• This record comes from PubMed

Genetic Changes in Thyroid Cancers and the Importance of Their Preoperative Detection in Relation to the General Treatment and Determination of the Extent of Surgical Intervention-A Review

. 2022 Jun 27 ; 10 (7) : . [epub] 20220627

Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic

Document type Journal Article, Review

Grant support
MO 1012 Ministry of Defense of the Czech Republic

Links

PubMed 35884820
PubMed Central PMC9312840
DOI 10.3390/biomedicines10071515
PII: biomedicines10071515
Knihovny.cz E-resources

Carcinomas of the thyroid gland are some of the most common malignancies of the endocrine system. The causes of tumor transformation are genetic changes in genes encoding cell signaling pathways that lead to an imbalance between cell proliferation and apoptosis. Some mutations have been associated with increased tumor aggressiveness, metastatic lymph node spread, tendency to dedifferentiate, and/or reduced efficiency of radioiodine therapy. The main known genetic causes of thyroid cancer include point mutations in the BRAF, RAS, TERT, RET, and TP53 genes and the fusion genes RET/PTC, PAX8/PPAR-γ, and NTRK. Molecular genetic testing of the fine needle aspiration cytology of the thyroid tissue in the preoperative period or of the removed thyroid tissue in the postoperative period is becoming more and more common in selected institutions. Positive detection of genetic changes, thus, becomes a diagnostic and prognostic factor and a factor that determines the extent of the surgical and nonsurgical treatment. The findings of genetic research on thyroid cancer are now beginning to be applied to clinical practice. In preoperative molecular diagnostics, the aggressiveness of cancers with the most frequently occurring mutations is correlated with the extent of the planned surgical treatment (radicality of surgery, neck dissection, etc.). However, clear algorithms are not established for the majority of genetic alterations. This review aims to provide a basic overview of the findings of the most commonly occurring gene mutations in thyroid cancer and to discuss the current recommendations on the extent of surgical and biological treatment concerning preoperatively detected genetic changes.

See more in PubMed

Miranda-Filho A., Lortet-Tieulent J., Bray F., Cao B., Franceschi S., Vaccarella S., Dal Maso L. Thyroid cancer incidence trends by histology in 25 countries: A population-based study. Lancet Diabetes Endocrinol. 2021;9:225–234. doi: 10.1016/S2213-8587(21)00027-9. PubMed DOI

Vlček P., Nováková D., Katra R. Thyroid carcinomas: The present view on diagnostics and therapy. Vnitr. Lek. 2017;63:572–579. doi: 10.36290/vnl.2017.115. PubMed DOI

Grimmichova T., Pacesova P., Hill M., Pekova B., Vankova M., Moravcova J., Vrbikova J., Novak Z., Mastnikova K., Vaclavikova E., et al. Thyroid Cancer Detection in a Routine Clinical Setting: Performance of ACR TI-RADS, FNAC, and Molecular Testing in Prospective Cohort Study. Biomedicines. 2022;10:954. doi: 10.3390/biomedicines10050954. PubMed DOI PMC

Xing M., Alzahrani A.S., Carson K.A., Shong Y.K., Kim T.Y., Viola D., Elisei R., Bendlová B., Yip L., Mian C., et al. Association between BRAF V600E mutation and recurrence of papillary thyroid cancer. J. Clin. Oncol. 2015;33:42–50. doi: 10.1200/JCO.2014.56.8253. PubMed DOI PMC

Nikiforov Y.E. Molecular diagnostics of thyroid tumors. Arch. Pathol. Lab. Med. 2011;135:569–577. doi: 10.5858/2010-0664-RAIR.1. PubMed DOI

Suarez H.G., du Villard J.A., Severino M., Caillou B., Schlumberger M., Tubiana M., Parmentier C., Monier R. Presence of mutations in all three ras genes in human thyroid tumors. Oncogene. 1990;5:565–570. PubMed

Haugen B.R., Alexander E.K., Bible K.C., Doherty G.M., Mandel S.J., Nikiforov Y.E., Pacini F., Randolph G.W., Sawka A.M., Schlumberger M., et al. 2015 American Thyroid Association Management Guidelines for Adult Patients with Thyroid Nodules and Differentiated Thyroid Cancer: The American Thyroid Association Guidelines Task Force on Thyroid Nodules and Differentiated Thyroid Cancer. Thyroid. 2016;26:1–133. doi: 10.1089/thy.2015.0020. PubMed DOI PMC

