Nootropics as Cognitive Enhancers: Types, Dosage and Side Effects of Smart Drugs

. 2022 Aug 17 ; 14 (16) : . [epub] 20220817

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid36014874

Nootropics, also known as "smart drugs" are a diverse group of medicinal substances whose action improves human thinking, learning, and memory, especially in cases where these functions are impaired. This review provides an up-to-date overview of the potential effectiveness and importance of nootropics. Based on their nature and their effects, this heterogeneous group of drugs has been divided into four subgroups: classical nootropic compounds, substances increasing brain metabolism, cholinergic, and plants and their extracts with nootropic effects. Each subgroup of nootropics contains several main representatives, and for each one, its uses, indications, experimental treatments, dosage, and possible side effects and contraindications are discussed. For the nootropic plant extracts, there is also a brief description of each plant representative, its occurrence, history, and chemical composition of the medicinal part. Lastly, specific recommendations regarding the use of nootropics by both ill and healthy individuals are summarized.

Zobrazit více v PubMed

Giurgea C., Salama M. Nootropic drugs. Prog. Neuro-Psychopharmacol. 1977;1:235–247. doi: 10.1016/0364-7722(77)90046-7. DOI

Schifano F., Catalani V., Sharif S., Napoletano F., Corkery J.M., Arillotta D., Fergus S., Vento A., Guirguis A. Benefits and Harms of ‘Smart Drugs’ (Nootropics) in Healthy Individuals. Drugs. 2022;82:633–647. doi: 10.1007/s40265-022-01701-7. PubMed DOI

Vyas S., Kothari S., Kachhwaha S. Nootropic medicinal plants: Therapeutic alternatives for Alzheimer’s disease. J. Herb. Med. 2019;17:100291. doi: 10.1016/j.hermed.2019.100291. DOI

Ihl R., Kretschmar C. Nootropic drug evaluation for general practice. Nervenarzt. 1997;68:853–861. doi: 10.1007/s001150050207. PubMed DOI

Chaudhari K.S., Tiwari N.R., Tiwari R.R., Sharma R.S. Neurocognitive Effect of Nootropic Drug Brahmi (Bacopa monnieri) in Alzheimer’s Disease. Ann. Neurosci. 2017;24:111–122. doi: 10.1159/000475900. PubMed DOI PMC

Benninghoff J., Perneczky R. Anti-Dementia Medications and Anti-Alzheimer’s Disease Drugs: Side Effects, Contraindications, and Interactions. In: Riederer P., Laux G., Nagatsu T., Le W., Riederer C., editors. NeuroPsychopharmacotherapy. Springer International Publishing; Cham, Switzerland: 2022. pp. 1–10. DOI

Dormehl I.C., Jordaan B., Oliver D.W., Croft S. SPECT monitoring of improved cerebral blood flow during long-term treatment of elderly patients with nootropic drugs. Clin. Nucl. Med. 1999;24:29–34. doi: 10.1097/00003072-199901000-00007. PubMed DOI

Napoletano F., Schifano F., Corkery J.M., Guirguis A., Arillotta D., Zangani C., Vento A. The Psychonauts’ World of Cognitive Enhancers. Front. Psychiatry. 2020;11:546796. doi: 10.3389/fpsyt.2020.546796. PubMed DOI PMC

Malik R., Sangwan A., Saihgal R., Paul Jindal D., Piplani P. Towards better brain management: Nootropics. Curr. Med. Chem. 2007;14:123–131. doi: 10.2174/092986707779313408. PubMed DOI

Giurgea C. The “nootropic” approach to the pharmacology of the integrative activity of the brain 1, 2. Integr. Psychol. Behav. Sci. 1973;8:108–115. doi: 10.1007/BF03000311. PubMed DOI

Giurgea C. Pharmacology of integrative activity of the brain. Attempt at nootropic concept in psychopharmacology. Actual. Pharm. 1972;25:115–156. PubMed

Zhao X., Yeh J.Z., Narahashi T. Post-Stroke Dementia: Nootropic Drug Modulation of Neuronal Nicotinic Acetylcholine Receptors. Ann. N. Y. Acad. Sci. 2001;939:179–186. doi: 10.1111/j.1749-6632.2001.tb03624.x. PubMed DOI

Zhao X., Kuryatov A., Lindstrom J.M., Yeh J.Z., Narahashi T. Nootropic Drug Modulation of Neuronal Nicotinic Acetylcholine Receptors in Rat Cortical Neurons. Mol. Pharmacol. 2001;59:674–683. doi: 10.1124/mol.59.4.674. PubMed DOI

Suliman N.A., Mat Taib C.N., Mohd Moklas M.A., Adenan M.I., Hidayat Baharuldin M.T., Basir R. Establishing Natural Nootropics: Recent Molecular Enhancement Influenced by Natural Nootropic. Evid.-Based Complement. Altern. Med. 2016;2016:4391375. doi: 10.1155/2016/4391375. PubMed DOI PMC

Froestl W., Muhs A., Pfeifer A. Cognitive enhancers (nootropics). Part 1: Drugs interacting with receptors. J. Alzheimer’s Dis. 2012;32:793–887. doi: 10.3233/JAD-2012-121186. PubMed DOI

Mali A., Shenoy P., Bandawane D., Nipate S., Chaudhari P. Screening of nootropics: An overview on preclinical evaluation techniques. Int. J. Pharm. 2012;2:159–180.

Joshi Pranav C. A review on natural memory enhancers (Nootropics) Unique J. Eng. Adv. Sci. 2013;1:8–18.

Chekman I., Belenichev I., Demchenko A., Bobrova V., Kucherenko L., Gorchakova N., Bukhtiyarova N. Nootropics in comlex therapy of chronic cerebral ischemia. Sci. Innov. 2014;10:56–68. doi: 10.15407/scine10.04.056. DOI

McDaniel M.A., Maier S.F., Einstein G.O. “Brain-specific” nutrients: A memory cure? Nutrition. 2003;19:957–975. doi: 10.1016/S0899-9007(03)00024-8. PubMed DOI

Ishchenko M.M., Ostrovskaia O.S. The effect of combined drug treatment on rheologic properties of the blood in patients with disordered circulatory encephalopathy. Vrachebnoe Delo. 1990;3:58–60. PubMed

Nicholson C.D. Pharmacology of nootropics and metabolically active compounds in relation to their use in dementia. Psychopharmacology. 1990;101:147–159. doi: 10.1007/BF02244119. PubMed DOI

Pepeu G., Spignoli G. Nootropic drugs and brain cholinergic mechanisms. Prog. Neuropsychopharmacol. Biol. Psychiatry. 1989;13:S77–S88. doi: 10.1016/0278-5846(89)90112-7. PubMed DOI

Rainer M., Mucke H.A., Chwatal K., Havelec L. Alcohol-induced organic cerebral psychosyndromes: Partial reversal of cognitive impairments assisted by dihydroergocristine. Psychopharmacology. 1996;127:365–369. doi: 10.1007/BF02806016. PubMed DOI

Benešová O. Neuropathobiology of senile dementia and mechanism of action of nootropic drugs. Drugs Aging. 1994;4:285–303. doi: 10.2165/00002512-199404040-00002. PubMed DOI

Wu C.-Y., Hu H.-Y., Chow L.-H., Chou Y.-J., Huang N., Wang P.-N., Li C.-P. The effects of anti-dementia and nootropic treatments on the mortality of patients with dementia: A population-based cohort study in Taiwan. PLoS ONE. 2015;10:e0130993. doi: 10.1371/journal.pone.0130993. PubMed DOI PMC

Finney-Brown T. Schisandra, Rhodiola and Eleuthrococcus as nootropic agents. Aust. J. Herb. Med. 2010;22:64–65.

Panossian A., Wikman G. Effects of Adaptogens on the Central Nervous System and the Molecular Mechanisms Associated with Their Stress—Protective Activity. Pharmaceuticals. 2010;3:188–224. doi: 10.3390/ph3010188. PubMed DOI PMC

Zavadenko N., NIu S., Rumiantseva M., Ovchinnikova A. The use of instenon in children with minimal brain dysfunction. Zhurnal Nevrol. Psikhiatrii Im. SS Korsakova. 2002;102:29–35. PubMed

Colucci L., Bosco M., Ziello A.R., Rea R., Amenta F., Fasanaro A.M. Effectiveness of nootropic drugs with cholinergic activity in treatment of cognitive deficit: A review. J. Exp. Pharmacol. 2012;4:163–172. doi: 10.2147/JEP.S35326. PubMed DOI PMC

Zokiriv M. Correction of cognitive impairments in patients with HIV-associated encephalopathy. J. Theor. Appl. Sci. 2021;7:62–66. doi: 10.15863/TAS.2021.07.99.15. DOI

Kupats E., Vrublevska J., Zvejniece B., Vavers E., Stelfa G., Zvejniece L., Dambrova M. Safety and tolerability of the anxiolytic and nootropic drug phenibut: A systematic review of clinical trials and case reports. Pharmacopsychiatry. 2020;53:201–208. doi: 10.1055/a-1151-5017. PubMed DOI

Voronina T.A. Alzheimer Disease. Springer; Berlin/Heidelberg, Germany: 1994. Nootropic drugs in Alzheimer disease treatment. New pharmacological strategies; pp. 265–269.

