Chromosome Translocations, Gene Fusions, and Their Molecular Consequences in Pleomorphic Salivary Gland Adenomas

. 2022 Aug 14 ; 10 (8) : . [epub] 20220814

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid36009517
Odkazy

PubMed 36009517
PubMed Central PMC9405559
DOI 10.3390/biomedicines10081970
PII: biomedicines10081970
Knihovny.cz E-zdroje

Salivary gland tumors are a heterogeneous group of tumors originating from the major and minor salivary glands. The pleomorphic adenoma (PA), which is the most common subtype, is a benign lesion showing a remarkable morphologic diversity and that, upon recurrence or malignant transformation, can cause significant clinical problems. Cytogenetic studies of >500 PAs have revealed a complex and recurrent pattern of chromosome rearrangements. In this review, we discuss the specificity and frequency of these rearrangements and their molecular/clinical consequences. The genomic hallmark of PA is translocations with breakpoints in 8q12 and 12q13-15 resulting in gene fusions involving the transcription factor genes PLAG1 and HMGA2. Until recently, the association between these two oncogenic drivers was obscure. Studies of the Silver−Russel syndrome, a growth retardation condition infrequently caused by mutations in IGF2/HMGA2/PLAG1, have provided new clues to the understanding of the molecular pathogenesis of PA. These studies have demonstrated that HMGA2 is an upstream regulator of PLAG1 and that HMGA2 regulates the expression of IGF2 via PLAG1. This provides a novel explanation for the 8q12/12q13-15 aberrations in PA and identifies IGF2 as a major oncogenic driver and therapeutic target in PA. These studies have important diagnostic and therapeutic implications for patients with PA.

Zobrazit více v PubMed

WHO Classification of Tumours Editorial Board . International Agency for Research on Cancer. 5th ed. Volume 9. WHO Classification of Tumours Editorial Board; Lyon, France: 2022. [(accessed on 14 June 2022)]. (WHO Classification of Tumours Series). Head and Neck Tumours [Internet; Beta Version Ahead of Print] Available online: https://tumourclassification.iarc.who.int/chapters/52.

Skalova A., Hyrcza M.D., Leivo I. Update from the 5th Edition of the World Health Organization Classification of Head and Neck Tumors: Salivary Glands. Head Neck Pathol. 2022;16:40–53. doi: 10.1007/s12105-022-01420-1. PubMed DOI PMC

Andreasen S., Therkildsen M.H., Bjorndal K., Homoe P. Pleomorphic adenoma of the parotid gland 1985-2010: A Danish nationwide study of incidence, recurrence rate, and malignant transformation. Head Neck. 2016;38((Suppl. S1)):E1364–E1369. doi: 10.1002/hed.24228. PubMed DOI

Valstar M.H., de Ridder M., van den Broek E.C., Stuiver M.M., van Dijk B.A.C., van Velthuysen M.L.F., Balm A.J.M., Smeele L.E. Salivary gland pleomorphic adenoma in the Netherlands: A nationwide observational study of primary tumor incidence, malignant transformation, recurrence, and risk factors for recurrence. Oral Oncol. 2017;66:93–99. doi: 10.1016/j.oraloncology.2017.01.004. PubMed DOI

Mark J., Ekedahl C. Polyclonal chromosomal evolution in a benign mixed salivary gland tumor. Cancer Genet. Cytogenet. 1987;28:237–243. doi: 10.1016/0165-4608(87)90209-3. PubMed DOI

Enlund F., Nordkvist A., Sahlin P., Mark J., Stenman G. Expression of PLAG1 and HMGIC proteins and fusion transcripts in radiation-associated pleomorphic adenomas. Int. J. Oncol. 2002;20:713–716. doi: 10.3892/ijo.20.4.713. PubMed DOI

Hernandez-Prera J.C., Faquin W.C., Ihrler S., Katabi N., Weinreb I., Altemani A., Machado de Sousa S.O., Wasserman J.K. WHO Classification of Tumours Editorial Board. 5th ed. Volume 9. International Agency for Research on Cancer; Lyon, France: 2022. [(accessed on 14 June 2022)]. Pleomorphic Adenoma. (WHO Classification of Tumours Series). Head and Neck Tumours [Internet; Beta Version Ahead of Print] Available online: https://tumourclassification.iarc.who.int/chapters/52.

