Out-of-Field Doses Produced by a Proton Scanning Beam Inside Pediatric Anthropomorphic Phantoms and Their Comparison With Different Photon Modalities

. 2022 ; 12 () : 904563. [epub] 20220722

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid35957900

Since 2010, EURADOS Working Group 9 (Radiation Dosimetry in Radiotherapy) has been involved in the investigation of secondary and scattered radiation doses in X-ray and proton therapy, especially in the case of pediatric patients. The main goal of this paper is to analyze and compare out-of-field neutron and non-neutron organ doses inside 5- and 10-year-old pediatric anthropomorphic phantoms for the treatment of a 5-cm-diameter brain tumor. Proton irradiations were carried out at the Cyclotron Centre Bronowice in IFJ PAN Krakow Poland using a pencil beam scanning technique (PBS) at a gantry with a dedicated scanning nozzle (IBA Proton Therapy System, Proteus 235). Thermoluminescent and radiophotoluminescent dosimeters were used for non-neutron dose measurements while secondary neutrons were measured with track-etched detectors. Out-of-field doses measured using intensity-modulated proton therapy (IMPT) were compared with previous measurements performed within a WG9 for three different photon radiotherapy techniques: 1) intensity-modulated radiation therapy (IMRT), 2) three-dimensional conformal radiation therapy (3D CDRT) performed on a Varian Clinac 2300 linear accelerator (LINAC) in the Centre of Oncology, Krakow, Poland, and 3) Gamma Knife surgery performed on the Leksell Gamma Knife (GK) at the University Hospital Centre Zagreb, Croatia. Phantoms and detectors used in experiments as well as the target location were the same for both photon and proton modalities. The total organ dose equivalent expressed as the sum of neutron and non-neutron components in IMPT was found to be significantly lower (two to three orders of magnitude) in comparison with the different photon radiotherapy techniques for the same delivered tumor dose. For IMPT, neutron doses are lower than non-neutron doses close to the target but become larger than non-neutron doses further away from the target. Results of WG9 studies have provided out-of-field dose levels required for an extensive set of radiotherapy techniques, including proton therapy, and involving a complete description of organ doses of pediatric patients. Such studies are needed for validating mathematical models and Monte Carlo simulation tools for out-of-field dosimetry which is essential for dedicated epidemiological studies which evaluate the risk of second cancers and other late effects for pediatric patients treated with radiotherapy.

Zobrazit více v PubMed

Howlader N, Noone AM, Krapcho M, Miller D, Brest A, Yu M, et al. . SEER Cancer Statistics Review, 1975-2017. Bethesda, MD: National Cancer Institute; (2020). Available at: https://seer.cancer.gov/csr/1975_2017/.

Merchant TE, Hua C, Shukla H, Ying X, Nill S, Oelfke U. Proton Versus Photon Radiotherapy for Common Pediatric Brain Tumors: Comparison of Models of Dose Characteristics and Their Relationship to Cognitive Function. Pediatr Blood Cancer (2008) 51:110–17. doi: 10.1002/pbc.21530 PubMed DOI

Mizumoto M, Oshiro Y, Yamamoto T, Kohzuki H, Sakurai H. Proton Beam Therapy for Pediatric Brain Tumor. Neurol Med Chir (2017) 57:343–55. doi: 10.2176/nmc.ra.2017-0003 PubMed DOI PMC

Rombi B, Vennarini S, Vinante L, Ravanelli D, Amichetti M. Proton Radiotherapy for Pediatric Tumors: Review of First Clinical Results. Ital J Pediatr (2014) 40:2640–74. doi: 10.1186/s13052-014-0074-6 PubMed DOI PMC

Leroy R, Benahmed N, Hulstaert F, Van Damme N, De Ruysscher D. Proton Therapy in Children: A Systematic Review of Clinical Effectiveness in 15 Pediatric Cancers. Int J Radiat Oncol Biol Phys (2016) 95:267–78. doi: 10.1016/j.ijrobp.2015.10.025 PubMed DOI

