Nootropics as Cognitive Enhancers: Types, Dosage and Side Effects of Smart Drugs
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, přehledy
PubMed
36014874
PubMed Central
PMC9415189
DOI
10.3390/nu14163367
PII: nu14163367
Knihovny.cz E-zdroje
- Klíčová slova
- Panax ginseng, Paullinia cupana, antioxidant activity, ayurvedic, brain injury, learning, memory, nootropics, piracetam, smart drugs,
- MeSH
- lidé MeSH
- nežádoucí účinky léčiv * MeSH
- nootropní látky * terapeutické užití MeSH
- učení MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
- Názvy látek
- nootropní látky * MeSH
Nootropics, also known as "smart drugs" are a diverse group of medicinal substances whose action improves human thinking, learning, and memory, especially in cases where these functions are impaired. This review provides an up-to-date overview of the potential effectiveness and importance of nootropics. Based on their nature and their effects, this heterogeneous group of drugs has been divided into four subgroups: classical nootropic compounds, substances increasing brain metabolism, cholinergic, and plants and their extracts with nootropic effects. Each subgroup of nootropics contains several main representatives, and for each one, its uses, indications, experimental treatments, dosage, and possible side effects and contraindications are discussed. For the nootropic plant extracts, there is also a brief description of each plant representative, its occurrence, history, and chemical composition of the medicinal part. Lastly, specific recommendations regarding the use of nootropics by both ill and healthy individuals are summarized.
Zobrazit více v PubMed
Giurgea C., Salama M. Nootropic drugs. Prog. Neuro-Psychopharmacol. 1977;1:235–247. doi: 10.1016/0364-7722(77)90046-7. DOI
Schifano F., Catalani V., Sharif S., Napoletano F., Corkery J.M., Arillotta D., Fergus S., Vento A., Guirguis A. Benefits and Harms of ‘Smart Drugs’ (Nootropics) in Healthy Individuals. Drugs. 2022;82:633–647. doi: 10.1007/s40265-022-01701-7. PubMed DOI
Vyas S., Kothari S., Kachhwaha S. Nootropic medicinal plants: Therapeutic alternatives for Alzheimer’s disease. J. Herb. Med. 2019;17:100291. doi: 10.1016/j.hermed.2019.100291. DOI
Ihl R., Kretschmar C. Nootropic drug evaluation for general practice. Nervenarzt. 1997;68:853–861. doi: 10.1007/s001150050207. PubMed DOI
Chaudhari K.S., Tiwari N.R., Tiwari R.R., Sharma R.S. Neurocognitive Effect of Nootropic Drug Brahmi (Bacopa monnieri) in Alzheimer’s Disease. Ann. Neurosci. 2017;24:111–122. doi: 10.1159/000475900. PubMed DOI PMC
Benninghoff J., Perneczky R. Anti-Dementia Medications and Anti-Alzheimer’s Disease Drugs: Side Effects, Contraindications, and Interactions. In: Riederer P., Laux G., Nagatsu T., Le W., Riederer C., editors. NeuroPsychopharmacotherapy. Springer International Publishing; Cham, Switzerland: 2022. pp. 1–10. DOI
Dormehl I.C., Jordaan B., Oliver D.W., Croft S. SPECT monitoring of improved cerebral blood flow during long-term treatment of elderly patients with nootropic drugs. Clin. Nucl. Med. 1999;24:29–34. doi: 10.1097/00003072-199901000-00007. PubMed DOI
Napoletano F., Schifano F., Corkery J.M., Guirguis A., Arillotta D., Zangani C., Vento A. The Psychonauts’ World of Cognitive Enhancers. Front. Psychiatry. 2020;11:546796. doi: 10.3389/fpsyt.2020.546796. PubMed DOI PMC