Hernandez-Prera J.C., Skalova A., Franchi A., Rinaldo A., Vander Poorten V., Zbaren P., Ferlito A., Wenig B.M. Pleomorphic adenoma: The great mimicker of malignancy. Histopathology. 2021;79:279–290. doi: 10.1111/his.14322. PubMed DOI

Katabi N., Chiosea S., Fonseca I., Ihrler S., Klijanienko J., Altemani A. WHO Classification of Tumours Editorial Board. 5th ed. Volume 9. International Agency for Research on Cancer; Lyon, France: 2022. [(accessed on 14 June 2022)]. Carcinoma ex Pleomorphic Adenoma. (WHO Classification of Tumours Series). Head and Neck Tumours [Internet; Beta Version Ahead of Print] Available online: https://tumourclassification.iarc.who.int/chapters/52.

Mark J., Dahlenfors R., Ekedahl C., Stenman G. The mixed salivary gland tumor—A normally benign human neoplasm frequently showing specific chromosomal abnormalities. Cancer Genet. Cytogenet. 1980;2:231–241. doi: 10.1016/0165-4608(80)90030-8. DOI

Kas K., Voz M.L., Röijer E., Aström A.K., Meyen E., Stenman G., Van de Ven W.J. Promoter swapping between the genes for a novel zinc finger protein and beta-catenin in pleiomorphic adenomas with t(3;8)(p21;q12) translocations. Nat. Genet. 1997;15:170–174. doi: 10.1038/ng0297-170. PubMed DOI

Geurts J.M., Schoenmakers E.F., Röijer E., Stenman G., Van de Ven W.J. Expression of reciprocal hybrid transcripts of HMGIC and FHIT in a pleomorphic adenoma of the parotid gland. Cancer Res. 1997;57:13–17. PubMed

Geurts J.M., Schoenmakers E.F., Röijer E., Aström A.K., Stenman G., van de Ven W.J. Identification of NFIB as recurrent translocation partner gene of HMGIC in pleomorphic adenomas. Oncogene. 1998;16:865–872. doi: 10.1038/sj.onc.1201609. PubMed DOI

Mark J., Dahlenfors R., Ekedahl C., Stenman G. Chromosomal patterns in a benign human neoplasm, the mixed salivary gland tumour. Hereditas. 1982;96:141–148. doi: 10.1111/j.1601-5223.1982.tb00044.x. PubMed DOI

Mertens F., Johansson B., Fioretos T., Mitelman F. The emerging complexity of gene fusions in cancer. Nat. Rev. Cancer. 2015;15:371–381. doi: 10.1038/nrc3947. PubMed DOI

Stenman G., Mark J. Specificity of the involvement of chromosomes 8 and 12 in human mixed salivary-gland tumours. J. Oral. Pathol. 1983;12:446–457. doi: 10.1111/j.1600-0714.1983.tb00356.x. PubMed DOI

Voz M.L., Aström A.K., Kas K., Mark J., Stenman G., Van de Ven W.J. The recurrent translocation t(5;8)(p13;q12) in pleomorphic adenomas results in upregulation of PLAG1 gene expression under control of the LIFR promoter. Oncogene. 1998;16:1409–1416. doi: 10.1038/sj.onc.1201660. PubMed DOI

Stenman G. Fusion oncogenes in salivary gland tumors: Molecular and clinical consequences. Head Neck Pathol. 2013;7((Suppl. S1)):S12–S19. doi: 10.1007/s12105-013-0462-z. PubMed DOI PMC

Astrom A.K., Voz M.L., Kas K., Roijer E., Wedell B., Mandahl N., Van de Ven W., Mark J., Stenman G. Conserved mechanism of PLAG1 activation in salivary gland tumors with and without chromosome 8q12 abnormalities: Identification of SII as a new fusion partner gene. Cancer Res. 1999;59:918–923. PubMed