Thomas H, Timmermann B. Paediatric Proton Therapy. Br J Radiol (2020) 93:20190601. doi: 10.1259/bjr.20190601 PubMed DOI PMC

Newhauser WD, Durante M. Assessing the Risk of Second Malignancies After Modern Radiotherapy. Nat Rev Cancer (2011) 11(6):438–48. doi: 10.1038/nrc3069 PubMed DOI PMC

Moteabbed M, Yock TI, Paganetti H. The Risk of Radiation-Induced Second Cancers in the High to Medium Dose Region: A Comparison Between Passive and Scanned Proton Therapy, IMRT and VMAT for Pediatric Patients With Brain Tumors. Phys Med Biol (2014) 59:2883–99. doi: 10.1088/0031-9155/59/12/2883 PubMed DOI

Hall EJ. Intensity Modulated Radiation Therapy Proton, and the Risk of Second Cancers. Int J Radiat Oncol Biol Phys (2006) 65(1):1–7. doi: 10.1016/j.ijrobp.2006.01.027 PubMed DOI

NCRP . Second Primary Cancers and Cardiovascular Disease After Radiation Therapy: NCRP 390 Report No. 151. Bethesda, 23 Maryland: National Council on Radiation Protection and Measurements; (2011).

National Research Council . Health Risks From Exposure to Low Levels of Ionizing Radiation: BEIR VII – Phase 2. Washington, DC: The National Academies Press; (2006). PubMed

Bassal M, Mertens AC, Taylor L, Neglia JP, Greffe BS, Hammond S, et al. . Risk of Selected Subsequent Carcinomas in Survivors of Childhood Cancer. A Report From the Childhood Cancer Survivor Study. Clin Oncol (2006) 24:3 476–83. doi: 10.1200/JCO.2005.02.7235 PubMed DOI

Neglia JP, Friedman DL, Yasui Y, Maetens AC, Hammond S, Stovall M, et al. . Second Malignant Neoplasms in Five-Year Survivors of Childhood Cancer: Childhood Cancer Survivor Study. Natl Cancer Inst (2001) 93(8):618–29. doi: 10.1093/jnci/93.8.618 PubMed DOI

Zacharatou Jarlskog C, Paganetti H. Risk of Developing Second Cancer From Neutron Dose in Proton Therapy as Function of Field Characteristics, Organ, and Patient Age. Int J Radiat Oncol Biol Phys (2008) 72:228–35. doi: 10.1016/j.ijrobp.2008.04.069 PubMed DOI

Paganetti H, Blakely E, Carabe-Fernandez A, Carlson DJ, Das IJ, Dong L, et al. . Report of the AAPM TG-256 on the Relative Biological Effectiveness of Proton Beams in Radiation Therapy. Med Phys (2019) 46:3 53–78. doi: 10.1002/mp.13390 PubMed DOI PMC

Dasu A, Toma-Dasu I. Models for the Risk of Secondary Cancers From Radiation Therapy. Phys Med (2017) 41:232–38. doi: 10.1016/j.ejmp.2017.02.015 PubMed DOI

Athar BS, Bednarz B, Seco J, Hancox C, Paganetti H. Comparison of Out-of-Field Photon Doses in 6 MV IMRT and Neutron Doses in Proton Therapy for Adult and Pediatric Patients. Phys Med Biol (2010) 55:2879–91. doi: 10.1088/0031-9155/55/10/006 PubMed DOI PMC

Sá AC, Barateiro A, Bednarz B, Borges C, Pareira J, Baptista M, et al. . Assessment of Out-of-Field Doses in Radiotherapy Treatments of Paediatric Patients Using Monte Carlo Methods and Measurements. Phys Med (2020) 71:53–61. doi: 10.1016/j.ejmp.2020.02.008 PubMed DOI

Howell RM, Scarboro SB, Kry SF, Yaldo DZ. Accuracy of Out-of-Field Dose Calculations by a Commercial Treatment Planning System. Phys Med Biol (2010) 55:26999–7008. doi: 10.1088/0031-9155/55/23/S03 PubMed DOI PMC