Malik R., Sangwan A., Saihgal R., Paul Jindal D., Piplani P. Towards better brain management: Nootropics. Curr. Med. Chem. 2007;14:123–131. doi: 10.2174/092986707779313408. PubMed DOI
Giurgea C. The “nootropic” approach to the pharmacology of the integrative activity of the brain 1, 2. Integr. Psychol. Behav. Sci. 1973;8:108–115. doi: 10.1007/BF03000311. PubMed DOI
Giurgea C. Pharmacology of integrative activity of the brain. Attempt at nootropic concept in psychopharmacology. Actual. Pharm. 1972;25:115–156. PubMed
Zhao X., Yeh J.Z., Narahashi T. Post-Stroke Dementia: Nootropic Drug Modulation of Neuronal Nicotinic Acetylcholine Receptors. Ann. N. Y. Acad. Sci. 2001;939:179–186. doi: 10.1111/j.1749-6632.2001.tb03624.x. PubMed DOI
Zhao X., Kuryatov A., Lindstrom J.M., Yeh J.Z., Narahashi T. Nootropic Drug Modulation of Neuronal Nicotinic Acetylcholine Receptors in Rat Cortical Neurons. Mol. Pharmacol. 2001;59:674–683. doi: 10.1124/mol.59.4.674. PubMed DOI
Suliman N.A., Mat Taib C.N., Mohd Moklas M.A., Adenan M.I., Hidayat Baharuldin M.T., Basir R. Establishing Natural Nootropics: Recent Molecular Enhancement Influenced by Natural Nootropic. Evid.-Based Complement. Altern. Med. 2016;2016:4391375. doi: 10.1155/2016/4391375. PubMed DOI PMC
Froestl W., Muhs A., Pfeifer A. Cognitive enhancers (nootropics). Part 1: Drugs interacting with receptors. J. Alzheimer’s Dis. 2012;32:793–887. doi: 10.3233/JAD-2012-121186. PubMed DOI
Mali A., Shenoy P., Bandawane D., Nipate S., Chaudhari P. Screening of nootropics: An overview on preclinical evaluation techniques. Int. J. Pharm. 2012;2:159–180.
Joshi Pranav C. A review on natural memory enhancers (Nootropics) Unique J. Eng. Adv. Sci. 2013;1:8–18.
Chekman I., Belenichev I., Demchenko A., Bobrova V., Kucherenko L., Gorchakova N., Bukhtiyarova N. Nootropics in comlex therapy of chronic cerebral ischemia. Sci. Innov. 2014;10:56–68. doi: 10.15407/scine10.04.056. DOI
McDaniel M.A., Maier S.F., Einstein G.O. “Brain-specific” nutrients: A memory cure? Nutrition. 2003;19:957–975. doi: 10.1016/S0899-9007(03)00024-8. PubMed DOI
Ishchenko M.M., Ostrovskaia O.S. The effect of combined drug treatment on rheologic properties of the blood in patients with disordered circulatory encephalopathy. Vrachebnoe Delo. 1990;3:58–60. PubMed
Nicholson C.D. Pharmacology of nootropics and metabolically active compounds in relation to their use in dementia. Psychopharmacology. 1990;101:147–159. doi: 10.1007/BF02244119. PubMed DOI
Pepeu G., Spignoli G. Nootropic drugs and brain cholinergic mechanisms. Prog. Neuropsychopharmacol. Biol. Psychiatry. 1989;13:S77–S88. doi: 10.1016/0278-5846(89)90112-7. PubMed DOI
Rainer M., Mucke H.A., Chwatal K., Havelec L. Alcohol-induced organic cerebral psychosyndromes: Partial reversal of cognitive impairments assisted by dihydroergocristine. Psychopharmacology. 1996;127:365–369. doi: 10.1007/BF02806016. PubMed DOI
Benešová O. Neuropathobiology of senile dementia and mechanism of action of nootropic drugs. Drugs Aging. 1994;4:285–303. doi: 10.2165/00002512-199404040-00002. PubMed DOI
Wu C.-Y., Hu H.-Y., Chow L.-H., Chou Y.-J., Huang N., Wang P.-N., Li C.-P. The effects of anti-dementia and nootropic treatments on the mortality of patients with dementia: A population-based cohort study in Taiwan. PLoS ONE. 2015;10:e0130993. doi: 10.1371/journal.pone.0130993. PubMed DOI PMC
Finney-Brown T. Schisandra, Rhodiola and Eleuthrococcus as nootropic agents. Aust. J. Herb. Med. 2010;22:64–65.