Paschke R., Cantara S., Crescenzi A., Jarzab B., Musholt T.J., Sobrinho Simoes M. European Thyroid Association Guidelines regarding Thyroid Nodule Molecular Fine-Needle Aspiration Cytology Diagnostics. Eur. Thyroid. J. 2017;6:115–129. doi: 10.1159/000468519. PubMed DOI PMC

Filetti S., Durante C., Hartl D., Leboulleux S., Locati L.D., Newbold K., Papotti M.G., Berruti A., ESMO Guidelines Committee Thyroid cancer: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann. Oncol. 2019;30:1856–1883. doi: 10.1093/annonc/mdz400. PubMed DOI

Wu C., Schwartz J.M., Brabant G., Nenadic G. Molecular profiling of thyroid cancer subtypes using large-scale text mining. BMC Med. Genomics. 2014;7:S3. doi: 10.1186/1755-8794-7-S3-S3. PubMed DOI PMC

Prete A., Borges de Souza P., Censi S., Muzza M., Nucci N., Sponziello M. Update on Fundamental Mechanisms of Thyroid Cancer. Front. Endocrinol. 2020;11:102. doi: 10.3389/fendo.2020.00102. PubMed DOI PMC

Nikiforov Y.E. Role of Molecular Markers in Thyroid Nodule Management: Then and Now. Endocr. Pract. Off. J. Am. Coll. Endocrinol. Am. Assoc. Clin. Endocrinol. 2017;23:979–988. doi: 10.4158/EP171805.RA. PubMed DOI

Pekova B., Dvorakova S., Sykorova V., Vacinova G., Vaclavikova E., Moravcova J., Katra R., Vlcek P., Sykorova P., Kodetova D., et al. Somatic genetic alterations in a large cohort of pediatric thyroid nodules. Endocr. Connect. 2019;8:796–805. doi: 10.1530/EC-19-0069. PubMed DOI PMC

Xing M., Alzahrani A.S., Carson K.A., Viola D., Elisei R., Bendlova B., Yip L., Mian C., Vianello F., Tuttle R.M., et al. Association between BRAF V600E mutation and mortality in patients with papillary thyroid cancer. JAMA. 2013;309:1493–1501. doi: 10.1001/jama.2013.3190. PubMed DOI PMC

Song J.Y., Sun S.R., Dong F., Huang T., Wu B., Zhou J. Predictive Value of BRAFV600E Mutation for Lymph Node Metastasis in Papillary Thyroid Cancer: A Meta-analysis. Curr. Med. Sci. 2018;38:785–797. doi: 10.1007/s11596-018-1945-7. PubMed DOI

Xing M. BRAF mutation in thyroid cancer. Endocr. Relat. Cancer. 2005;12:245–262. doi: 10.1677/erc.1.0978. PubMed DOI

Paulson V.A., Shivdasani P., Angell T.E., Cibas E.S., Krane J.F., Lindeman N.I., Alexander E.K., Barletta J.A. Noninvasive Follicular Thyroid Neoplasm with Papillary-Like Nuclear Features Accounts for More Than Half of ”Carcinomas” Harboring RAS Mutations. Thyroid. 2017;27:506–511. doi: 10.1089/thy.2016.0583. PubMed DOI

Xing M. Clinical utility of RAS mutations in thyroid cancer: A blurred picture now emerging clearer. BMC Med. 2016;14:12. doi: 10.1186/s12916-016-0559-9. PubMed DOI PMC

Cohen D.S., Tongson-Ignacio J.E., Lolachi C.M., Ghaderi V.S., Jahan-Parwar B., Thompson L.D.R. Rethinking Malignancy Risk in Indeterminate Thyroid Nodules with Positive Molecular Studies: Southern California Permanente Experience. Otolaryngol. Head Neck Surg. 2019;161:419–423. doi: 10.1177/0194599819842859. PubMed DOI

Laha D., Nilubol N., Boufraqech M. New Therapies for Advanced Thyroid Cancer. Front. Endocrinol. 2020;11:82. doi: 10.3389/fendo.2020.00082. PubMed DOI PMC

Machens A., Dralle H. Long-term outcome after DNA-based prophylactic neck surgery in children at risk of hereditary medullary thyroid cancer. Best Pract. Res. Clin. Endocrinol. Metab. 2019;33:101274. doi: 10.1016/j.beem.2019.04.008. PubMed DOI