Miljanić S, Bessieres I, Bordy J-M, d'Errico F, Di Fulvio A, Kabat D, et al. . Clinical Simulations of Prostate Radiotherapy Using BOMAB-Like Phantoms. Results Photons Radiat Meas (2013) 57:35–47. doi: 10.1016/j.radmeas.2012.12.012 DOI

Sanchez-Nieto B, Medina-Ascanio KN, Rodriguez-Mongua JL, Doerner E, Espinoza I. Study of Out-of-Field Dose in Photon Radiotherapy: A Commercial Treatment Planning System Versus Measurements and Monte Carlo Simulations. Med Phys (2020) 47:4616–25. doi: 10.1002/mp.14356 PubMed DOI PMC

Stolarczyk L, Trinkl S, Romero-Exposito M, Mojzeszek N, Ambrozova I, Dominog C, et al. . Dose Distribution of Secondary Radiation in a Water Phantom for a Proton Pencil Beam—EURADOS WG9 Intercomparison Exercise. Phys Med Biol (2018) 63:085017. doi: 10.1088/1361-6560/aab469 PubMed DOI

ICRP Publication 92 . Relative Biological Effectivenes (RBE), Quality Factor (Q) and Radiation Weighting Factor (Wr). Ann ICRP (2003) 33:1–121. doi: 10.1016/S0146-6453(03)00024-1 PubMed DOI

Paganetti H, van Luijk P. Biological Considerations When Comparing Proton Therapy With Photon Therapy. Semin Radiat Oncol (2013) 23:77–87. doi: 10.1016/j.semradonc.2012.11.002 PubMed DOI

Ardenfors O, Dasu A, Lillhök J, Persson L, Gudowska I. Out-Of-Field Doses From Secondary Radiation Produced in Proton Therapy and the Associated Risk of Radiation-Induced Cancer From a Brain Tumor Treatment. Phys Med (2018) 53:129–36. doi: 10.1016/j.ejmp.2018.08.020 PubMed DOI

Clasie B, Wroe A, Kooy H, Depauw N, Flanz J, Paganetti H. Assessment of Out-of-Field Absorbed Dose and Equivalent Dose in Proton Fields. Med Phys (2010) 37:311–21. doi: 10.1118/1.3271390 PubMed DOI PMC

Sayah R, Farah J, Donadille L, Hérault J, Delacroix S, De Marzi L, et al. . Secondary Neutron Doses Received by Paediatric Patients During Intracranial Proton Therapy Treatments. J Radiol Prot (2014) 34:279–96. doi: 10.1088/0952-4746/34/2/279 PubMed DOI

Gudowska I, Ardenfors O, Toma-Dasu I, Dasu A. Radiation Burden From Secondary Doses to Patients Undergoing Radiation Therapy With Photons and Light Ions and Radiation Doses From Imaging Modalities. Radiat Prot Dosim (2014) 161:357–62. doi: 10.1093/rpd/nct335 PubMed DOI

Knežević Ž, Ambrožová I, Domingo C, De Saint-Hubert M, Majer M, Martinez-Rovira I, et al. . Comparison of Response of Passive Dosimetry in Scanning Proton Radiotherapy—a Study Using Paediatric Anthropomorphic Phantoms. Radiat Prot Dosim (2018) 180:256–60. doi: 10.1093/rpd/ncx254 PubMed DOI

Farah J, Mares V, Romero-Exposito M, Trinkl S, Domingo C, Dufek V. Measurement of Stray Radiation Within a Scanning Proton Therapy Facility: EURADOS WG9 Intercomparison Exercise of Active Dosimetry Systems. Med Phys (2015) 42:2572–84. doi: 10.1118/1.4916667 PubMed DOI

Mojżeszek N, Farah J, Kłodowska M, Ploc O, Stolarczyk L, Waligórski, et al. . Measurement of Stray Neutron Doses Inside the Treatment Room From a Proton Pencil Beam Scanning System. Phys Med (2017) 34:80–4. doi: 10.1016/j.ejmp.2017.01.013 PubMed DOI