Noorbala A., Akhondzadeh S., Davari-Ashtiani R., Amini-Nooshabadi H. Piracetam in the treatment of schizophrenia: Implications for the glutamate hypothesis of schizophrenia. J. Clin. Pharm. Ther. 1999;24:369–374. doi: 10.1046/j.1365-2710.1999.00238.x. PubMed DOI

Sukhotina N., Konovalova V., Kryzhanovskaia I., Kupriianova T. Efficacy of pantogam in the treatment of hyperkinetic disorders in children. Zhurnal Nevrol. Psikhiatrii Im. SS Korsakova. 2010;110:24–28. PubMed

Sarris J., Kean J., Schweitzer I., Lake J. Complementary medicines (herbal and nutritional products) in the treatment of Attention Deficit Hyperactivity Disorder (ADHD): A systematic review of the evidence. Complement. Ther. Med. 2011;19:216–227. doi: 10.1016/j.ctim.2011.06.007. PubMed DOI

Teasdale G., Jennett B. Assessment of Coma and Impaired Consciousness: A Practical Scale. Lancet. 1974;304:81–84. doi: 10.1016/S0140-6736(74)91639-0. PubMed DOI

Canterbury R.J., Lloyd E. Smart drugs: Implications of student use. J. Prim. Prev. 1994;14:197–207. doi: 10.1007/BF01324593. PubMed DOI

Wagner H., Ulrich-Merzenich G. Synergy research: Approaching a new generation of phytopharmaceuticals. Phytomedicine. 2009;16:97–110. doi: 10.1016/j.phymed.2008.12.018. PubMed DOI

Caesar L.K., Cech N.B. Synergy and antagonism in natural product extracts: When 1 + 1 does not equal 2. Nat. Prod. Rep. 2019;36:869–888. doi: 10.1039/C9NP00011A. PubMed DOI PMC

Balunas M.J., Kinghorn A.D. Drug discovery from medicinal plants. Life Sci. 2005;78:431–441. doi: 10.1016/j.lfs.2005.09.012. PubMed DOI

Petrovska B.B. Historical review of medicinal plants’ usage. Pharmacogn. Rev. 2012;6:1–5. doi: 10.4103/0973-7847.95849. PubMed DOI PMC

Malykh A.G., Sadaie M.R. Piracetam and Piracetam-Like Drugs. Drugs. 2010;70:287–312. doi: 10.2165/11319230-000000000-00000. PubMed DOI

Chary M., Yi D., Manini A.F. Candyflipping and Other Combinations: Identifying Drug–Drug Combinations from an Online Forum. Front. Psychiatry. 2018;9:135. doi: 10.3389/fpsyt.2018.00135. PubMed DOI PMC

Elks J. The Dictionary of Drugs: Chemical Data: Chemical Data, Structures and Bibliographies. Springer; Berlin/Heidelberg, Germany: 2014.

Malanga G., Aguiar M.B., Martinez H.D., Puntarulo S. New insights on dimethylaminoethanol (DMAE) features as a free radical scavenger. Drug Metab. Lett. 2012;6:54–59. doi: 10.2174/187231212800229282. PubMed DOI

Blin O., Audebert C., Pitel S., Kaladjian A., Casse-Perrot C., Zaim M., Micallef J., Tisne-Versailles J., Sokoloff P., Chopin P., et al. Effects of dimethylaminoethanol pyroglutamate (DMAE p-Glu) against memory deficits induced by scopolamine: Evidence from preclinical and clinical studies. Psychopharmacology. 2009;207:201–212. doi: 10.1007/s00213-009-1648-7. PubMed DOI

Levin E.D., Rose J.E., Abood L. Effects of nicotinic dimethylaminoethyl esters on working memory performance of rats in the radial-arm maze. Pharmacol. Biochem. Behav. 1995;51:369–373. doi: 10.1016/0091-3057(94)00406-9. PubMed DOI

Dimpfel W., Wedekind W., Keplinger I. Efficacy of dimethylaminoethanol (DMAE) containing vitamin-mineral drug combination on EEG patterns in the presence of different emotional states. Eur. J. Med. Res. 2003;8:183–191. PubMed

Sergio W. Use of DMAE (2-dimethylaminoethanol) in the induction of lucid dreams. Med. Hypotheses. 1988;26:255–257. doi: 10.1016/0306-9877(88)90129-6. PubMed DOI

Baumgaertel A. Alternative and Controversial Treatments for Attention-Deficit/Hyperactivity Disorder. Pediatr. Clin. N. Am. 1999;46:977–992. doi: 10.1016/S0031-3955(05)70167-X. PubMed DOI

Lewis J.A., Young R. Deanol and methylphenidate in minimal brain dysfunction. Clin. Pharm. Therap. 1975;17:534–540. doi: 10.1002/cpt1975175534. PubMed DOI

Casey D.E. Mood alterations during deanol therapy. Psychopharmacology. 1979;62:187–191. doi: 10.1007/BF00427135. PubMed DOI

Ferris S.H., Sathananthan G., Gershon S., Clark C. Senile Dementia: Treatment with Deanol. J. Am. Geriatr. Soc. 1977;25:241–244. doi: 10.1111/j.1532-5415.1977.tb00407.x. PubMed DOI

Wood P.L., Péloquin A. Increases in choline levels in rat brain elicited by meclofenoxate. Neuropharmacology. 1982;21:349–354. doi: 10.1016/0028-3908(82)90099-5. PubMed DOI

Liao Y., Wang R., Tang X.-C. Centrophenoxine improves chronic cerebral ischemia induced cognitive deficit and neuronal degeneration in rats. Acta Pharmacol. Sin. 2004;25:1590–1596. PubMed

Bakhtogarimov I.R., Kudryavtseva A.V., Krasnov G.S., Gladysh N.S., Volodin V.V., Kudryavtsev A.A., Bulavkina E.V., Goncharova M.A., Ledyaeva V.S., Pastukhov I.S., et al. The Effect of Meclofenoxate on the Transcriptome of Aging Brain of Nothobranchius guentheri Annual Killifish. Int. J. Mol. Sci. 2022;23:2491. doi: 10.3390/ijms23052491. PubMed DOI PMC

Marcer D., Hopkins S.M. The Differential Effects of Meclofenoxate on Memory Loss in the Elderly. Age Ageing. 1977;6:123–131. doi: 10.1093/ageing/6.2.123. PubMed DOI

Izumi K., Tominaga H., Koja T., Nomoto M., Shimizu T., Sonoda H., Imamura K., Igata A., Fukuda T. Meclofenoxate therapy in tardive dyskinesia: A preliminary report. Biol. Psychiatry. 1986;21:151–160. doi: 10.1016/0006-3223(86)90142-3. PubMed DOI

Popa R., Schneider F., Mihalas G., Stefaniga P., Mihalas I.G., Maties R., Mateescu R. Antagonic-stress superiority versus meclofenoxate in gerontopsychiatry (alzheimer type dementia) Arch. Gerontol. Geriatr. 1994;19:197–206. doi: 10.1016/S0167-4943(05)80065-2. PubMed DOI

Oliver J.E., Restell M. Serial Testing in Assessing the Effect of Meclofenoxate on Patients with Memory Defects. Br. J. Psychiatry. 1967;113:219–222. doi: 10.1192/bjp.113.495.219. PubMed DOI

Winblad B., Fioravanti M., Dolezal T., Logina I., Milanov I.G., Popescu D.C., Solomon A. Therapeutic Use of Nicergoline. Clin. Drug Investig. 2008;28:533–552. doi: 10.2165/00044011-200828090-00001. PubMed DOI

Winblad B., Carfagna N., Bonura L., Rossini B.M., Wong E.H.F., Battaglia A. Nicergoline in Dementia. CNS Drugs. 2000;14:267–287. doi: 10.2165/00023210-200014040-00003. DOI

Caraci F., Chisari M., Frasca G., Canonico P.L., Battaglia A., Calafiore M., Battaglia G., Bosco P., Nicoletti F., Copani A., et al. Nicergoline, a drug used for age-dependent cognitive impairment, protects cultured neurons against β-amyloid toxicity. Brain Res. 2005;1047:30–37. doi: 10.1016/j.brainres.2005.04.004. PubMed DOI

Giardino L., Giuliani A., Battaglia A., Carfagna N., Aloe L., Calzà L. Neuroprotection and aging of the cholinergic system: A role for the ergoline derivative nicergoline (Sermion®) Neuroscience. 2002;109:487–497. doi: 10.1016/S0306-4522(01)00470-5. PubMed DOI

Heitz C., Descombes J.-J., Miller R.C., Stoclet J.-C. α-adrenoceptor antagonistic and calcium antagonistic effects of nicergoline in the rat isolated aorta. Eur. J. Pharmacol. 1986;123:279–285. doi: 10.1016/0014-2999(86)90669-2. PubMed DOI