Zitzelsberger H., Bauer V., Thomas G., Unger K. Molecular rearrangements in papillary thyroid carcinomas. Clin. Chim. Acta. 2010;411:301–308. doi: 10.1016/j.cca.2009.11.028. PubMed DOI

Asya O., Yumuşakhuylu A.C., Bağcı P., Kaya H., Gönen A., Gündoğdu Y., Muradov T., Şahin A., Oysu Ç. Relationship of PPARG overexpression with prognostic parameters in papillary thyroid carcinoma. Acta Otorhinolaryngol. Ital. 2022;42:34–40. doi: 10.14639/0392-100X-N1034. PubMed DOI PMC

Mitsiades N., Fagin J.A. Molecular Genetics of Thyroid Cancer: Pathogenetic Significance and Clinical Applications. In: Weiss R.E., Refetoff S., editors. Genetic Diagnosis of Endocrine Disorders. 1st ed. Elsevier; London, UK: 2010. p. 323.

Liu X., Bishop J., Shan Y., Pai S., Liu D., Murugan A.K., Sun H., El-Naggar A.K., Xing M. Highly prevalent TERT promoter mutations in aggressive thyroid cancers. Endocr. Relat. Cancer. 2013;20:603–610. doi: 10.1530/ERC-13-0210. PubMed DOI PMC

McKelvey B.A., Umbricht C.B., Zeiger M.A. Telomerase Reverse Transcriptase (TERT) Regulation in Thyroid Cancer: A Review. Front Endocrinol. 2020;11:485. doi: 10.3389/fendo.2020.00485. PubMed DOI PMC

Chung J.H. BRAF and TERT promoter mutations: Clinical application in thyroid cancer. Endocr. J. 2020;67:577–584. doi: 10.1507/endocrj.EJ20-0063. PubMed DOI

Ren H., Shen Y., Hu D., He W., Zhou J., Cao Y., Mao Y., Dou Y., Xiong W., Xiao Q., et al. Co-existence of BRAFV600E and TERT promoter mutations in papillary thyroid carcinoma is associated with tumor aggressiveness, but not with lymph node metastasis. Cancer Manag. Res. 2018;10:1005–1013. doi: 10.2147/CMAR.S159583. PubMed DOI PMC

Pekova B., Sykorova V., Mastnikova K., Vaclavikova E., Moravcova J., Vlcek P., Lastuvka P., Taudy M., Katra R., Bavor P., et al. NTRK Fusion Genes in Thyroid Carcinomas: Clinicopathological Characteristics and Their Impacts on Prognosis. Cancers. 2021;13:1932. doi: 10.3390/cancers13081932. PubMed DOI PMC

Kalfert D., Pesta M., Kulda V., Topolcan O., Ryska A., Celakovsky P., Laco J., Ludvikova M. MicroRNA profile in site-specific head and neck squamous cell cancer. Anticancer Res. 2015;35:2455–2463. PubMed

Nan B.Y., Xiong G.F., Zhao Z.R., Gu X., Huang X.S. Comprehensive Identification of Potential Crucial Genes and miRNA-mRNA Regulatory Networks in Papillary Thyroid Cancer. BioMed Res. Int. 2021;2021:6752141. doi: 10.1155/2021/6752141. PubMed DOI PMC

Galuppini F., Censi S., Merante Boschin I., Fassan M., Sbaraglia M., Valeri N., Hahne J.C., Bertazza L., Munari G., Galasso M., et al. Papillary Thyroid Carcinoma: Molecular Distinction by MicroRNA Profiling. Front. Endocrinol. (Lausanne) 2022;13:834075. doi: 10.3389/fendo.2022.834075. PubMed DOI PMC

Unlu M.T., Aygun N., Demircioglu Z.G., Isgor A., Uludag M. Effects of Central Neck Dissection on Complications in Differentiated Thyroid Cancer. Şişli Etfal Hastan. Tıp Bülteni. 2021;55:310–317. doi: 10.14744/SEMB.2021.80588. PubMed DOI PMC

Calò P.G., Conzo G., Raffaelli M., Medas F., Gambardella C., De Crea C., Gordini L., Patrone R., Sessa L., Erdas E., et al. Total thyroidectomy alone versus ipsilateral versus bilateral prophylactic central neck dissection in clinically node-negative differentiated thyroid carcinoma. A retrospective multicenter study. Eur. J. Surg. Oncol. 2017;43:126–132. doi: 10.1016/j.ejso.2016.09.017. PubMed DOI