Majer M, Ambrozova I, Davidkova M, De Saint-Hubert M, Kasabašić M, Knežević Ž, et al. . Out-Of-Field Doses in Pediatric Craniospinal Irradiations With 3D-CRT, VMAT and Scanning Proton. Med Phys (2022) 49:2672–83. doi: 10.1002/mp.15493 PubMed DOI

Majer M, Stolarczyk L, De Saint-Hubert M, Kabat D, Knežević Ž, Miljanić S, et al. . Out-Of-Field Doses Measurements for 3D Conformal and Intensity Modulated Radiotherapy of a Paediatric Brain Tumour. Radiat Prot Dosim (2017) 176:331–40. doi: 10.1093/rpd/ncx015 PubMed DOI

De Saint-Hubert M, Majer M, Hršak H, Heinrich Z, Knežević Ž, Miljanić S, et al. . Out-Of-Field Doses in Children Treated for Large Arteriovenous Malformations Using Hypofractionated Gamma Knife Radiosurgery and Intensity-Modulated Radiation Therapy. Radiat Prot Dosim (2018) 181:100–10. doi: 10.1093/rpd/ncx301 PubMed DOI

Lehrer EJ, Prabhu AV, Sindhu KK, Lazarev S, Ruiz-Garcia H, Peterson JL, et al. . Proton and Heavy Particle Intracranial Radiosurgery. Biomedicines (2021) 9:1–27. doi: 10.3390/biomedicines9010031 PubMed DOI PMC

Silander H, Pellettieri L, Enblad P, Montelius A, Grusell E, Vallhagen-Dahlgren C, et al. . Fractionated, Stereotactic Proton Beam Treatment of Cerebral Arteriovenous Malformations. Acta Neurol Scand (2004) 109:85–90. doi: 10.1046/j.1600-0404.2003.00154.x PubMed DOI

Hattangadi, Chapman PH, Bussière MR, Daartz J, Loeffler JS, Shih HA, et al. . Planned Two-Fraction Proton Beam Stereotactic Radiosurgery for High-Risk Inoperable Cerebral Arteriovenous Malformations. Int J Radiat Oncol Biol Phys (2012. 2011) 83:533–41. doi: 10.1016/j.ijrobp.2011.08.003 PubMed DOI

Nakai Y, Ito Y, Sato M, Nakamura K, Shiigai M, Takigawa T, et al. . Multimodality Treatment for Cerebral Arteriovenous Malformations – Complementary Role of Proton Beam Radiotherapy. Neurol Med Chir (Tokyo) (2012) 52:859–64. doi: 10.2176/nmc.52.859 PubMed DOI

Romero-Exposito M, Domingo C, Sanchez-Doblado F, Ortega-Galabert O, Gallego S. Experimental Evaluation of Neutron Dose in Radiotherapy Patients: Which Dose? Med Phys (2016) 43:360–67. doi: 10.1118/1.4938578 PubMed DOI

Knežević Ž, Stolarczyk L, Bessieres I, Bordy JM, Miljanić S and Olko P. Photon Dosimetry Methods Outside the Target Volume in Radiation Therapy: Optically Stimulated Luminescence (OSL), Thermoluminescence (TL) and Radiophotoluminescence (RPL) Dosimetry. Radiat Meas (2013) 57:9–18. doi: 10.1016/j.radmeas.2013.03.004 DOI

ATGC 2007 . Explanation Material of RPL Glass Dosimeter: Small Element System. Tokyo, Japan: Asahi Techno Glass Corporation; (2007).