Molteni A., Nickerson P.A., Brownie A.C., Liu K. Effect on an ergoline derivate-nicergoline (Sermion) on methylandrostenediol-induced hypertension in the rat. Arch. Int. Pharmacodyn. Ther. 1980;247:119–134. PubMed

Tanaka M., Yoshida T., Okamoto K., Hirai S. Antioxidant properties of nicergoline; inhibition of brain auto-oxidation and superoxide production of neutrophils in rats. Neurosci. Lett. 1998;248:68–72. doi: 10.1016/S0304-3940(98)00310-3. PubMed DOI

Zang G., Fang L., Chen L., Wang C. Ameliorative effect of nicergoline on cognitive function through the PI3K/AKT signaling pathway in mouse models of Alzheimer’s disease. Mol. Med. Rep. 2018;17:7293–7300. doi: 10.3892/mmr.2018.8786. PubMed DOI

Iliff L.D., Boulay G.H.D., Marshall J., Russell R.W.R., Symon L. Effect of nicergoline on cerebral blood flow. J. Neurol. Neurosurg. Psychiatry. 1977;40:746–747. doi: 10.1136/jnnp.40.8.746. PubMed DOI PMC

Baskys A., Hou A.C. Vascular dementia: Pharmacological treatment approaches and perspectives. Clin. Interv. Aging. 2007;2:327–335. doi: 10.1016/j.exger.2012.07.002. PubMed DOI PMC

Kuznetsov V. The influence of nicergoline on cerebral, systemic and cardiac hemodynamics in patients who have had an ischemic stroke. Ageing Long. 2021;2:32–41. doi: 10.47855/jal9020-2021-1-3. DOI

Saletu B., Paulus E., Linzmayer L., Anderer P., Semlitsch H.V., Grünberger J., Wicke L., Neuhold A., Podreka I. Nicergoline in senile dementia of alzheimer type and multi-infarct dementia: A double-blind, placebo-controlled, clinical and EEG/ERP mapping study. Psychopharmacology. 1995;117:385–395. doi: 10.1007/BF02246209. PubMed DOI

Fioravanti M., Nakashima T., Xu J., Garg A. A systematic review and meta-analysis assessing adverse event profile and tolerability of nicergoline. BMJ Open. 2014;4:e005090. doi: 10.1136/bmjopen-2014-005090. PubMed DOI PMC

Klamkam P., Pagcharoenpol R., Treesaranuwattana T., Silpsrikul P., Jaruchinda P., Wasuwat P., Suwannahitatorn P. A clinical trial of nicergoline to prevent temporary threshold shift. Laryngoscope Investig. Otolaryngol. 2022;7:515–522. doi: 10.1002/lio2.746. PubMed DOI PMC

Gouliaev A.H., Senning A. Piracetam and other structurally related nootropics. Brain Res. Rev. 1994;19:180–222. doi: 10.1016/0165-0173(94)90011-6. PubMed DOI

Stoll L., Schubert T., Müller W.E. Age-related deficits of central muscarinic cholinergic receptor function in the mouse: Partial restoration by chronic piracetam treatment. Neurobiol. Aging. 1992;13:39–44. doi: 10.1016/0197-4580(92)90006-J. PubMed DOI

Scheuer K., Rostock A., Bartsch R., Müller W. Piracetam improves cognitive performance by restoring neurochemical deficits of the aged rat brain. Pharmacopsychiatry. 1999;32:10–16. doi: 10.1055/s-2007-979231. PubMed DOI

Nickolson V.J., Wolthuis O.L. Effect of the acquisition-enhancing drug ptracetam on rat cerebral energy metabolism. Comparison with naftidrofuryl and methamphetamine. Biochem. Pharmacol. 1976;25:2241–2244. doi: 10.1016/0006-2952(76)90004-6. PubMed DOI

Tacconi M.T., Wurtman R.J. Piracetam: Physiological disposition and mechanism of action. Adv. Neurol. 1986;43:675–685. PubMed

Grau M., Montero J.L., Balasch J. Effect of piracetam on electrocorticogram and local cerebral glucose utilization in the rat. Vasc. Pharmacol. 1987;18:205–211. doi: 10.1016/0306-3623(87)90252-7. PubMed DOI

Brandao F., Paula-Barbosa M.M., Cadete-Leite A. Piracetam impedes hippocampal neuronal loss during withdrawal after chronic alcohol intake. Alcohol. 1995;12:279–288. doi: 10.1016/0741-8329(94)00107-O. PubMed DOI

Brandão F., Cadete-Leite A., Andrade J.P., Madeira M.D., Paula-Barbosa M.M. Piracetam promotes mossy fiber synaptic reorganization in rats withdrawn from alcohol. Alcohol. 1996;13:239–249. doi: 10.1016/0741-8329(95)02050-0. PubMed DOI

Winnicka K., Tomasiak M., Bielawska A. Piracetam-an old drug with novel properties. Acta Pol. Pharm. 2005;62:405–409. PubMed

Müller W., Eckert G., Eckert A. Piracetam: Novelty in a unique mode of action. Pharmacopsychiatry. 1999;32:2–9. doi: 10.1055/s-2007-979230. PubMed DOI

Wilsher C.R., Bennett D., Chase C.H., Conners C.K., Diianni M., Feagans L., Hanvik L.J., Helfgott E., Koplewicz H., Overby P. Piracetam and dyslexia: Effects on reading tests. J. Clin. Psychopharmacol. 1987;7:230–237. doi: 10.1097/00004714-198708000-00004. PubMed DOI

Croisile B., Trillet M., Fondarai J., Laurent B., Mauguière F., Billardon M. Long-term and high-dose piracetam treatment of Alzheimer’s disease. Neurology. 1993;43:301. doi: 10.1212/WNL.43.2.301. PubMed DOI

Growdon J.H., Corkin S., Huff F.J., Rosen T.J. Piracetam combined with lecithin in the treatment of Alzheimer’s disease. Neurobiol. Aging. 1986;7:269–276. doi: 10.1016/0197-4580(86)90007-2. PubMed DOI

Tanaka H., Yamazaki K., Hirata K. Effects of nootropic drugs for demented patients—A study using LORETA. Int. Congr. Ser. 2002;1232:605–611. doi: 10.1016/S0531-5131(01)00844-5. DOI

Winblad B. Piracetam: A Review of Pharmacological Properties and Clinical Uses. CNS Drug Rev. 2005;11:169–182. doi: 10.1111/j.1527-3458.2005.tb00268.x. PubMed DOI PMC

Singh A., Purohit V. A critical review of pyritinol. Drugs Ther. Perspect. 2019;35:278–282. doi: 10.1007/s40267-019-00623-x. DOI

Wojszel Z.B. Nootropics (Piracetam, Pyritinol, Co-dergocrine, Meclophenoxat, Pentoxifylline, Nimodipine) In: Riederer P., Laux G., Nagatsu T., Le W., Riederer C., editors. NeuroPsychopharmacotherapy. Springer International Publishing; Cham, Switzerland: 2020. pp. 1–45. DOI

Toledano A., Bentura M.L. Pyritinol facilitates the recovery of cortical cholinergic deficits caused by nucleus basalis lesions. J. Neural Transm. Gen. Sect. 1994;7:195–209. doi: 10.1007/BF02253438. PubMed DOI

Martin K.J., Vyas S. Increase in acetylcholine concentrations in the brain of ‘old’ rats following treatment with pyrithioxin (Encephabol) Br. J. Pharmacol. 1987;90:561–565. doi: 10.1111/j.1476-5381.1987.tb11206.x. PubMed DOI PMC

Jiménez-Andrade G.Y., Reyes-García G., Sereno G., Ceballos-Reyes G., Vidal-Cantú G.C., Granados-Soto V. Pyritinol reduces nociception and oxidative stress in diabetic rats. Eur. J. Pharmacol. 2008;590:170–176. doi: 10.1016/j.ejphar.2008.06.050. PubMed DOI

Magnusson K., Brim B., Das S. Selective vulnerabilities of N-methyl-D-aspartate (NMDA) receptors during brain aging. Front. Aging Neurosci. 2010;2:11. doi: 10.3389/fnagi.2010.00011. PubMed DOI PMC

Jaiswal A.K., Upadhyay S.N., Bhattacharya S.K. Effect of pyritinol, a cerebral protector, on learning and memory deficits induced by prenatal undernutrition and environmental impoverishment in young rats. Indian J. Exp. Biol. 1990;28:609–615. PubMed

Hindmarch I., Coleston D.M., Kerr J.S. Psychopharmacological Effects of Pyritinol in Normal Volunteers. Neuropsychobiology. 1990;24:159–164. doi: 10.1159/000119478. PubMed DOI

Alkuraishy H.M., Al-Gareeb A.I., Albuhadilly A.K. Vinpocetine and Pyritinol: A New Model for Blood Rheological Modulation in Cerebrovascular Disorders—A Randomized Controlled Clinical Study. Biomed. Res. Int. 2014;2014:324307. doi: 10.1155/2014/324307. PubMed DOI PMC

Nachbar F., Korting H.C., Vogl T. Erythema multiforme-like Eruption in Association with Severe Headache following Pyritinol. Dermatology. 1993;187:42–46. doi: 10.1159/000247196. PubMed DOI

Straumann A., Bauer M., Pichler W.J., Pirovino M. Acute pancreatitis due to pyritinol: An immune-mediated phenomenon. Gastroenterology. 1998;115:452–454. doi: 10.1016/S0016-5085(98)70212-4. PubMed DOI

Leopold M. Pyritinol. In: Aronson J.K., editor. Meyler’s Side Effects of Drugs. 16th ed. Elsevier; Oxford, UK: 2016. pp. 1067–1068. DOI

Barradell L.B., Brogden R.N. Oral Naftidrofuryl. Drugs Aging. 1996;8:299–322. doi: 10.2165/00002512-199608040-00005. PubMed DOI

Goldsmith D.R., Wellington K. Naftidrofuryl. Drugs Aging. 2005;22:967–977. doi: 10.2165/00002512-200522110-00006. PubMed DOI

Kiss B., Kárpáti E. Mechanism of action of vinpocetine. Acta Pharm. Hung. 1996;66:213–224. PubMed

Dubey A., Kumar N., Mishra A., Singh Y., Tiwari M. Review on Vinpocetine. Int. J. Pharm. Life Sci. 2020;11:6590–6597.

