S., Salonen E., Rowat A.C., Trandum C., Westh P., Patra M., Karttunen M., Vattulainen I. Influence of ethanol on lipid membranes: From lateral pressure profiles to dynamics and partitioning. J. Phys. Chem. B. 2008;112:4131–4139. doi: 10.1021/jp0750811. PubMed DOI
Griepernau B., Böckmann R.A. The influence of 1-alkanols and external pressure on the lateral pressure profiles of lipid bilayers. Biophys. J. 2008;95:5766–5778. doi: 10.1529/biophysj.108.142125. PubMed DOI PMC
Aagaard T.H., Kristensen M.N., Westh P. Packing properties of 1-alkanols and alkanes in a phospholipid membrane. Biophys. Chem. 2006;119:61–68. doi: 10.1016/j.bpc.2005.09.003. PubMed DOI
Tóth M.E., Vígh L., Sántha M. Alcohol stress, membranes, and chaperones. Cell Stress Chaperones. 2014;19:299–309. doi: 10.1007/s12192-013-0472-5. PubMed DOI PMC
Janoff A.S., Pringle M.J., Miller K.W. Correlation of general anesthetic potency with solubility in membranes. Biochim. Biophys. Acta. 1981;649:125–128. doi: 10.1016/0005-2736(81)90017-1. PubMed DOI
Franks N.P., Lieb W.R. 1985. Mapping of general anaesthetic target sites provides a molecular basis for cutoff effects. Nature. 1985;316:349–351. doi: 10.1038/316349a0. PubMed DOI
Griepernau B., Leis S., Schneider M.F., Sikor M., Steppich D., Böckmann R.A. 1-Alkanols and membranes: A story of attraction. Biochim. Biophys. Acta. 2007;1768:2899–2913. doi: 10.1016/j.bbamem.2007.08.002. PubMed DOI
Garab G., Yaguzhinsky L.S., Dlouhý O., Nesterov S.V., Spunda V., Gasanoff E.S. Structural and functional roles of non-bilayer lipid phases of chloroplast thylakoid membranes and mitochondrial inner membranes. Prog. Lipid Res. 2022;86:101163. doi: 10.1016/j.plipres.2022.101163. PubMed DOI
Lee M.T., Sunc T.L., Hungd W.C., Huang H.W. Process of inducing pores in membranes by melittin. Proc. Natl. Acad. Sci. USA. 2013;110:14243–14248. doi: 10.1073/pnas.1307010110. PubMed DOI PMC
Terwilliger T.C., Weissman L., Eisenberg D. The structure of melittin in the form I crystals and its implication for melittin’s lytic and surface activities. Biophys. J. 1982;37:353–361. doi: 10.1016/S0006-3495(82)84683-3. PubMed DOI PMC
Lauterwein J., Bösch C., Brown L.R., Wüthrich K. Physicochemical studies of the protein-lipid interactions in melittin-containing micelles. Biochim. Biophys. Acta. 1979;556:244–264. doi: 10.1016/0005-2736(79)90046-4. PubMed DOI
Davidson F.F., Dennis E.A. Evolutionary relationships and implications for the regulation of phospholipase A2 from snake venom to human secreted forms. J. Mol. Evol. 1990;31:228–238. doi: 10.1007/BF02109500. PubMed DOI
Crompton M.R., Moss S.E., Crumpton M.J. Diversity in the lipocortin/calpactin family. Cell. 1988;55:1–3. doi: 10.1016/0092-8674(88)90002-5. PubMed DOI
Miele L., Cordella-Miele E., Facchiano A., Mukherjee A.B. Novel anti-inflammatory peptides from the region of highest similarity between uteroglobin and lipocortin I. Nature. 1988;335:726–730. doi: 10.1038/335726a0. PubMed DOI
Clark J.A., Conway T.M., Shorr R.G.L., Crooke S.T. Identification and isolation of a mammalian protein which is antigenically and functionally related to the phospholipase A2 stimulatory peptide melittin. J. Biol. Chem. 1987;262:4402–4406. doi: 10.1016/S0021-9258(18)61362-6. PubMed DOI
Gasanov S.E., Rael E.D., Martinez M., Baeza G., Vernon L.P. Modulation of phospholipase A2 activity by membrane-active peptides on liposomes of different phospholipid composition. Gen. Physiol. Biophys. 1994;13:275–286. PubMed
Gupta C., Braun A. Identification and partial purification of embryonic mouse genital protein(s) stimulating phospholipase A2 and inducing masculinization in vitro. Endocrinology. 1990;126:341–348. doi: 10.1210/endo-126-1-341. PubMed DOI
Lyu J., Wang M., Kang X., Xu H., Cao Z., Yu T., Huang K., Wu J., Wei X., Lei Q. Macrophage mediated regulation of catecholamines in sympathetic neural remodeling after myocardial infarction. Basic Res. Cardiol. 2020;115:56. doi: 10.1007/s00395-020-0813-3. PubMed DOI
Lobo-Gonzalez M., Galán-Arriola C., Rossello X., González-Del-Hoyo M., Vilchez J.P., Higuero-Verdejo M.I., García-Ruiz J.M., López-Martín G.J., Sánchez-González J., Oliver E., et al. Metoprolol blunts the timedependent progression of infarct size. Basic Res. Cardiol. 2020;115:55. doi: 10.1007/s00395-020-0812-4. PubMed DOI PMC
Wu D., Kampmann E., Qian G. Novel insights into the role of mitochondria-derived peptides in myocardial infarction. Front. Physiol. 2021;12:750177. doi: 10.3389/fphys.2021.750177. PubMed DOI PMC
Hashimoto Y., Niikura T., Ito Y., Sudo H., Hata M., Arakawa E., Abe Y., Kita Y., Nishimoto I. Detailed characterization of neuroprotection by a rescue factor humanin against various Alzheimer’s disease-relevant insults. J. Neurosci. 2001;21:9235–9245. doi: 10.1523/JNEUROSCI.21-23-09235.2001. PubMed DOI PMC
Lindner M., Mehel H., David A., Leroy C., Burtin M., Friedlander G., Terzi F., Mika D., Fischmeister R., Prié D. Fibroblast growth factor 23 decreases PDE4 expression in heart increasing the risk of cardiac arrhythmia. Klotho opposes these effects. Basic Res. Cardiol. 2020;115:51. doi: 10.1007/s00395-020-0810-6. PubMed DOI
Lahiri S.K., Quick A.P., Samson-Couterie B., Hulsurkar M., Elzenaar I., van Oort R.J., Wehrens X.H. Nuclear localization of a novel calpain-2 mediated junctophilin-2 C-terminal cleavage peptide promotes cardiomyocyte remodeling. Basic Res. Cardiol. 2020;115:49. doi: 10.1007/s00395-020-0807-1. PubMed DOI PMC
McMartin K.E., Jacobsen D. Methanol and ethylene glycol poisonings. Mechanism of toxicity, clinical course, diagnosis and treatment. Med. Toxicol. 1986;1:309–334. PubMed