Gottschalk B, Cascio EW, Daartz J, Wagner Miles S. On the Nuclear Halo of a Proton Pencil Beam Stopping in Water. Phys Med Biol (2015) 60:5627–54. doi: 10.1088/0031-9155/60/14/5627 PubMed DOI

Bilski P. Dosimetry of Densely Ionising Radiation With Three LiF Phosphors for Space Application. Radiat Prot Dosim (2006) 120:397–400. doi: 10.1093/rpd/nci674 PubMed DOI

Miljanić S, Ranogajec-Komor M, Blagus S, Pálfalvi JK, Pázmándi T, Deme S, et al. . Response of Radiophotoluminescent Dosimeters to Neutrons. Radiat Meas (2008) 43:1068–71. doi: 10.1016/j.radmeas.2007.11.012 DOI

Silva EH, Struelens L, Covens P, Ueno S, Koguchi Y, Vanhavere F, et al. . Optimization of Radiophotoluminescent Glass Dosemeter for Occupational Eye Lens Dosimetry in Interventional Radiology/Cardiology. Radiat Prot Dosim (2018) 182:177–83. doi: 10.1093/rpd/ncy046 PubMed DOI

Jadrníčková I, Spurný F. To the Spectrometry of Linear Energy Transfer in Charged Particle Beams by Means of Track-Etch Detectors. Radiat Meas (2008) 43:S191–4. doi: 10.1016/j.radmeas.2008.04.010 DOI

Domingo C, de San Pedro M, García-Fusté MJ, Romero MT, Amgarou K. And Fernández F Estimation of the Response Function of a PADC Based Neutron Dosimeter in Terms of Fluence and Hp(10). Radiat Meas (2013) 50:82–6. doi: 10.1016/j.radmeas.2012.02.016 DOI

Romero-Expósito M, Martínez-Rovira I, Domingo C, Bedogni R, Pietropaolo A, Pola A, et al. . Calibration of a Poly Allyl Diglycol Carbonate (PADC) Based Track-Etched Dosimeter in Thermal Neutron Fields. Radiat Meas (2018) 119:204–8. doi: 10.1016/j.radmeas.2018.11.007 DOI

Pachnerová Brabcová K, Ambrožová I, Kolísková Z, Malušek A. Uncertainties in Linear Energy Transfer Spectra Measured With Track-Etched Detectors in Space. Nucl Instrum Meth A (2013) 713:5–10. doi: 10.1016/j.nima.2013.03.012 DOI

Matsumoto S, Koba Y, Kohno R, Lee C, Bolch W, Kai M. Secondary Neutron Doses to Pediatric Patients During Intracranial Proton Therapy: Monte Carlo Simulation of the Neutron Energy Spectrum and its Organ Doses. Health Phys (2016) 110:380 –86. doi: 10.1097/HP.0000000000000461 PubMed DOI

Ardenfors O, Gudowska I, Flejmer AM, Dasu A. Impact of Irradiation Setup in Proton Spot Scanning Brain Therapy on Orga Doses From Secondary Radiation. Radiat Prot Dosim (2018) 180:261–66. doi: 10.1093/rpd/ncy013 PubMed DOI

Geng C, Moteabbed M, Xie Y, Schuemann J, Yock T, Paganetti H. Assessing the Radiation-Induced Second Cancer Risk in Proton Therapy for Pediatric Brain Tumors: The Impact of Employing a Patient-Specific Aperture in Pencil Beam Scanning. Phys Med Biol (2016) 61:12–22. doi: 10.1088/0031-9155/61/1/12 PubMed DOI

Xiao F, Gorgulho AA, Lin CS, Chen CH, Agazaryan N, Vinuela F, et al. . Treatment of Giant Cerebral Arteriovenous Malformation: Hypofractionated Stereotactic Radiation as the First Stage. Neurosurgery (2010) 67:1253–59. doi: 10.1227/NEU.0b013e3181efbaef PubMed DOI

Kry SF, Bednarz B, Howell RM, Dauer L, Followill D, Klein D. AAPM TG 158: Measurements and Calculation of Doses Outside the Treated Volume From External-Beam Radiation Therapy Med. Phys (2017) 44:391–429. doi: 10.1002/mp.12462 PubMed DOI

Newhauser WD, Zhang R. The Physics of Proton Therapy. Phys Med Biol (2015) 60:155–209. doi: 10.1088/0031-9155/60/8/R155 PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...