Sharma N., Sharma V.K., Manikyam H.K., Krishna A.B. Ergot alkaloids: A review on therapeutic applications. Eur. J. Med. Plants. 2016;14:1–17. doi: 10.9734/EJMP/2016/25975. DOI

Lörincz C., Szász K., Kisfaludy L. The synthesis of ethyl apovincaminate. Arzneimittelforschung. 1976;26:1907. PubMed

Hagiwara M., Endo T., Hidaka H. Effects of vinpocetine on cyclic nucleotide metabolism in vascular smooth muscle. Biochem. Pharmacol. 1984;33:453–457. doi: 10.1016/0006-2952(84)90240-5. PubMed DOI

Molnár P., Erdő S.L. Vinpocetine is as potent as phenytoin to block voltage-gated Na+ channels in rat cortical neurons. Eur. J. Pharmacol. 1995;273:303–306. doi: 10.1016/0014-2999(94)00755-V. PubMed DOI

Erdõ S.L., Molnár P., Lakics V., Bence J.Z., Tömösközi Z. Vincamine and vincanol are potent blockers of voltage-gated Na+ channels. Eur. J. Pharmacol. 1996;314:69–73. doi: 10.1016/S0014-2999(96)00542-0. PubMed DOI

Chiu P.J.S., Tetzloff G., Ahn H.-S., Sybertz E.J. Comparative Effects of Vinpocetine and 8-Br-Cyclic GMP on the Contraction and 45Ca-Fluxes in the Rabbit Aorta. Am. J. Hypertens. 1988;1:262–268. doi: 10.1093/ajh/1.3.262. PubMed DOI

Milusheva E., Sperlágh B., Kiss B., Szporny L., Pásztor E., Papasova M., Vizi E.S. Inhibitory effect of hypoxic condition on acetylcholine release is partly due to the effect of adenosine released from the tissue. Brain Res. Bull. 1990;24:369–373. doi: 10.1016/0361-9230(90)90091-D. PubMed DOI

Miyamoto M., Murphy T.H., Schnaar R.L., Coyle J.T. Antioxidants protect against glutamate-induced cytotoxicity in a neuronal cell line. J. Pharmacol. Exp. Ther. 1989;250:1132–1140. PubMed

Krieglstein J., Rischke R. Vinpocetine increases the neuroprotective effect of adenosine in vitro. Eur. J. Pharmacol. 1991;205:7–10. doi: 10.1016/0014-2999(91)90762-F. PubMed DOI

Patyar S., Prakash A., Modi M., Medhi B. Role of vinpocetine in cerebrovascular diseases. Pharmacol. Rep. 2011;63:618–628. doi: 10.1016/S1734-1140(11)70574-6. PubMed DOI

Li J., Chen F., Hu C., He L., Yan K., Zhou L., Pan W. Optimized Preparation of in Situ Forming Microparticles for the Parenteral Delivery of Vinpocetine. Chem. Pharm. Bull. 2008;56:796–801. doi: 10.1248/cpb.56.796. PubMed DOI

Vas Á., Gulyás B. Eburnamine derivatives and the brain. Med. Res. Rev. 2005;25:737–757. doi: 10.1002/med.20043. PubMed DOI

Willson C. Reference Module in Biomedical Sciences. Elsevier; Amsterdam, The Netherlands: 2015. Vinpocetine. DOI

Avula B., Chittiboyina A.G., Sagi S., Wang Y.-H., Wang M., Khan I.A., Cohen P.A. Identification and quantification of vinpocetine and picamilon in dietary supplements sold in the United States. Drug Test. Anal. 2016;8:334–343. doi: 10.1002/dta.1853. PubMed DOI

Cohen P.A. Vinpocetine: An Unapproved Drug Sold as a Dietary Supplement. Mayo Clin. Proc. 2015;90:1455. doi: 10.1016/j.mayocp.2015.07.008. PubMed DOI

Waidyanatha S., Toy H., South N., Gibbs S., Mutlu E., Burback B., McIntyre B.S., Catlin N. Systemic exposure of vinpocetine in pregnant Sprague Dawley rats following repeated oral exposure: An investigation of fetal transfer. Toxicol. Appl. Pharmacol. 2018;338:83–92. doi: 10.1016/j.taap.2017.11.011. PubMed DOI PMC

Louis J.-C. Effect of naftidrofuryl on metabolism and survival of cultured neurons. Neurochem. Res. 1989;14:1195–1201. doi: 10.1007/BF00965509. PubMed DOI

Meynaud A., Grand M., Fontaine L. Effect of naftidrofuryl upon energy metabolism of the brain. Arzneimittelforschung. 1973;23:1431–1436. PubMed

Toussaint O., Houbion A., Remacle J. Effects of modulations of the energetic metabolism on the mortality of cultured cells. Biochim. Biophys. Acta Bioenerg. 1994;1186:209–220. doi: 10.1016/0005-2728(94)90180-5. PubMed DOI

Barradas M.A., Stansby G., Hamilton G., Mikhailidis D.P. Effect of naftidrofuryl and aspirin on platelet aggregation in peripheral vascular disease. In Vivo. 1993;7:543–548. PubMed

Kirsten R., Erdeg B., Moxter D., Hesse K., Breidert M., Nelson K. Platelet aggregation after naftidrofuryl application in vitro and ex vivo. Int. J. Clin. Pharmacol. Ther. 1995;33:81–84. PubMed

Nabeshima T., Hiramatsu M., Niwa K., Fuji K., Kameyama T. Effect of naftidrofuryl oxalate on 5-HT2 receptors in mouse brain: Evaluation based on quantitative autoradiography and head-twitch response. Eur. J. Pharmacol. 1992;223:109–115. doi: 10.1016/0014-2999(92)94828-J. PubMed DOI

Hoyer D., Clarke D.E., Fozard J.R., Hartig P.R., Martin G.R., Mylecharane E.J., Saxena P.R., Humphrey P.P. International Union of Pharmacology classification of receptors for 5-hydroxytryptamine (Serotonin) Pharmacol. Rev. 1994;46:157–203. PubMed

Plotkine M., Massad L., Allix M., Boulu R.G. A new arterial thrombosis model to study antithrombotic agents: Efficacy of naftidrofuryl. Clin. Hemorheol. Microcirc. 1989;9:339–349. doi: 10.3233/CH-1989-9218. DOI

Kienbaum P., Braun M., Hohlfeld T., Weber A.A., Sarbia M., Schrör K. Antiatherosclerotic effects of oral naftidrofuryl in cholesterol-fed rabbits involve inhibition of neutrophil function. J. Cardiovasc. Pharmacol. 1995;25:774–781. doi: 10.1097/00005344-199505000-00013. PubMed DOI

Ogawa S.-i., Kameyama T., Nabeshima T. Naftidrofuryl oxalate, nootropic effects on the scopolamine- and the basal forebrain lesion-induced amnesia in rats. Pharmacol. Biochem. Behav. 1991;39:997–1002. doi: 10.1016/0091-3057(91)90065-A. PubMed DOI

Jung F., Kiesewetter H., Mrowietz C., Leipnitz G., Braun B., Wappler M., Scheffler P., Wenzel E. Hemorrheological, micro- and macrocirculatory effects of naftidrofuryl in an acute study: A randomized, placebo-controlled, double-blind individual comparison. Int. J. Clin. Pharmacol. Ther. Toxicol. 1987;25:507–514. PubMed

Shaw S.W.J., Johnson R.H. The Effect of Naftidrofuryl on the Metabolic Response to Exercise in Man. Acta Neurol. Scand. 1975;52:231–237. doi: 10.1111/j.1600-0404.1975.tb05777.x. PubMed DOI

De Backer T., Vander Stichele R., Lehert P., Van Bortel L. Naftidrofuryl for intermittent claudication: Meta-analysis based on individual patient data. BMJ. 2009;338:b603. doi: 10.1136/bmj.b603. PubMed DOI PMC