Panossian A., Wikman G. Effects of Adaptogens on the Central Nervous System and the Molecular Mechanisms Associated with Their Stress—Protective Activity. Pharmaceuticals. 2010;3:188–224. doi: 10.3390/ph3010188. PubMed DOI PMC
Zavadenko N., NIu S., Rumiantseva M., Ovchinnikova A. The use of instenon in children with minimal brain dysfunction. Zhurnal Nevrol. Psikhiatrii Im. SS Korsakova. 2002;102:29–35. PubMed
Colucci L., Bosco M., Ziello A.R., Rea R., Amenta F., Fasanaro A.M. Effectiveness of nootropic drugs with cholinergic activity in treatment of cognitive deficit: A review. J. Exp. Pharmacol. 2012;4:163–172. doi: 10.2147/JEP.S35326. PubMed DOI PMC
Zokiriv M. Correction of cognitive impairments in patients with HIV-associated encephalopathy. J. Theor. Appl. Sci. 2021;7:62–66. doi: 10.15863/TAS.2021.07.99.15. DOI
Kupats E., Vrublevska J., Zvejniece B., Vavers E., Stelfa G., Zvejniece L., Dambrova M. Safety and tolerability of the anxiolytic and nootropic drug phenibut: A systematic review of clinical trials and case reports. Pharmacopsychiatry. 2020;53:201–208. doi: 10.1055/a-1151-5017. PubMed DOI
Voronina T.A. Alzheimer Disease. Springer; Berlin/Heidelberg, Germany: 1994. Nootropic drugs in Alzheimer disease treatment. New pharmacological strategies; pp. 265–269.
Noorbala A., Akhondzadeh S., Davari-Ashtiani R., Amini-Nooshabadi H. Piracetam in the treatment of schizophrenia: Implications for the glutamate hypothesis of schizophrenia. J. Clin. Pharm. Ther. 1999;24:369–374. doi: 10.1046/j.1365-2710.1999.00238.x. PubMed DOI
Sukhotina N., Konovalova V., Kryzhanovskaia I., Kupriianova T. Efficacy of pantogam in the treatment of hyperkinetic disorders in children. Zhurnal Nevrol. Psikhiatrii Im. SS Korsakova. 2010;110:24–28. PubMed
Sarris J., Kean J., Schweitzer I., Lake J. Complementary medicines (herbal and nutritional products) in the treatment of Attention Deficit Hyperactivity Disorder (ADHD): A systematic review of the evidence. Complement. Ther. Med. 2011;19:216–227. doi: 10.1016/j.ctim.2011.06.007. PubMed DOI
Teasdale G., Jennett B. Assessment of Coma and Impaired Consciousness: A Practical Scale. Lancet. 1974;304:81–84. doi: 10.1016/S0140-6736(74)91639-0. PubMed DOI
Canterbury R.J., Lloyd E. Smart drugs: Implications of student use. J. Prim. Prev. 1994;14:197–207. doi: 10.1007/BF01324593. PubMed DOI
Wagner H., Ulrich-Merzenich G. Synergy research: Approaching a new generation of phytopharmaceuticals. Phytomedicine. 2009;16:97–110. doi: 10.1016/j.phymed.2008.12.018. PubMed DOI
Caesar L.K., Cech N.B. Synergy and antagonism in natural product extracts: When 1 + 1 does not equal 2. Nat. Prod. Rep. 2019;36:869–888. doi: 10.1039/C9NP00011A. PubMed DOI PMC
Balunas M.J., Kinghorn A.D. Drug discovery from medicinal plants. Life Sci. 2005;78:431–441. doi: 10.1016/j.lfs.2005.09.012. PubMed DOI
Petrovska B.B. Historical review of medicinal plants’ usage. Pharmacogn. Rev. 2012;6:1–5. doi: 10.4103/0973-7847.95849. PubMed DOI PMC
Malykh A.G., Sadaie M.R. Piracetam and Piracetam-Like Drugs. Drugs. 2010;70:287–312. doi: 10.2165/11319230-000000000-00000. PubMed DOI
Chary M., Yi D., Manini A.F. Candyflipping and Other Combinations: Identifying Drug–Drug Combinations from an Online Forum. Front. Psychiatry. 2018;9:135. doi: 10.3389/fpsyt.2018.00135. PubMed DOI PMC
Elks J. The Dictionary of Drugs: Chemical Data: Chemical Data, Structures and Bibliographies. Springer; Berlin/Heidelberg, Germany: 2014.