Skalova A., Hyrcza M.D., Vanecek T., Baneckova M., Leivo I. Fusion-positive salivary gland carcinomas. Genes Chromosomes Cancer. 2022;61:228–243. doi: 10.1002/gcc.23020. PubMed DOI

Andersson M.K., Stenman G. The landscape of gene fusions and somatic mutations in salivary gland neoplasms—Implications for diagnosis and therapy. Oral Oncol. 2016;57:63–69. doi: 10.1016/j.oraloncology.2016.04.002. PubMed DOI

Mark J., Dahlenfors R., Ekedahl C. Cytogenetics of the human benign mixed salivary gland tumour. Hereditas. 1983;99:115–129. doi: 10.1111/j.1601-5223.1983.tb00736.x. PubMed DOI

Mark J., Dahlenfors R. Cytogenetical observations in 100 human benign pleomorphic adenomas: Specificity of the chromosomal aberrations and their relationship to sites of localized oncogenes. Anticancer Res. 1986;6:299–308. PubMed

Mark J., Sandros J., Wedell B., Stenman G., Ekedahl C. Significance of the choice of tissue culture technique on the chromosomal patterns in human mixed salivary gland tumors. Cancer Genet. Cytogenet. 1988;33:229–244. doi: 10.1016/0165-4608(88)90033-7. PubMed DOI

Sandros J., Stenman G., Mark J. Cytogenetic and molecular observations in human and experimental salivary gland tumors. Cancer Genet. Cytogenet. 1990;44:153–167. doi: 10.1016/0165-4608(90)90042-9. PubMed DOI

Mark J., Dahlenfors R., Wedell B. Impact of the in vitro technique used on the cytogenetic patterns in pleomorphic adenomas. Cancer Genet. Cytogenet. 1997;95:9–15. doi: 10.1016/S0165-4608(96)00204-X. PubMed DOI

Stenman G. Fusion oncogenes and tumor type specificity—Insights from salivary gland tumors. Semin. Cancer Biol. 2005;15:224–235. doi: 10.1016/j.semcancer.2005.01.002. PubMed DOI

Bullerdiek J., Bartnitzke S., Weinberg M., Chilla R., Haubrich J., Schloot W. Rearrangements of chromosome region 12q13----q15 in pleomorphic adenomas of the human salivary gland (PSA) Cytogenet Cell Genet. 1987;45:187–190. doi: 10.1159/000132452. PubMed DOI

Bullerdiek J., Boschen C., Bartnitzke S. Aberrations of chromosome 8 in mixed salivary gland tumors--cytogenetic findings on seven cases. Cancer Genet. Cytogenet. 1987;24:205–212. doi: 10.1016/0165-4608(87)90100-2. PubMed DOI

Bullerdiek J., Chilla R., Haubrich J., Meyer K., Bartnitzke S. A causal relationship between chromosomal rearrangements and the genesis of salivary gland pleomorphic adenomas. Arch. Otorhinolaryngol. 1988;245:244–249. doi: 10.1007/BF00463936. PubMed DOI

Bullerdiek J., Wobst G., Meyer-Bolte K., Chilla R., Haubrich J., Thode B., Bartnitzke S. Cytogenetic subtyping of 220 salivary gland pleomorphic adenomas: Correlation to occurrence, histological subtype, and in vitro cellular behavior. Cancer Genet. Cytogenet. 1993;65:27–31. doi: 10.1016/0165-4608(93)90054-P. PubMed DOI

Martins C., Fonseca I., Felix A., Roque L., Soares J. Benign salivary gland tumors: A cytogenetic study of 21 cases. J. Surg. Oncol. 1995;60:232–237. doi: 10.1002/jso.2930600404. PubMed DOI

Hrynchak M., White V., Berean K., Horsman D. Cytogenetic findings in seven lacrimal gland neoplasms. Cancer Genet. Cytogenet. 1994;75:133–138. doi: 10.1016/0165-4608(94)90165-1. PubMed DOI