Yaman A., Yaman H. Complementary Medications (Statins, Nicergoline, Naftidrofuryl) in Dementia. In: Riederer P., Laux G., Nagatsu T., Le W., Riederer C., editors. NeuroPsychopharmacotherapy. Springer International Publishing; Cham, Switzerland: 2020. pp. 1–14. DOI

Möller H.J., Hartmann A., Kessler C., Rainer M., Brown T., Gamand S., Lehert P. Naftidrofuryl in the treatment of vascular dementia. Eur. Arch. Psychiatry Clin. Neurosci. 2001;251:247–254. doi: 10.1007/PL00007541. PubMed DOI

Cholongitas E., Papatheodoridis G.V., Mavrogiannaki A., Manesis E. Naftidrofuryl-induced liver injury. Am. J. Gastroenterol. 2003;98:1448–1450. doi: 10.1111/j.1572-0241.2003.07506.x. PubMed DOI

Stoll A., Hofmann A. Die Alkaloide der Ergotoxingruppe: Ergocristin, Ergokryptin und Ergocornin. (7. Mitteilung über Mutterkornalkaloide) Helv. Chim. Acta. 1943;26:1570–1601. doi: 10.1002/hlca.19430260522. DOI

Wilbrandt R. Treatment of Hypertension With Hydergine: A Review of 200 Cases. Angiology. 1953;4:183–194. doi: 10.1177/000331975300400301. PubMed DOI

Ammon R., Sharma R., Gambert S.R., Lal Gupta K. Hydergine revisited: A statistical analysis of studies showing efficacy in the treatment of cognitively impaired elderly. AGE. 1995;18:5–9. doi: 10.1007/BF02434076. DOI

Sticher O., Hamburger M. Albert Hofmann (1906–2008)–an Obituary. Planta Med. 2008;74:791–793. doi: 10.1055/s-2008-1081289. PubMed DOI

Walovitch R.C., Ingram D.K., Spangler E.L., London E.D. Co-dergocrine, cerebral glucose utilization and maze performance in middle-aged rats. Pharmacol. Biochem. Behav. 1987;26:95–101. doi: 10.1016/0091-3057(87)90540-5. PubMed DOI

Nagasawa H., Kogure K., Kawashima K., Ido T., Itoh M., Hatazawa J.U.N. Effects of Co-Dergocrine Mesylate (Hydergine®) in Multi-Infarct Dementia as Evaluated by Positron Emission Tomography. Tohoku J. Exp. Med. 1990;162:225–233. doi: 10.1620/tjem.162.225. PubMed DOI

Büyüköztürk A.l., Kanıt L., Ersöz B., Menteş G., Hariri N.İ. The effects of hydergine on the MAO activity of the aged and adult rat brain. Eur. Neuropsychopharmacol. 1995;5:527–529. doi: 10.1016/0924-977X(95)80014-S. PubMed DOI

Sözmen E.Y., Kanit L., Kutay F.Z., Hariri N.İ. Possible supportive effects of co-dergocrine mesylate on antioxidant enzyme systems in aged rat brain. Eur. Neuropsychopharmacol. 1998;8:13–16. doi: 10.1016/S0924-977X(97)00039-4. PubMed DOI

Imperato A., Obinu M.C., Dazzi L., Carta G., Mascia M.S., Casu M.A., Gessa G.L. Co-dergocrine (hydergine) regulates striatal and hippocampal acetylcholine release through D2; receptors. Neuroreport. 1994;5:674–676. doi: 10.1097/00001756-199402000-00003. PubMed DOI

Amenta F., Cavallotti C., Franch F., Ricci A. Muscarinic cholinergic receptors in the hippocampus of the aged rat: Effects of long-term hydergine administration. Arch. Int. Pharmacodyn. Ther. 1989;297:225–234. PubMed

Amenta D., Ferrante F., Franch F., Amenta F. Effects of Long-Term Hydergine® Administration on Lipofuscin Accumulation in Senescent Rat Brain. Gerontology. 1988;34:250–256. doi: 10.1159/000212963. PubMed DOI

Szewczykowski J., Meyer J.S., Kondo A., Nomura F., Teraura T. Effects of ergot alkaloids (Hydergine) on cerebral hemodynamics and oxygen consumption in monkeys. J. Neurol. Sci. 1970;10:25–31. doi: 10.1016/0022-510X(70)90089-4. PubMed DOI

Saletu B., Grünberger J., Anderer R. On brain protection of co-dergocrine mesylate (Hydergine) against hypoxic hypoxidosis of different severity: Double-blind placebo-controlled quantitative EEG and psychometric studies. Int. J. Clin. Pharmacol. Ther. Toxicol. 1990;28:510–524. PubMed

Schneider L.S., Olin J.T. Overview of Clinical Trials of Hydergine in Dementia. Arch. Neurol. 1994;51:787–798. doi: 10.1001/archneur.1994.00540200063018. PubMed DOI

Flynn B.L., Ranno A.E. Pharmacologic Management of Alzheimer Disease Part II: Antioxidants, Antihypertensives, and Ergoloid Derivatives. Ann. Pharmacother. 1999;33:188–197. doi: 10.1345/aph.17172. PubMed DOI

Thompson T.L., Filley C.M., Mitchell W.D., Culig K.M., LoVerde M., Byyny R.L. Lack of Efficacy of Hydergine in Patients with Alzheimer’s Disease. N. Engl. J. Med. 1990;323:445–448. doi: 10.1056/NEJM199008163230704. PubMed DOI

Olpe H.R., Steinmann M.W. The effect of vincamine, hydergine and piracetam on the firing rate of locus coeruleus neurons. J. Neural Transm. 1982;55:101–109. doi: 10.1007/BF01243753. PubMed DOI

Zoglio M.A., Maulding H.V. Complexes of Ergot Alkaloids and Derivatives II: Interaction of Dihydroergotoxine with Certain Xanthines. J. Pharm. Sci. 1970;59:215–219. doi: 10.1002/jps.2600590215. PubMed DOI

Cannon J.G. Burger’s Medicinal Chemistry and Drug Discovery. Spring; Berlin/Heidelberg, Germany: 1984. Cholinergics; pp. 39–108. DOI

White H.L., Scates P.W. Acetyl-L-carnitine as a precursor of acetylcholine. Neurochem. Res. 1990;15:597–601. doi: 10.1007/BF00973749. PubMed DOI

Heise G.A. Facilitation of memory and cognition by drugs. Trends Pharmacol. Sci. 1987;8:65–68. doi: 10.1016/0165-6147(87)90012-5. DOI

Fernandes G.D., Alberici R.M., Pereira G.G., Cabral E.C., Eberlin M.N., Barrera-Arellano D. Direct characterization of commercial lecithins by easy ambient sonic-spray ionization mass spectrometry. Food Chem. 2012;135:1855–1860. doi: 10.1016/j.foodchem.2012.06.072. PubMed DOI

Wendel A. Kirk-Othmer Encyclopedia of Chemical Technology. Wiley; New York, NY, USA: 2000. Lecithin. DOI

Canty D.J., Zeisel S.H. Lecithin and Choline in Human Health and Disease. Nutr. Rev. 1994;52:327–339. doi: 10.1111/j.1753-4887.1994.tb01357.x. PubMed DOI

Chung S.-Y., Moriyama T., Uezu E., Uezu K., Hirata R., Yohena N., Masuda Y., Kokubu Y., Yamamoto S. Administration of Phosphatidylcholine Increases Brain Acetylcholine Concentration and Improves Memory in Mice with Dementia. J. Nutr. 1995;125:1484–1489. doi: 10.1093/jn/125.6.1484. PubMed DOI

Higgins J.P.T., Flicker L. Lecithin for dementia and cognitive impairment. Cochrane Database Syst. Rev. 2000 doi: 10.1002/14651858.CD001015. PubMed DOI

Ladd S.L., Sommer S.A., LaBerge S., Toscano W. Effect of phosphatidylcholine on explicit memory. Clin. Neuropharmacol. 1993;16:540–549. doi: 10.1097/00002826-199312000-00007. PubMed DOI

Kulkarni R., Girish K.J., Kumar A. Nootropic herbs (Medhya Rasayana) in Ayurveda: An update. Pharmacogn. Rev. 2012;6:147–153. doi: 10.4103/0973-7847.99949. PubMed DOI PMC

Dwivedi P., Singh R., Malik M.T., Jawaid T. A traditional approach to herbal nootropic agents: An overview. Int. J. Pharm. Sci. 2012;3:630–636.

Zuin V.G., Vilegas J.H.Y. Pesticide residues in medicinal plants and phytomedicines. Phytother. Res. 2000;14:73–88. doi: 10.1002/(SICI)1099-1573(200003)14:2<73::AID-PTR577>3.0.CO;2-#. PubMed DOI

Pandey A., Savita R. Harvesting and post-harvest processing of medicinal plants: Problems and prospects. J. Pharm. Innov. 2017;6:229–235.