Giordano D., Frasoldati A., Gabrielli E., Pernice C., Zini M., Castellucci A., Piana S., Ciarrocchi A., Cavuto S., Barbieri V. Long-term outcomes of central neck dissection for cN0 papillary thyroid carcinoma. Am. J. Otolaryngol. 2017;38:576–581. doi: 10.1016/j.amjoto.2017.06.004. PubMed DOI

Yazıcı D., Çolakoğlu B., Sağlam B., Sezer H., Kapran Y., Aydın Ö., Demirkol M.O., Alagöl F., Terzioğlu T. Effect of prophylactic central neck dissection on the surgical outcomes in papillary thyroid cancer: Experience in a single center. Eur. Arch. Oto-Rhino-Laryngol. 2020;277:1491–1497. doi: 10.1007/s00405-020-05830-1. PubMed DOI

Zhao W., You L., Hou X., Chen S., Ren X., Chen G., Zhao Y. The Effect of Prophylactic Central Neck Dissection on Locoregional Recurrence in Papillary Thyroid Cancer After Total Thyroidectomy: A Systematic Review and Meta-Analysis: PCND for the Locoregional Recurrence of Papillary Thyroid Cancer. Ann. Surg. Oncol. 2017;24:2189–2198. doi: 10.1245/s10434-016-5691-4. PubMed DOI

Barbaro D., Incensati R.M., Materazzi G., Boni G., Grosso M., Panicucci E., Lapi P., Pasquini C., Miccoli P. The BRAF V600E mutation in papillary thyroid cancer with positive or suspected pre-surgical cytological finding is not associated with advanced stages or worse prognosis. Endocrine. 2014;45:462–468. doi: 10.1007/s12020-013-0029-5. PubMed DOI

Dong S.Y., Zeng R.C., Jin L.P., Yang F., Zhang X.J., Yao Z.H., Zhang X.H., Wang O.C. BRAFV600E mutation is not associated with central lymph node metastasis in all patients with papillary thyroid cancer: Different histological subtypes and preoperative lymph node status should be taken into account. Oncol. Lett. 2017;14:4122–4134. doi: 10.3892/ol.2017.6694. PubMed DOI PMC

Liu H., Li Y., Mao Y. Local lymph node recurrence after central neck dissection in papillary thyroid cancers: A meta analysis. Eur. Ann. Otorhinolaryngol. Head Neck Dis. 2019;136:481–487. doi: 10.1016/j.anorl.2018.07.010. PubMed DOI

Viola D., Materazzi G., Valerio L., Molinaro E., Agate L., Faviana P., Seccia V., Sensi E., Romei C., Piaggi P., et al. Prophylactic central compartment lymph node dissection in papillary thyroid carcinoma: Clinical implications derived from the first prospective randomized controlled single institution study. J. Clin. Endocrinol. Metab. 2015;100:1316–1324. doi: 10.1210/jc.2014-3825. PubMed DOI

Dutenhefner S.E., Marui S., Santos A.B., de Lima E.U., Inoue M., Neto J.S., Shiang C., Fukushima J.T., Cernea C.R., Friguglietti C.U. BRAF: A tool in the decision to perform elective neck dissection? Thyroid. 2013;23:1541–1546. doi: 10.1089/thy.2012.0304. PubMed DOI

Howell G.M., Nikiforova M.N., Carty S.E., Armstrong M.J., Hodak S.P., Stang M.T., McCoy K.L., Nikiforov Y.E., Yip L. BRAF V600E mutation independently predicts central compartment lymph node metastasis in patients with papillary thyroid cancer. Ann. Surg. Oncol. 2013;20:47–52. doi: 10.1245/s10434-012-2611-0. PubMed DOI

Zhang K., Qian L., Chen J., Zhu Q., Chang C. Preoperative Prediction of Central Cervical Lymph Node Metastasis in Fine-Needle Aspiration Reporting Suspicious Papillary Thyroid Cancer or Papillary Thyroid Cancer Without Lateral Neck Metastasis. Front. Oncol. 2022;12:712723. doi: 10.3389/fonc.2022.712723. PubMed DOI PMC