Mark H.F., Hanna I., Gnepp D.R. Cytogenetic analysis of salivary gland type tumors. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endod. 1996;82:187–192. doi: 10.1016/S1079-2104(96)80223-X. PubMed DOI

Jin C., Martins C., Jin Y., Wiegant J., Wennerberg J., Dictor M., Gisselsson D., Strombeck B., Fonseca I., Mitelman F., et al. Characterization of chromosome aberrations in salivary gland tumors by FISH, including multicolor COBRA-FISH. Genes Chromosomes Cancer. 2001;30:161–167. doi: 10.1002/1098-2264(2000)9999:9999<::AID-GCC1077>3.0.CO;2-B. PubMed DOI

Mitelman F., Johansson B., Mertens F., editors. Mitelman Database of Chromosome Aberrations and Gene Fusions in Cancer: 2022. [(accessed on 21 June 2022)]. Available online: https://mitelmandatabase.isb-cgc.org.

Afshari M.K., Fehr A., Nevado P.T., Andersson M.K., Stenman G. Activation of PLAG1 and HMGA2 by gene fusions involving the transcriptional regulator gene NFIB. Genes Chromosomes Cancer. 2020;59:652–660. doi: 10.1002/gcc.22885. PubMed DOI

Asp J., Persson F., Kost-Alimova M., Stenman G. CHCHD7-PLAG1 and TCEA1-PLAG1 gene fusions resulting from cryptic, intrachromosomal 8q rearrangements in pleomorphic salivary gland adenomas. Genes Chromosomes Cancer. 2006;45:820–828. doi: 10.1002/gcc.20346. PubMed DOI

Persson F., Winnes M., Andrén Y., Wedell B., Dahlenfors R., Asp J., Mark J., Enlund F., Stenman G. High-resolution array CGH analysis of salivary gland tumors reveals fusion and amplification of the FGFR1 and PLAG1 genes in ring chromosomes. Oncogene. 2008;27:3072–3080. doi: 10.1038/sj.onc.1210961. PubMed DOI

Mark J., Dahlenfors R., Ekedahl C. On double-minutes and their origin in a benign human neoplasm, a mixed salivary gland tumour. Anticancer Res. 1982;2:261–264. PubMed

Di Palma S., Lambros M.B., Savage K., Jones C., Mackay A., Dexter T., Iravani M., Fenwick K., Ashworth A., Reis-Filho J.S. Oncocytic change in pleomorphic adenoma: Molecular evidence in support of an origin in neoplastic cells. J. Clin. Pathol. 2007;60:492–499. doi: 10.1136/jcp.2005.031369. PubMed DOI PMC

Persson F., Andrén Y., Winnes M., Wedell B., Nordkvist A., Gudnadottir G., Dahlenfors R., Sjögren H., Mark J., Stenman G. High-resolution genomic profiling of adenomas and carcinomas of the salivary glands reveals amplification, rearrangement, and fusion of HMGA2. Genes Chromosomes Cancer. 2009;48:69–82. doi: 10.1002/gcc.20619. PubMed DOI

Roijer E., Nordkvist A., Strom A.K., Ryd W., Behrendt M., Bullerdiek J., Mark J., Stenman G. Translocation, deletion/amplification, and expression of HMGIC and MDM2 in a carcinoma ex pleomorphic adenoma. Am. J. Pathol. 2002;160:433–440. doi: 10.1016/S0002-9440(10)64862-6. PubMed DOI PMC

Rao P.H., Murty V.V., Louie D.C., Chaganti R.S. Nonsyntenic amplification of MYC with CDK4 and MDM2 in a malignant mixed tumor of salivary gland. Cancer Genet. Cytogenet. 1998;105:160–163. doi: 10.1016/S0165-4608(98)00013-2. PubMed DOI

McClintock B. The Production of Homozygous Deficient Tissues with Mutant Characteristics by Means of the Aberrant Mitotic Behavior of Ring-Shaped Chromosomes. Genetics. 1938;23:315–376. doi: 10.1093/genetics/23.4.315. PubMed DOI PMC