Malanga G., Aguiar M.B., Martinez H.D., Puntarulo S. New insights on dimethylaminoethanol (DMAE) features as a free radical scavenger. Drug Metab. Lett. 2012;6:54–59. doi: 10.2174/187231212800229282. PubMed DOI
Blin O., Audebert C., Pitel S., Kaladjian A., Casse-Perrot C., Zaim M., Micallef J., Tisne-Versailles J., Sokoloff P., Chopin P., et al. Effects of dimethylaminoethanol pyroglutamate (DMAE p-Glu) against memory deficits induced by scopolamine: Evidence from preclinical and clinical studies. Psychopharmacology. 2009;207:201–212. doi: 10.1007/s00213-009-1648-7. PubMed DOI
Levin E.D., Rose J.E., Abood L. Effects of nicotinic dimethylaminoethyl esters on working memory performance of rats in the radial-arm maze. Pharmacol. Biochem. Behav. 1995;51:369–373. doi: 10.1016/0091-3057(94)00406-9. PubMed DOI
Dimpfel W., Wedekind W., Keplinger I. Efficacy of dimethylaminoethanol (DMAE) containing vitamin-mineral drug combination on EEG patterns in the presence of different emotional states. Eur. J. Med. Res. 2003;8:183–191. PubMed
Sergio W. Use of DMAE (2-dimethylaminoethanol) in the induction of lucid dreams. Med. Hypotheses. 1988;26:255–257. doi: 10.1016/0306-9877(88)90129-6. PubMed DOI
Baumgaertel A. Alternative and Controversial Treatments for Attention-Deficit/Hyperactivity Disorder. Pediatr. Clin. N. Am. 1999;46:977–992. doi: 10.1016/S0031-3955(05)70167-X. PubMed DOI
Lewis J.A., Young R. Deanol and methylphenidate in minimal brain dysfunction. Clin. Pharm. Therap. 1975;17:534–540. doi: 10.1002/cpt1975175534. PubMed DOI
Casey D.E. Mood alterations during deanol therapy. Psychopharmacology. 1979;62:187–191. doi: 10.1007/BF00427135. PubMed DOI
Ferris S.H., Sathananthan G., Gershon S., Clark C. Senile Dementia: Treatment with Deanol. J. Am. Geriatr. Soc. 1977;25:241–244. doi: 10.1111/j.1532-5415.1977.tb00407.x. PubMed DOI
Wood P.L., Péloquin A. Increases in choline levels in rat brain elicited by meclofenoxate. Neuropharmacology. 1982;21:349–354. doi: 10.1016/0028-3908(82)90099-5. PubMed DOI
Liao Y., Wang R., Tang X.-C. Centrophenoxine improves chronic cerebral ischemia induced cognitive deficit and neuronal degeneration in rats. Acta Pharmacol. Sin. 2004;25:1590–1596. PubMed
Bakhtogarimov I.R., Kudryavtseva A.V., Krasnov G.S., Gladysh N.S., Volodin V.V., Kudryavtsev A.A., Bulavkina E.V., Goncharova M.A., Ledyaeva V.S., Pastukhov I.S., et al. The Effect of Meclofenoxate on the Transcriptome of Aging Brain of Nothobranchius guentheri Annual Killifish. Int. J. Mol. Sci. 2022;23:2491. doi: 10.3390/ijms23052491. PubMed DOI PMC
Marcer D., Hopkins S.M. The Differential Effects of Meclofenoxate on Memory Loss in the Elderly. Age Ageing. 1977;6:123–131. doi: 10.1093/ageing/6.2.123. PubMed DOI
Izumi K., Tominaga H., Koja T., Nomoto M., Shimizu T., Sonoda H., Imamura K., Igata A., Fukuda T. Meclofenoxate therapy in tardive dyskinesia: A preliminary report. Biol. Psychiatry. 1986;21:151–160. doi: 10.1016/0006-3223(86)90142-3. PubMed DOI
Popa R., Schneider F., Mihalas G., Stefaniga P., Mihalas I.G., Maties R., Mateescu R. Antagonic-stress superiority versus meclofenoxate in gerontopsychiatry (alzheimer type dementia) Arch. Gerontol. Geriatr. 1994;19:197–206. doi: 10.1016/S0167-4943(05)80065-2. PubMed DOI