Parvathareddy S.K., Siraj A.K., Ahmed S.O., DeVera F., Al-Sobhi S.S., Al-Dayel F., Al-Kuraya K.S. Risk Factors for Central Lymph Node Metastases and Benefit of Prophylactic Central Lymph Node Dissection in Middle Eastern Patients With cN0 Papillary Thyroid Carcinoma. Front. Oncol. 2022;11:819824. doi: 10.3389/fonc.2021.819824. PubMed DOI PMC

Ma B., Wang Y., Yang S., Ji Q. Predictive factors for central lymph node metastasis in patients with cN0 papillary thyroid carcinoma: A systematic review and meta-analysis. Int. J. Surg. 2016;28:153–161. doi: 10.1016/j.ijsu.2016.02.093. PubMed DOI

Valerio L., Pieruzzi L., Giani C., Agate L., Bottici V., Lorusso L., Cappagli V., Puleo L., Matrone A., Viola D., et al. Targeted Therapy in Thyroid Cancer: State of the Art. Clin. Oncol. J. R. Coll. Radiol. 2017;29:316–324. doi: 10.1016/j.clon.2017.02.009. PubMed DOI

Cabanillas M.E., Ryder M., Jimenez C. Targeted Therapy for Advanced Thyroid Cancer: Kinase Inhibitors and Beyond. Endocr. Rev. 2019;40:1573–1604. doi: 10.1210/er.2019-00007. PubMed DOI PMC

Prete A., Matrone A., Gambale C., Torregrossa L., Minaldi E., Romei C., Ciampi R., Molinaro E., Elisei R. Poorly Differentiated and Anaplastic Thyroid Cancer: Insights into Genomics, Microenvironment and New Drugs. Cancers. 2021;13:3200. doi: 10.3390/cancers13133200. PubMed DOI PMC

National Comprehensive Cancer Network NCCN Clinical Practice Guidelines in Oncology (Online), ver 2.2022. [(accessed on 9 May 2022)]. Available online: http://www.nccn.org/professionals/physician_gls/pdf/thyroid.pdf.

Brose M.S., Nutting C.M., Jarzab B., Elisei R., Siena S., Bastholt L., de la Fouchardiere C., Pacini F., Paschke R., Shong Y.K., et al. Sorafenib in radioactive iodine-refractory, locally advanced or metastatic differentiated thyroid cancer: A randomised, double-blind, phase 3 trial. Lancet. 2014;384:319–328. doi: 10.1016/S0140-6736(14)60421-9. PubMed DOI PMC

Schlumberger M., Tahara M., Wirth L.J., Robinson B., Brose M.S., Elisei R., Habra M.A., Newbold K., Shah M.H., Hoff A.O., et al. Lenvatinib versus placebo in radioiodine-refractory thyroid cancer. N. Engl. J. Med. 2015;372:621–630. doi: 10.1056/NEJMoa1406470. PubMed DOI

Koehler V.F., Adam P., Frank-Raue K., Raue F., Berg E., Hoster E., Allelein S., Schott M., Kroiss M., Spitzweg C. Real-World Efficacy and Safety of Cabozantinib and Vandetanib in Advanced Medullary Thyroid Cancer. Thyroid. 2021;31:459–469. doi: 10.1089/thy.2020.0206. PubMed DOI

Waguespack S.G., Drilon A., Lin J.J., Brose M.S., McDermott R., Almubarak M., Bauman J., Casanova M., Krishnamurthy A., Kummar S., et al. Efficacy and safety of larotrectinib in patients with TRK fusion-positive thyroid carcinoma. Eur. J. Endocrinol. 2022;186:631–643. doi: 10.1530/EJE-21-1259. PubMed DOI PMC

Angelousi A., Hayes A.R., Chatzellis E., Kaltsas G.A., Grossman A.B. Metastatic medullary thyroid carcinoma: A new way forward. Endocr. Relat. Cancer. 2022;29:R85–R103. doi: 10.1530/ERC-21-0368. PubMed DOI PMC

Subbiah V., Kreitman R.J., Wainberg Z.A., Cho J.Y., Schellens J., Soria J.C., Wen P.Y., Zielinski C., Cabanillas M.E., Urbanowitz G., et al. Dabrafenib and Trametinib Treatment in Patients With Locally Advanced or Metastatic BRAF V600-Mutant Anaplastic Thyroid Cancer. J. Clin. Oncol. 2018;36:7–13. doi: 10.1200/JCO.2017.73.6785. PubMed DOI PMC

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...