McClintock B. The Stability of Broken Ends of Chromosomes in Zea Mays. Genetics. 1941;26:234–282. doi: 10.1093/genetics/26.2.234. PubMed DOI PMC

Gisselsson D., Pettersson L., Hoglund M., Heidenblad M., Gorunova L., Wiegant J., Mertens F., Dal Cin P., Mitelman F., Mandahl N. Chromosomal breakage-fusion-bridge events cause genetic intratumor heterogeneity. Proc. Natl. Acad. Sci. USA. 2000;97:5357–5362. doi: 10.1073/pnas.090013497. PubMed DOI PMC

Mark J., Dahlenfors R., Ekedahl C. Specificity and implications of ring chromosomes and dicentrics in benign mixed salivary gland tumours. Acta Pathol. Microbiol. Immunol. Scand. A. 1983;91:397–402. doi: 10.1111/j.1699-0463.1983.tb02771.x. PubMed DOI

Dalin M.G., Katabi N., Persson M., Lee K.W., Makarov V., Desrichard A., Walsh L.A., West L., Nadeem Z., Ramaswami D., et al. Multi-dimensional genomic analysis of myoepithelial carcinoma identifies prevalent oncogenic gene fusions. Nat. Commun. 2017;8:1197. doi: 10.1038/s41467-017-01178-z. PubMed DOI PMC

Mark J., Dahlenfors R., Wedell B. Is pleomorphic adenoma of the salivary glands a tumor of congenital or very early origin? Oncol. Rep. 1996;3:1075–1077. doi: 10.3892/or.3.6.1075. PubMed DOI

Kas K., Voz M.L., Hensen K., Meyen E., Van de Ven W.J. Transcriptional activation capacity of the novel PLAG family of zinc finger proteins. J. Biol. Chem. 1998;273:23026–23032. doi: 10.1074/jbc.273.36.23026. PubMed DOI

Van Dyck F., Declercq J., Braem C.V., Van de Ven W.J. PLAG1, the prototype of the PLAG gene family: Versatility in tumour development (review) Int. J. Oncol. 2007;30:765–774. doi: 10.3892/ijo.30.4.765. PubMed DOI

Juma A.R., Damdimopoulou P.E., Grommen S.V., Van de Ven W.J., De Groef B. Emerging role of PLAG1 as a regulator of growth and reproduction. J. Endocrinol. 2016;228:R45–R56. doi: 10.1530/JOE-15-0449. PubMed DOI

Hensen K., Braem C., Declercq J., Van Dyck F., Dewerchin M., Fiette L., Denef C., Van de Ven W.J. Targeted disruption of the murine Plag1 proto-oncogene causes growth retardation and reduced fertility. Dev. Growth Differ. 2004;46:459–470. doi: 10.1111/j.1440-169x.2004.00762.x. PubMed DOI

Voz M.L., Agten N.S., Van de Ven W.J., Kas K. PLAG1, the main translocation target in pleomorphic adenoma of the salivary glands, is a positive regulator of IGF-II. Cancer Res. 2000;60:106–113. PubMed

Clevers H., Nusse R. Wnt/beta-catenin signaling and disease. Cell. 2012;149:1192–1205. doi: 10.1016/j.cell.2012.05.012. PubMed DOI

Kim S., Jeong S. Mutation Hotspots in the beta-Catenin Gene: Lessons from the Human Cancer Genome Databases. Mol. Cells. 2019;42:8–16. doi: 10.14348/molcells.2018.0436. PubMed DOI PMC

Persson M., Andren Y., Mark J., Horlings H.M., Persson F., Stenman G. Recurrent fusion of MYB and NFIB transcription factor genes in carcinomas of the breast and head and neck. Proc. Natl. Acad. Sci. USA. 2009;106:18740–18744. doi: 10.1073/pnas.0909114106. PubMed DOI PMC