Oliver J.E., Restell M. Serial Testing in Assessing the Effect of Meclofenoxate on Patients with Memory Defects. Br. J. Psychiatry. 1967;113:219–222. doi: 10.1192/bjp.113.495.219. PubMed DOI
Winblad B., Fioravanti M., Dolezal T., Logina I., Milanov I.G., Popescu D.C., Solomon A. Therapeutic Use of Nicergoline. Clin. Drug Investig. 2008;28:533–552. doi: 10.2165/00044011-200828090-00001. PubMed DOI
Winblad B., Carfagna N., Bonura L., Rossini B.M., Wong E.H.F., Battaglia A. Nicergoline in Dementia. CNS Drugs. 2000;14:267–287. doi: 10.2165/00023210-200014040-00003. DOI
Caraci F., Chisari M., Frasca G., Canonico P.L., Battaglia A., Calafiore M., Battaglia G., Bosco P., Nicoletti F., Copani A., et al. Nicergoline, a drug used for age-dependent cognitive impairment, protects cultured neurons against β-amyloid toxicity. Brain Res. 2005;1047:30–37. doi: 10.1016/j.brainres.2005.04.004. PubMed DOI
Giardino L., Giuliani A., Battaglia A., Carfagna N., Aloe L., Calzà L. Neuroprotection and aging of the cholinergic system: A role for the ergoline derivative nicergoline (Sermion®) Neuroscience. 2002;109:487–497. doi: 10.1016/S0306-4522(01)00470-5. PubMed DOI
Heitz C., Descombes J.-J., Miller R.C., Stoclet J.-C. α-adrenoceptor antagonistic and calcium antagonistic effects of nicergoline in the rat isolated aorta. Eur. J. Pharmacol. 1986;123:279–285. doi: 10.1016/0014-2999(86)90669-2. PubMed DOI
Molteni A., Nickerson P.A., Brownie A.C., Liu K. Effect on an ergoline derivate-nicergoline (Sermion) on methylandrostenediol-induced hypertension in the rat. Arch. Int. Pharmacodyn. Ther. 1980;247:119–134. PubMed
Tanaka M., Yoshida T., Okamoto K., Hirai S. Antioxidant properties of nicergoline; inhibition of brain auto-oxidation and superoxide production of neutrophils in rats. Neurosci. Lett. 1998;248:68–72. doi: 10.1016/S0304-3940(98)00310-3. PubMed DOI
Zang G., Fang L., Chen L., Wang C. Ameliorative effect of nicergoline on cognitive function through the PI3K/AKT signaling pathway in mouse models of Alzheimer’s disease. Mol. Med. Rep. 2018;17:7293–7300. doi: 10.3892/mmr.2018.8786. PubMed DOI
Iliff L.D., Boulay G.H.D., Marshall J., Russell R.W.R., Symon L. Effect of nicergoline on cerebral blood flow. J. Neurol. Neurosurg. Psychiatry. 1977;40:746–747. doi: 10.1136/jnnp.40.8.746. PubMed DOI PMC
Baskys A., Hou A.C. Vascular dementia: Pharmacological treatment approaches and perspectives. Clin. Interv. Aging. 2007;2:327–335. doi: 10.1016/j.exger.2012.07.002. PubMed DOI PMC
Kuznetsov V. The influence of nicergoline on cerebral, systemic and cardiac hemodynamics in patients who have had an ischemic stroke. Ageing Long. 2021;2:32–41. doi: 10.47855/jal9020-2021-1-3. DOI
Saletu B., Paulus E., Linzmayer L., Anderer P., Semlitsch H.V., Grünberger J., Wicke L., Neuhold A., Podreka I. Nicergoline in senile dementia of alzheimer type and multi-infarct dementia: A double-blind, placebo-controlled, clinical and EEG/ERP mapping study. Psychopharmacology. 1995;117:385–395. doi: 10.1007/BF02246209. PubMed DOI
Fioravanti M., Nakashima T., Xu J., Garg A. A systematic review and meta-analysis assessing adverse event profile and tolerability of nicergoline. BMJ Open. 2014;4:e005090. doi: 10.1136/bmjopen-2014-005090. PubMed DOI PMC
Klamkam P., Pagcharoenpol R., Treesaranuwattana T., Silpsrikul P., Jaruchinda P., Wasuwat P., Suwannahitatorn P. A clinical trial of nicergoline to prevent temporary threshold shift. Laryngoscope Investig. Otolaryngol. 2022;7:515–522. doi: 10.1002/lio2.746. PubMed DOI PMC