Mishra M., Kotwal P., Prasad C. Harvesting of medicinal plants in the forest of Central India and its impact on quality of raw materials: A case of Nagpur District, India. Ecoprint Int. J. Ecol. 2009;16:35–42. doi: 10.3126/eco.v16i0.3471. DOI

Harnischfeger G. Proposed Guidelines for Commercial Collection of Medicinal Plant Material. J. Herbs Spices Med. Plants. 2000;7:43–50. doi: 10.1300/J044v07n01_06. DOI

Tanko H., Carrier D.J., Duan L., Clausen E. Pre- and post-harvest processing of medicinal plants. Plant Genet. Res. 2005;3:304–313. doi: 10.1079/PGR200569. DOI

Belwal T., Cravotto C., Prieto M.A., Venskutonis P.R., Daglia M., Devkota H.P., Baldi A., Ezzat S.M., Gómez-Gómez L., Salama M.M., et al. Effects of different drying techniques on the quality and bioactive compounds of plant-based products: A critical review on current trends. Dry. 2022;40:1539–1561. doi: 10.1080/07373937.2022.2068028. DOI

Lewicki P.P. Effect of pre-drying treatment, drying and rehydration on plant tissue properties: A review. Int. J. Food Prop. 1998;1:1–22. doi: 10.1080/10942919809524561. DOI

Abascal K., Ganora L., Yarnell E. The effect of freeze-drying and its implications for botanical medicine: A review. Phytother. Res. 2005;19:655–660. doi: 10.1002/ptr.1651. PubMed DOI

Liapis A.I., Bruttini R. Freeze drying. In: Mujumdar A.S., editor. Handbook of Industrial Drying. CRC Press; Boca Raton, FL, USA: 2020. pp. 309–343.

Wijesekera R. The Medicinal Plant Industry. Routledge; London, UK: 2017.

Fonmboh D.J., Abah E.R., Fokunang T.E., Herve B., Teke G.N., Rose N.M., Borgia N.N., Fokunang L.B., Andrew B.N., Kaba N. An overview of methods of extraction, isolation and characterization of natural medicinal plant products in improved traditional medicine research. Asian J. Res. Med. Pharm. Sci. 2020;9:31–57. doi: 10.9734/ajrimps/2020/v9i230152. DOI

Fu Y., Ji L.L. Chronic Ginseng Consumption Attenuates Age-Associated Oxidative Stress in Rats. J. Nutr. 2003;133:3603–3609. doi: 10.1093/jn/133.11.3603. PubMed DOI

Churchill J.D., Gerson J.L., Hinton K.A., Mifek J.L., Walter M.J., Winslow C.L., Deyo R.A. The nootropic properties of ginseng saponin Rb1 are linked to effects on anxiety. Integr. Physiol. Behav. Sci. 2002;37:178–187. doi: 10.1007/BF02734180. PubMed DOI

Wang Y., Liu J., Zhang Z., Bi P., Qi Z., Zhang C. Anti-neuroinflammation effect of ginsenoside Rbl in a rat model of Alzheimer disease. Neurosci. Lett. 2011;487:70–72. doi: 10.1016/j.neulet.2010.09.076. PubMed DOI

Yang L., Zhang J., Zheng K., Shen H., Chen X. Long-term Ginsenoside Rg1 Supplementation Improves Age-Related Cognitive Decline by Promoting Synaptic Plasticity Associated Protein Expression in C57BL/6J Mice. J. Gerontol. A. 2013;69A:282–294. doi: 10.1093/gerona/glt091. PubMed DOI

Yu J., Eto M., Akishita M., Kaneko A., Ouchi Y., Okabe T. Signaling pathway of nitric oxide production induced by ginsenoside Rb1 in human aortic endothelial cells: A possible involvement of androgen receptor. Biochem. Biophys. Res. Commun. 2007;353:764–769. doi: 10.1016/j.bbrc.2006.12.119. PubMed DOI

Diamond B.J., Shiflett S.C., Feiwel N., Matheis R.J., Noskin O., Richards J.A., Schoenberger N.E. Ginkgo biloba extract: Mechanisms and clinical indications. Arch. Phys. Med. Rehabil. 2000;81:668–678. doi: 10.1016/S0003-9993(00)90052-2. PubMed DOI

Kim M.-S., Bang J.H., Lee J., Han J.-S., Baik T.G., Jeon W.K. Ginkgo biloba L. extract protects against chronic cerebral hypoperfusion by modulating neuroinflammation and the cholinergic system. Phytomedicine. 2016;23:1356–1364. doi: 10.1016/j.phymed.2016.07.013. PubMed DOI

Nishimon S., Yamaguchi M., Muraki H., Sakai N., Nishino S. Intraperitoneal injection of ginkgolide B, a major active compound of Ginkgo biloba, dose-dependently increases the amount of wake and decreases non-rapid eye movement sleep in C57BL/6 mice. Neurosci. Lett. 2020;722:134832. doi: 10.1016/j.neulet.2020.134832. PubMed DOI

Stough C., Clarke J., Lloyd J., Nathan P.J. Neuropsychological changes after 30-day Ginkgo biloba administration in healthy participants. Int. J. Neuropsychopharmacol. 2001;4:131–134. doi: 10.1017/S1461145701002292. PubMed DOI

Valli G., Giardina E.-G.V. Benefits, adverse effects and drug interactionsof herbal therapies with cardiovascular effects. J. Am. Coll. Cardiol. 2002;39:1083–1095. doi: 10.1016/S0735-1097(02)01749-7. PubMed DOI

Chanana P., Kumar A. Possible Involvement of Nitric Oxide Modulatory Mechanisms in the Neuroprotective Effect of Centella asiatica Against Sleep Deprivation Induced Anxiety Like Behaviour, Oxidative Damage and Neuroinflammation. Phytother. Res. 2016;30:671–680. doi: 10.1002/ptr.5582. PubMed DOI

Chen C.-L., Tsai W.-H., Chen C.-J., Pan T.-M. Centella asiatica extract protects against amyloid β1–40-induced neurotoxicity in neuronal cells by activating the antioxidative defence system. J. Tradit. Complement. Med. 2016;6:362–369. doi: 10.1016/j.jtcme.2015.07.002. PubMed DOI PMC

Rao S.B., Chetana M., Uma Devi P. Centella asiatica treatment during postnatal period enhances learning and memory in mice. Physiol. Behav. 2005;86:449–457. doi: 10.1016/j.physbeh.2005.07.019. PubMed DOI

Bhattacharya S.K., Kumar A., Ghosal S. Effects of glycowithanolides from Withania somnifera on an animal model of Alzheimer’s disease and perturbed central cholinergic markers of cognition in rats. Phytother. Res. 1995;9:110–113. doi: 10.1002/ptr.2650090206. DOI

Naidu P.S., Singh A., Kulkarni S.K. Effect of Withania somnifera root extract on reserpine-induced orofacial dyskinesia and cognitive dysfunction. Phytother. Res. 2006;20:140–146. doi: 10.1002/ptr.1823. PubMed DOI

Schliebs R., Liebmann A., Bhattacharya S.K., Kumar A., Ghosal S., Bigl V. Systemic administration of defined extracts from Withania somnifera (Indian ginseng) and Shilajit differentially affects cholinergic but not glutamatergic and GABAergic markers in rat brain. Neurochem. Int. 1997;30:181–190. doi: 10.1016/S0197-0186(96)00025-3. PubMed DOI

Ziauddin M., Phansalkar N., Patki P., Diwanay S., Patwardhan B. Studies on the immunomodulatory effects of Ashwagandha. J. Ethnopharmacol. 1996;50:69–76. doi: 10.1016/0378-8741(95)01318-0. PubMed DOI

Le X.T., Pham H.T.N., Do P.T., Fujiwara H., Tanaka K., Li F., Van Nguyen T., Nguyen K.M., Matsumoto K. Bacopa monnieri Ameliorates Memory Deficits in Olfactory Bulbectomized Mice: Possible Involvement of Glutamatergic and Cholinergic Systems. Neurochem. Res. 2013;38:2201–2215. doi: 10.1007/s11064-013-1129-6. PubMed DOI

Russo A., Borrelli F., Campisi A., Acquaviva R., Raciti G., Vanella A. Nitric oxide-related toxicity in cultured astrocytes: Effect of Bacopa monniera. Life Sci. 2003;73:1517–1526. doi: 10.1016/S0024-3205(03)00476-4. PubMed DOI

Singh H., Dhawan B. Neuropsychopharmacological effects of the Ayurvedic nootropic Bacopa monniera Linn.(Brahmi) Indian J. Pharmacol. 1997;29:359.