Persson M., Andren Y., Moskaluk C.A., Frierson H.F., Jr., Cooke S.L., Futreal P.A., Kling T., Nelander S., Nordkvist A., Persson F., et al. Clinically significant copy number alterations and complex rearrangements of MYB and NFIB in head and neck adenoid cystic carcinoma. Genes Chromosomes Cancer. 2012;51:805–817. doi: 10.1002/gcc.21965. PubMed DOI

Bubola J., MacMillan C.M., Demicco E.G., Chami R.A., Chung C.T., Leong I., Marrano P., Onkal Z., Swanson D., Veremis B.M., et al. Targeted RNA sequencing in the routine clinical detection of fusion genes in salivary gland tumors. Genes Chromosomes Cancer. 2021;60:695–708. doi: 10.1002/gcc.22979. PubMed DOI PMC

Baněčková M., Uro-Coste E., Ptáková N., Šteiner P., Stanowska O., Benincasa G., Colella G., Vondrák J., Jr., Michal M., Leivo I., et al. What is hiding behind S100 protein and SOX10 positive oncocytomas? Oncocytic pleomorphic adenoma and myoepithelioma with novel gene fusions in a subset of cases. Hum. Pathol. 2020;103:52–62. doi: 10.1016/j.humpath.2020.07.009. PubMed DOI

Pei J., Liu J.C., Ehya H., Wei S. BOC-PLAG1, a new fusion gene of pleomorphic adenoma: Identified in a fine-needle aspirate by RNA next-generation sequencing. Diagn. Cytopathol. 2021;49:790–792. doi: 10.1002/dc.24714. PubMed DOI

Ashar H.R., Fejzo M.S., Tkachenko A., Zhou X., Fletcher J.A., Weremowicz S., Morton C.C., Chada K. Disruption of the architectural factor HMGI-C: DNA-binding AT hook motifs fused in lipomas to distinct transcriptional regulatory domains. Cell. 1995;82:57–65. doi: 10.1016/0092-8674(95)90052-7. PubMed DOI

Tkachenko A., Ashar H.R., Meloni A.M., Sandberg A.A., Chada K.K. Misexpression of disrupted HMGI architectural factors activates alternative pathways of tumorigenesis. Cancer Res. 1997;57:2276–2280. PubMed

Mansoori B., Mohammadi A., Ditzel H.J., Duijf P.H.G., Khaze V., Gjerstorff M.F., Baradaran B. HMGA2 as a Critical Regulator in Cancer Development. Genes. 2021;12:269. doi: 10.3390/genes12020269. PubMed DOI PMC

De Martino M., Fusco A., Esposito F. HMGA and Cancer: A Review on Patent Literatures. Recent Pat. Anti-Cancer Drug Discov. 2019;14:258–267. doi: 10.2174/1574892814666190919152001. PubMed DOI

Tessari M.A., Gostissa M., Altamura S., Sgarra R., Rustighi A., Salvagno C., Caretti G., Imbriano C., Mantovani R., Del Sal G., et al. Transcriptional activation of the cyclin A gene by the architectural transcription factor HMGA2. Mol. Cell. Biol. 2003;23:9104–9116. doi: 10.1128/MCB.23.24.9104-9116.2003. PubMed DOI PMC

Klemke M., Muller M.H., Wosniok W., Markowski D.N., Nimzyk R., Helmke B.M., Bullerdiek J. Correlated expression of HMGA2 and PLAG1 in thyroid tumors, uterine leiomyomas and experimental models. PLoS ONE. 2014;9:e88126. doi: 10.1371/journal.pone.0088126. PubMed DOI PMC

Andersson M.K., Aman P., Stenman G. IGF2/IGF1R Signaling as a Therapeutic Target in MYB-Positive Adenoid Cystic Carcinomas and Other Fusion Gen.ne-Driven Tumors. Cells. 2019;8:913. doi: 10.3390/cells8080913. PubMed DOI PMC