Gouliaev A.H., Senning A. Piracetam and other structurally related nootropics. Brain Res. Rev. 1994;19:180–222. doi: 10.1016/0165-0173(94)90011-6. PubMed DOI
Stoll L., Schubert T., Müller W.E. Age-related deficits of central muscarinic cholinergic receptor function in the mouse: Partial restoration by chronic piracetam treatment. Neurobiol. Aging. 1992;13:39–44. doi: 10.1016/0197-4580(92)90006-J. PubMed DOI
Scheuer K., Rostock A., Bartsch R., Müller W. Piracetam improves cognitive performance by restoring neurochemical deficits of the aged rat brain. Pharmacopsychiatry. 1999;32:10–16. doi: 10.1055/s-2007-979231. PubMed DOI
Nickolson V.J., Wolthuis O.L. Effect of the acquisition-enhancing drug ptracetam on rat cerebral energy metabolism. Comparison with naftidrofuryl and methamphetamine. Biochem. Pharmacol. 1976;25:2241–2244. doi: 10.1016/0006-2952(76)90004-6. PubMed DOI
Tacconi M.T., Wurtman R.J. Piracetam: Physiological disposition and mechanism of action. Adv. Neurol. 1986;43:675–685. PubMed
Grau M., Montero J.L., Balasch J. Effect of piracetam on electrocorticogram and local cerebral glucose utilization in the rat. Vasc. Pharmacol. 1987;18:205–211. doi: 10.1016/0306-3623(87)90252-7. PubMed DOI
Brandao F., Paula-Barbosa M.M., Cadete-Leite A. Piracetam impedes hippocampal neuronal loss during withdrawal after chronic alcohol intake. Alcohol. 1995;12:279–288. doi: 10.1016/0741-8329(94)00107-O. PubMed DOI
Brandão F., Cadete-Leite A., Andrade J.P., Madeira M.D., Paula-Barbosa M.M. Piracetam promotes mossy fiber synaptic reorganization in rats withdrawn from alcohol. Alcohol. 1996;13:239–249. doi: 10.1016/0741-8329(95)02050-0. PubMed DOI
Winnicka K., Tomasiak M., Bielawska A. Piracetam-an old drug with novel properties. Acta Pol. Pharm. 2005;62:405–409. PubMed
Müller W., Eckert G., Eckert A. Piracetam: Novelty in a unique mode of action. Pharmacopsychiatry. 1999;32:2–9. doi: 10.1055/s-2007-979230. PubMed DOI
Wilsher C.R., Bennett D., Chase C.H., Conners C.K., Diianni M., Feagans L., Hanvik L.J., Helfgott E., Koplewicz H., Overby P. Piracetam and dyslexia: Effects on reading tests. J. Clin. Psychopharmacol. 1987;7:230–237. doi: 10.1097/00004714-198708000-00004. PubMed DOI
Croisile B., Trillet M., Fondarai J., Laurent B., Mauguière F., Billardon M. Long-term and high-dose piracetam treatment of Alzheimer’s disease. Neurology. 1993;43:301. doi: 10.1212/WNL.43.2.301. PubMed DOI
Growdon J.H., Corkin S., Huff F.J., Rosen T.J. Piracetam combined with lecithin in the treatment of Alzheimer’s disease. Neurobiol. Aging. 1986;7:269–276. doi: 10.1016/0197-4580(86)90007-2. PubMed DOI
Tanaka H., Yamazaki K., Hirata K. Effects of nootropic drugs for demented patients—A study using LORETA. Int. Congr. Ser. 2002;1232:605–611. doi: 10.1016/S0531-5131(01)00844-5. DOI
Winblad B. Piracetam: A Review of Pharmacological Properties and Clinical Uses. CNS Drug Rev. 2005;11:169–182. doi: 10.1111/j.1527-3458.2005.tb00268.x. PubMed DOI PMC
Singh A., Purohit V. A critical review of pyritinol. Drugs Ther. Perspect. 2019;35:278–282. doi: 10.1007/s40267-019-00623-x. DOI