Uabundit N., Wattanathorn J., Mucimapura S., Ingkaninan K. Cognitive enhancement and neuroprotective effects of Bacopa monnieri in Alzheimer’s disease model. J. Ethnopharmacol. 2010;127:26–31. doi: 10.1016/j.jep.2009.09.056. PubMed DOI

Espinola E.B., Dias R.F., Mattei R., Carlini E.A. Pharmacological activity of Guarana (Paullinia cupana Mart.) in laboratory animals. J. Ethnopharmacol. 1997;55:223–229. doi: 10.1016/S0378-8741(96)01506-1. PubMed DOI

Otobone F.J., Sanches A.C., Nagae R.L., Martins J.V.C., Obici S., Mello J.C.P.d., Audi E.A. Effect of crude extract and its semi purified constituents from guaraná seeds [Paullinia cupana var. sorbilis (Mart.) lucke] on cognitive performance in Morris water maze in rats. Braz. Arch. Biol. Technol. 2005;48:723–728. doi: 10.1590/S1516-89132005000600007. DOI

Cropley M., Banks A.P., Boyle J. The Effects of Rhodiola rosea L. Extract on Anxiety, Stress, Cognition and Other Mood Symptoms. Phytother. Res. 2015;29:1934–1939. doi: 10.1002/ptr.5486. PubMed DOI

Perfumi M., Mattioli L. Adaptogenic and central nervous system effects of single doses of 3% rosavin and 1% salidroside Rhodiola rosea L. extract in mice. Phytother. Res. 2007;21:37–43. doi: 10.1002/ptr.2013. PubMed DOI

Yu S., Liu M., Gu X., Ding F. Neuroprotective Effects of Salidroside in the PC12 Cell Model Exposed to Hypoglycemia and Serum Limitation. Cell Mol. Neurobiol. 2008;28:1067–1078. doi: 10.1007/s10571-008-9284-z. PubMed DOI PMC

Sa F., Zhang L.Q., Chong C.M., Guo B.J., Li S., Zhang Z.J., Zheng Y., Hoi P.M., Lee S.M.Y. Discovery of novel anti-parkinsonian effect of schisantherin A in in vitro and in vivo. Neurosci. Lett. 2015;593:7–12. doi: 10.1016/j.neulet.2015.03.016. PubMed DOI

Yan T., Shang L., Wang M., Zhang C., Zhao X., Bi K., Jia Y. Lignans from Schisandra chinensis ameliorate cognition deficits and attenuate brain oxidative damage induced by D-galactose in rats. Metab. Brain Dis. 2016;31:653–661. doi: 10.1007/s11011-016-9804-3. PubMed DOI

Zhang L.Q., Sa F., Chong C.M., Wang Y., Zhou Z.Y., Chang R.C.C., Chan S.W., Hoi P.M., Yuen Lee S.M. Schisantherin A protects against 6-OHDA-induced dopaminergic neuron damage in zebrafish and cytotoxicity in SH-SY5Y cells through the ROS/NO and AKT/GSK3β pathways. J. Ethnopharmacol. 2015;170:8–15. doi: 10.1016/j.jep.2015.04.040. PubMed DOI

Bajpai V.K., Sharma A., Kim S.H., Kim Y., Kim J.-J., Baeak K.-H. Microwave-Assisted seed essential oil of eleutherococcus senticosus and its antioxidant and free radical-scavenging activities. J. Food Biochem. 2013;37:119–127. doi: 10.1111/jfbc.12013. DOI

Gromovaya V.F., Shapoval G.S., Mironyuk I.E., Nestyuk N.V. Antioxidant properties of medicinal plants. Pharm. Chem. J. 2008;42:25–28. doi: 10.1007/s11094-008-0050-9. DOI

Szołomicki S., Samochowiec L., Wójcicki J., Droździk M. The influence of active components of Eleutherococcus senticosus on cellular defence and physical fitness in man. Phytother. Res. 2000;14:30–35. doi: 10.1002/(SICI)1099-1573(200002)14:1<30::AID-PTR543>3.0.CO;2-V. PubMed DOI

Takasugi N., Moriguchi T., Fuwa T., Sanada S., Ida Y., Shoji J., Saito H. Effect of Eleutherococcus senticosus and its components on rectal temperature, body and grip tones, motor coordination, and exploratory and spontaneous movements in acute stressed mice. Pharmacogn. Mag. 1985;39:232–237.

Yamauchi Y., Ge Y.-W., Yoshimatsu K., Komatsu K., Kuboyama T., Yang X., Tohda C. Memory Enhancement by Oral Administration of Extract of Eleutherococcus senticosus Leaves and Active Compounds Transferred in the Brain. Nutrients. 2019;11:1142. doi: 10.3390/nu11051142. PubMed DOI PMC

Caicai K., Limin H., Liming Z., Zhiqiang Z., Yongwu Y. Isolation, purification and antioxidant activity of polysaccharides from the leaves of maca (Lepidium Meyenii) Int. J. Biol. Macromol. 2018;107:2611–2619. doi: 10.1016/j.ijbiomac.2017.10.139. PubMed DOI

Guo S.-S., Gao X.-F., Gu Y.-R., Wan Z.-X., Lu A.M., Qin Z.-H., Luo L. Preservation of Cognitive Function by Lepidium meyenii (Maca) Is Associated with Improvement of Mitochondrial Activity and Upregulation of Autophagy-Related Proteins in Middle-Aged Mouse Cortex. J. Evid. Based Complement. Altern. Med. 2016;2016:4394261. doi: 10.1155/2016/4394261. PubMed DOI PMC

Rubio J., Caldas M., Dávila S., Gasco M., Gonzales G.F. Effect of three different cultivars of Lepidium meyenii (Maca) on learning and depression in ovariectomized mice. BMC Complement. Altern. Med. 2006;6:23. doi: 10.1186/1472-6882-6-23. PubMed DOI PMC

Ha D.-C., Ryu G.-H. Chemical components of red, white and extruded root ginseng. J. Korean Soc. Food Sci. Nutr. 2005;34:247–254. doi: 10.3746/jkfn.2005.34.2.247. DOI

Petkov V.D., Belcheva S., Konstantinova E., Kehayov R., Petkov V.V., Hadjiivanova C. Participation of the serotonergic system in the memory effects of Ginkgo biloba L. and Panax ginseng C. A. Mey. Phytother. Res. 1994;8:470–477. doi: 10.1002/ptr.2650080807. DOI

Nocerino E., Amato M., Izzo A.A. The aphrodisiac and adaptogenic properties of ginseng. Fitoterapia. 2000;71:S1–S5. doi: 10.1016/S0367-326X(00)00170-2. PubMed DOI

Kiefer D.S., Pantuso T. Panax ginseng. Am. Fam. Physician. 2003;68:1539–1542. PubMed

Ekor M. The growing use of herbal medicines: Issues relating to adverse reactions and challenges in monitoring safety. Front. Pharmacol. 2014;4:177. doi: 10.3389/fphar.2013.00177. PubMed DOI PMC

Masteikova R., Muselik J., Bernatonienė J., Bernatonienė R. Antioxidative activity of Ginkgo, Echinacea, and Ginseng tinctures. Medicina. 2007;43:306. doi: 10.3390/medicina43040038. PubMed DOI

Boateng I.D., Yang X.-M. Effect of different drying methods on product quality, bioactive and toxic components of Ginkgo biloba L. seed. J. Sci. Food Agric. 2021;101:3290–3297. doi: 10.1002/jsfa.10958. PubMed DOI

Canter P., Ernst E. Ginkgo biloba is not a smart drug: An updated systematic review of randomised clinical trials testing the nootropic effects of G. biloba extracts in healthy people. Hum. Psychopharmacol. 2007;22:265–278. doi: 10.1002/hup.843. PubMed DOI

Le Bars P.L., Kastelan J. Efficacy and safety of a Ginkgo biloba extract. Public Health Nutr. 2000;3:495–499. doi: 10.1017/S1368980000000574. PubMed DOI

EGb 761 . Drugs R & D. Volume 4. Springer; Berlin/Heidelberg, Germany: 2003. pp. 188–193. PubMed DOI

Mahady G.B. Ginkgo Biloba: A Review of Quality, Safety, and Efficacy. Nutr. Clin. Care. 2001;4:140–147. doi: 10.1046/j.1523-5408.2001.00135.x. DOI

Jayasinghe M., Senadheera S., Wijesekara I., Ranaweera K. Determination of macronutrient compositions in selected, frequently consumed leafy vegetables, prepared according to common culinary methods in Sri Lanka. Vidyodaya J. Sci. 2019;22:816–820. doi: 10.31357/vjs.v22i2.4384. PubMed DOI PMC

Wijeweera P., Arnason J.T., Koszycki D., Merali Z. Evaluation of anxiolytic properties of Gotukola—(Centella asiatica) extracts and asiaticoside in rat behavioral models. Phytomedicine. 2006;13:668–676. doi: 10.1016/j.phymed.2006.01.011. PubMed DOI

Gohil K.J., Patel J.A., Gajjar A.K. Pharmacological Review on Centella asiatica: A Potential Herbal Cure-all. Indian J. Pharm. Sci. 2010;72:546–556. doi: 10.4103/0250-474X.78519. PubMed DOI PMC

Anukunwithaya T., Tantisira M.H., Tantisira B., Khemawoot P. Pharmacokinetics of a standardized extract of Centella asiatica ECa 233 in rats. Planta Med. 2017;83:710–717. doi: 10.1055/s-0042-122344. PubMed DOI

Brinkhaus B., Lindner M., Schuppan D., Hahn E.G. Chemical, pharmacological and clinical profile of the East Asian medical plant Centella aslatica. Phytomedicine. 2000;7:427–448. doi: 10.1016/S0944-7113(00)80065-3. PubMed DOI