Drier Y., Cotton M.J., Williamson K.E., Gillespie S.M., Ryan R.J., Kluk M.J., Carey C.D., Rodig S.J., Sholl L.M., Afrogheh A.H., et al. An oncogenic MYB feedback loop drives alternate cell fates in adenoid cystic carcinoma. Nat. Genet. 2016;48:265–272. doi: 10.1038/ng.3502. PubMed DOI PMC

Sun L., Petrone J.S., McNulty S.N., Evenson M.J., Zhu X., Robinson J.A., Chernock R.D., Duncavage E.J., Pfeifer J.D. Comparison of gene fusion detection methods in salivary gland tumors. Hum. Pathol. 2022;123:1–10. doi: 10.1016/j.humpath.2022.02.002. PubMed DOI

Agaimy A., Ihrler S., Baněčková M., Costés Martineau V., Mantsopoulos K., Hartmann A., Iro H., Stoehr R., Skálová A. HMGA2-WIF1 Rearrangements Characterize a Distinctive Subset of Salivary Pleomorphic Adenomas With Prominent Trabecular (Canalicular Adenoma-like) Morphology. Am. J. Surg. Pathol. 2022;46:190–199. doi: 10.1097/PAS.0000000000001783. PubMed DOI

Wasserman J.K., Dickson B.C., Smith A., Swanson D., Purgina B.M., Weinreb I. Metastasizing Pleomorphic Adenoma: Recurrent PLAG1/HMGA2 Rearrangements and Identification of a Novel HMGA2-TMTC2 Fusion. Am. J. Surg. Pathol. 2019;43:1145–1151. doi: 10.1097/PAS.0000000000001280. PubMed DOI

Queimado L., Lopes C.S., Reis A.M. WIF1, an inhibitor of the Wnt pathway, is rearranged in salivary gland tumors. Genes Chromosomes Cancer. 2007;46:215–225. doi: 10.1002/gcc.20402. PubMed DOI

Mayr C., Hemann M.T., Bartel D.P. Disrupting the pairing between let-7 and Hmga2 enhances oncogenic transformation. Science. 2007;315:1576–1579. doi: 10.1126/science.1137999. PubMed DOI PMC

Abi Habib W., Brioude F., Edouard T., Bennett J.T., Lienhardt-Roussie A., Tixier F., Salem J., Yuen T., Azzi S., Le Bouc Y., et al. Genetic disruption of the oncogenic HMGA2-PLAG1-IGF2 pathway causes fetal growth restriction. Genet. Med. 2018;20:250–258. doi: 10.1038/gim.2017.105. PubMed DOI PMC

Gicquel C., Rossignol S., Cabrol S., Houang M., Steunou V., Barbu V., Danton F., Thibaud N., Le Merrer M., Burglen L., et al. Epimutation of the telomeric imprinting center region on chromosome 11p15 in Silver-Russell syndrome. Nat. Genet. 2005;37:1003–1007. doi: 10.1038/ng1629. PubMed DOI

Azzi S., Abi Habib W., Netchine I. Beckwith-Wiedemann and Russell-Silver Syndromes: From new molecular insights to the comprehension of imprinting regulation. Curr. Opin. Endocrinol. Diabetes Obes. 2014;21:30–38. doi: 10.1097/MED.0000000000000037. PubMed DOI

Leszinski G.S., Warncke K., Hoefele J., Wagner M. A case report and review of the literature indicate that HMGA2 should be added as a disease gene for Silver-Russell syndrome. Gene. 2018;663:110–114. doi: 10.1016/j.gene.2018.04.027. PubMed DOI

Vado Y., Pereda A., Llano-Rivas I., Gorria-Redondo N., Diez I., Perez de Nanclares G. Novel Variant in PLAG1 in a Familial Case with Silver-Russell Syndrome Suspicion. Genes. 2020;11:1461. doi: 10.3390/genes11121461. PubMed DOI PMC

Psychogios G., Bohr C., Constantinidis J., Canis M., Vander Poorten V., Plzak J., Knopf A., Betz C., Guntinas-Lichius O., Zenk J. Review of surgical techniques and guide for decision making in the treatment of benign parotid tumors. Eur. Arch. Otorhinolaryngol. 2021;278:15–29. doi: 10.1007/s00405-020-06250-x. PubMed DOI

Rooker S.A., Van Abel K.M., Yin L.X., Nagelschneider A.A., Price D.L., Olsen K.D., Janus J.R., Kasperbauer J.L., Moore E.J. Risk factors for subsequent recurrence after surgical treatment of recurrent pleomorphic adenoma of the parotid gland. Head Neck. 2021;43:1088–1096. doi: 10.1002/hed.26570. PubMed DOI

Alzumaili B., Xu B., Saliba M., Abuhashem A., Ganly I., Ghossein R., Katabi N. Clinicopathologic Characteristics and Prognostic Factors of Primary and Recurrent Pleomorphic Adenoma: A Single Institution Retrospective Study of 705 Cases. Am. J. Surg. Pathol. 2022;46:854–862. doi: 10.1097/PAS.0000000000001837. PubMed DOI PMC

von Holstein S.L., Fehr A., Persson M., Nickelsen M., Therkildsen M.H., Prause J.U., Heegaard S., Stenman G. Lacrimal gland pleomorphic adenoma and carcinoma ex pleomorphic adenoma: Genomic profiles, gene fusions, and clinical characteristics. Ophthalmology. 2014;121:1125–1133. doi: 10.1016/j.ophtha.2013.11.037. PubMed DOI

Asahina M., Saito T., Hayashi T., Fukumura Y., Mitani K., Yao T. Clinicopathological effect of PLAG1 fusion genes in pleomorphic adenoma and carcinoma ex pleomorphic adenoma with special emphasis on histological features. Histopathology. 2019;74:514–525. doi: 10.1111/his.13759. PubMed DOI

Katabi N., Xu B., Jungbluth A.A., Zhang L., Shao S.Y., Lane J., Ghossein R., Antonescu C.R. PLAG1 immunohistochemistry is a sensitive marker for pleomorphic adenoma: A comparative study with PLAG1 genetic abnormalities. Histopathology. 2018;72:285–293. doi: 10.1111/his.13341. PubMed DOI PMC

Bahrami A., Dalton J.D., Shivakumar B., Krane J.F. PLAG1 alteration in carcinoma ex pleomorphic adenoma: Immunohistochemical and fluorescence in situ hybridization studies of 22 cases. Head Neck Pathol. 2012;6:328–335. doi: 10.1007/s12105-012-0353-8. PubMed DOI PMC

Rotellini M., Palomba A., Baroni G., Franchi A. Diagnostic utility of PLAG1 immunohistochemical determination in salivary gland tumors. Appl. Immunohistochem. Mol. Morphol. 2014;22:390–394. doi: 10.1097/PAI.0b013e3182936ea7. PubMed DOI

Matsuyama A., Hisaoka M., Nagao Y., Hashimoto H. Aberrant PLAG1 expression in pleomorphic adenomas of the salivary gland: A molecular genetic and immunohistochemical study. Virchows Arch. Int. J. Pathol. 2011;458:583–592. doi: 10.1007/s00428-011-1063-4. PubMed DOI

Katabi N., Ghossein R., Ho A., Dogan S., Zhang L., Sung Y.S., Antonescu C.R. Consistent PLAG1 and HMGA2 abnormalities distinguish carcinoma ex-pleomorphic adenoma from its de novo counterparts. Hum. Pathol. 2015;46:26–33. doi: 10.1016/j.humpath.2014.08.017. PubMed DOI PMC

Pareja F., Da Cruz Paula A., Gularte-Mérida R., Vahdatinia M., Li A., Geyer F.C., da Silva E.M., Nanjangud G., Wen H.Y., Varga Z., et al. Pleomorphic adenomas and mucoepidermoid carcinomas of the breast are underpinned by fusion genes. NPJ Breast Cancer. 2020;6:20. doi: 10.1038/s41523-020-0164-0. PubMed DOI PMC

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Molecular pathology in diagnosis and prognostication of head and neck tumors

. 2024 Feb ; 484 (2) : 215-231. [epub] 20240113

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...