Bamola N., Verma P., Negi C. A review on some traditional medicinal plants. Int. J. Life Sci. Res. 2018;4:1550–1556. doi: 10.21276/ijlssr.2018.4.1.7. DOI

Patel K., Singh R.B., Patel D.K. Pharmacological and analytical aspects of withaferin A: A concise report of current scientific literature. Asian Pac. J. Reprod. 2013;2:238–243. doi: 10.1016/S2305-0500(13)60154-2. DOI

Raut A.A., Rege N.N., Tadvi F.M., Solanki P.V., Kene K.R., Shirolkar S.G., Pandey S.N., Vaidya R.A., Vaidya A.B. Exploratory study to evaluate tolerability, safety, and activity of Ashwagandha (Withania somnifera) in healthy volunteers. J. Ayurveda Integr. Med. 2012;3:111–114. doi: 10.4103/0975-9476.100168. PubMed DOI PMC

Meher S.K., Das B., Panda P., Bhuyan G.C., Rao M.M. Uses of Withania somnifera (Linn) Dunal (Ashwagandha) in Ayurveda and its pharmacological evidences. Res. J. Pharmacol. Pharmacodyn. 2016;8:23–29. doi: 10.5958/2321-5836.2016.00006.9. DOI

Chadha M.L. Indigenous vegetables of India with potentials for improving livelihood. Acta Hortic. 2009;806:579–586. doi: 10.17660/ActaHortic.2009.806.72. DOI

Devendra P., Patel S.S., Birwal P., Basu S., Deshmukh G., Datir R. Brahmi (Bacopa monnieri) as functional food ingredient in food processing industry. J. Pharmacogn. Phytochem. 2018;7:189–194.

Gohil K.J., Patel J.A. A review on Bacopa monniera: Current research and future prospects. Int. J. Green Pharm. 2010;4:1–9. doi: 10.4103/0973-8258.62156. DOI

Russo A., Borrelli F. Bacopa monniera, a reputed nootropic plant: An overview. Phytomedicine. 2005;12:305–317. doi: 10.1016/j.phymed.2003.12.008. PubMed DOI

Kean J.D., Downey L.A., Stough C. A systematic review of the Ayurvedic medicinal herb Bacopa monnieri in child and adolescent populations. Complement. Ther. Med. 2016;29:56–62. doi: 10.1016/j.ctim.2016.09.002. PubMed DOI

Cavalcanti V., Marques M., Do Nascimento W.M., Rocha A.W.D.O., Ferreira I.D.J., Leão D.P., Félix P.H.C., De Oliveira C.M.C. Bioproducts based on guarana (Paulinia cupana) for practitioners of physical activity. Eur. Acad. Res. 2020;8:1746–1759.

Banga S., Kumar V., Suri S., Kaushal M., Prasad R., Kaur S. Nutraceutical Potential of Diet Drinks: A Critical Review on Components, Health Effects, and Consumer Safety. J. Am. Coll. Nutr. 2020;39:272–286. doi: 10.1080/07315724.2019.1642811. PubMed DOI

Rangel M.P., De Mello J.C.P., Audi E.A. Evaluation of neurotransmitters involved in the anxiolytic and panicolytic effect of the aqueous fraction of Paullinia cupana (guaraná) in elevated T maze. Rev. Bras. Farmacogn. 2013;23:358–365. doi: 10.1590/S0102-695X2013005000024. DOI

Kennedy D.O., Haskell C.F., Wesnes K.A., Scholey A.B. Improved cognitive performance in human volunteers following administration of guarana (Paullinia cupana) extract: Comparison and interaction with Panax ginseng. Pharmacol. Biochem. Behav. 2004;79:401–411. doi: 10.1016/j.pbb.2004.07.014. PubMed DOI

Marques L.L.M., Klein T., De Mello J.C.P. Chapter 3.24—Guarana. In: Nabavi S.M., Silva A.S., editors. Nonvitamin and Nonmineral Nutritional Supplements. Academic Press; New York, NY, USA: 2019. pp. 283–288. DOI

Davydov M., Krikorian A.D. Eleutherococcus senticosus (Rupr. & Maxim.) Maxim. (Araliaceae) as an adaptogen: A closer look. J. Ethnopharmacol. 2000;72:345–393. doi: 10.1016/S0378-8741(00)00181-1. PubMed DOI

Gerontakos S., Taylor A., Avdeeva A.Y., Shikova V.A., Pozharitskaya O.N., Casteleijn D., Wardle J., Shikov A.N. Findings of Russian literature on the clinical application of Eleutherococcus senticosus (Rupr. & Maxim.): A narrative review. J. Ethnopharmacol. 2021;278:114274. doi: 10.1016/j.jep.2021.114274. PubMed DOI

Mahady G.B., Gyllenhaal C., Fong H.H., Farnsworth N.R. Ginsengs: A Review of Safety and Efficacy. Nutr. Clin. Care. 2000;3:90–101. doi: 10.1046/j.1523-5408.2000.00020.x. DOI

Bleakney T.L. Deconstructing an Adaptogen: Eleutherococcus senticosus. Holist. Nurs. Pract. 2008;22:220–224. doi: 10.1097/01.HNP.0000326005.65310.7c. PubMed DOI

Schmidt M., Thomsen M., Kelber O., Kraft K. Myths and facts in herbal medicines: Eleutherococcus senticosus (Siberian ginseng) and its contraindication in hypertensive patients. Botanics. 2014;4:27–32. doi: 10.2147/BTAT.S60734. DOI

Kołodziej B., Sugier D. Influence of plants age on the chemical composition of roseroot (Rhodiola rosea L.) Acta Sci. Pol. 2013;12:147–160.

Gregory S., Kelly N. Rhodiola rosea: A Possible Plant Adaptogen. Altern. Med. Rev. 2001;6:293–302. PubMed

Jagtap P.N., Mhetre O.S., Malavdkar P.R. A Review Article on Rhodiola Rosea: An Adaptogen Having Multiple Benefits. Int. J. Pharmacogn. 2020;7:62–69. doi: 10.13040/IJPSR.0975-8232.IJP.7(3).62-69. DOI

Panossian A., Wikman G. Pharmacology of Schisandra chinensis Bail.: An overview of Russian research and uses in medicine. J. Ethnopharmacol. 2008;118:183–212. doi: 10.1016/j.jep.2008.04.020. PubMed DOI

Liu X., Guo Y., Cai G., Gong J., Wang Y., Liu S. Chemical composition analysis of Schisandra chinensis fructus and its three processed products using UHPLC-Q-Orbitrap/MS-based metabolomics approach. Nat. Prod. Res. 2020;36:3464–3468. doi: 10.1080/14786419.2020.1858416. PubMed DOI

Li N., Liu C., Jing S., Wang M., Wang H., Sun J., Wang C., Chen J., Li H. Compound Schisandra-Ginseng-Notoginseng-Lycium Extract Ameliorates Scopolamine-Induced Learning and Memory Disorders in Mice. Evid. Based Complement. Altern. Med. 2017;2017:8632016. doi: 10.1155/2017/8632016. PubMed DOI PMC

Zovko Koncic M., Tomczyk M. New insights into dietary supplements used in sport: Active substances, pharmacological and side effects. Curr. Drug Targets. 2013;14:1079–1092. doi: 10.2174/1389450111314090016. PubMed DOI

Brinckmann J., Smith E. Maca Culture of the Junín Plateau. J. Altern. Complement. Med. 2004;10:426–430. doi: 10.1089/1075553041323821. PubMed DOI

Smith E. Maca root: Modern Rediscovery of An Ancient Andean Fertility Food. J. Am. Herb. Guild. 2004;4:15–21.

Gonzales G.F., Córdova A., Vega K., Chung A., Villena A., Góñez C., Castillo S. Effect of Lepidium meyenii (MACA) on sexual desire and its absent relationship with serum testosterone levels in adult healthy men. Andrologia. 2002;34:367–372. doi: 10.1046/j.1439-0272.2002.00519.x. PubMed DOI

Gonzales-Arimborgo C., Yupanqui I., Montero E., Alarcón-Yaquetto D.E., Zevallos-Concha A., Caballero L., Gasco M., Zhao J., Khan I.A., Gonzales G.F. Acceptability, Safety, and Efficacy of Oral Administration of Extracts of Black or Red Maca (Lepidium meyenii) in Adult Human Subjects: A Randomized, Double-Blind, Placebo-Controlled Study. Pharmaceuticals. 2016;9:49. doi: 10.3390/ph9030049. PubMed DOI PMC

West E., Krychman M. Natural Aphrodisiacs—A Review of Selected Sexual Enhancers. Sex. Med. Rev. 2015;3:279–288. doi: 10.1002/smrj.62. PubMed DOI

Turnbull D., Rodricks J.V., Mariano G.F., Chowdhury F. Caffeine and cardiovascular health. Regul. Toxicol. Pharmacol. 2017;89:165–185. doi: 10.1016/j.yrtph.2017.07.025. PubMed DOI

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Nootropic Herbs, Shrubs, and Trees as Potential Cognitive Enhancers

. 2023 Mar 18 ; 12 (6) : . [epub] 20230318

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...