Wojszel Z.B. Nootropics (Piracetam, Pyritinol, Co-dergocrine, Meclophenoxat, Pentoxifylline, Nimodipine) In: Riederer P., Laux G., Nagatsu T., Le W., Riederer C., editors. NeuroPsychopharmacotherapy. Springer International Publishing; Cham, Switzerland: 2020. pp. 1–45. DOI
Toledano A., Bentura M.L. Pyritinol facilitates the recovery of cortical cholinergic deficits caused by nucleus basalis lesions. J. Neural Transm. Gen. Sect. 1994;7:195–209. doi: 10.1007/BF02253438. PubMed DOI
Martin K.J., Vyas S. Increase in acetylcholine concentrations in the brain of ‘old’ rats following treatment with pyrithioxin (Encephabol) Br. J. Pharmacol. 1987;90:561–565. doi: 10.1111/j.1476-5381.1987.tb11206.x. PubMed DOI PMC
Jiménez-Andrade G.Y., Reyes-García G., Sereno G., Ceballos-Reyes G., Vidal-Cantú G.C., Granados-Soto V. Pyritinol reduces nociception and oxidative stress in diabetic rats. Eur. J. Pharmacol. 2008;590:170–176. doi: 10.1016/j.ejphar.2008.06.050. PubMed DOI
Magnusson K., Brim B., Das S. Selective vulnerabilities of N-methyl-D-aspartate (NMDA) receptors during brain aging. Front. Aging Neurosci. 2010;2:11. doi: 10.3389/fnagi.2010.00011. PubMed DOI PMC
Jaiswal A.K., Upadhyay S.N., Bhattacharya S.K. Effect of pyritinol, a cerebral protector, on learning and memory deficits induced by prenatal undernutrition and environmental impoverishment in young rats. Indian J. Exp. Biol. 1990;28:609–615. PubMed
Hindmarch I., Coleston D.M., Kerr J.S. Psychopharmacological Effects of Pyritinol in Normal Volunteers. Neuropsychobiology. 1990;24:159–164. doi: 10.1159/000119478. PubMed DOI
Alkuraishy H.M., Al-Gareeb A.I., Albuhadilly A.K. Vinpocetine and Pyritinol: A New Model for Blood Rheological Modulation in Cerebrovascular Disorders—A Randomized Controlled Clinical Study. Biomed. Res. Int. 2014;2014:324307. doi: 10.1155/2014/324307. PubMed DOI PMC
Nachbar F., Korting H.C., Vogl T. Erythema multiforme-like Eruption in Association with Severe Headache following Pyritinol. Dermatology. 1993;187:42–46. doi: 10.1159/000247196. PubMed DOI
Straumann A., Bauer M., Pichler W.J., Pirovino M. Acute pancreatitis due to pyritinol: An immune-mediated phenomenon. Gastroenterology. 1998;115:452–454. doi: 10.1016/S0016-5085(98)70212-4. PubMed DOI
Leopold M. Pyritinol. In: Aronson J.K., editor. Meyler’s Side Effects of Drugs. 16th ed. Elsevier; Oxford, UK: 2016. pp. 1067–1068. DOI
Barradell L.B., Brogden R.N. Oral Naftidrofuryl. Drugs Aging. 1996;8:299–322. doi: 10.2165/00002512-199608040-00005. PubMed DOI
Goldsmith D.R., Wellington K. Naftidrofuryl. Drugs Aging. 2005;22:967–977. doi: 10.2165/00002512-200522110-00006. PubMed DOI
Kiss B., Kárpáti E. Mechanism of action of vinpocetine. Acta Pharm. Hung. 1996;66:213–224. PubMed
Dubey A., Kumar N., Mishra A., Singh Y., Tiwari M. Review on Vinpocetine. Int. J. Pharm. Life Sci. 2020;11:6590–6597.
Sharma N., Sharma V.K., Manikyam H.K., Krishna A.B. Ergot alkaloids: A review on therapeutic applications. Eur. J. Med. Plants. 2016;14:1–17. doi: 10.9734/EJMP/2016/25975. DOI
Lörincz C., Szász K., Kisfaludy L. The synthesis of ethyl apovincaminate. Arzneimittelforschung. 1976;26:1907. PubMed
Hagiwara M., Endo T., Hidaka H. Effects of vinpocetine on cyclic nucleotide metabolism in vascular smooth muscle. Biochem. Pharmacol. 1984;33:453–457. doi: 10.1016/0006-2952(84)90240-5. PubMed DOI
Molnár P., Erdő S.L. Vinpocetine is as potent as phenytoin to block voltage-gated Na+ channels in rat cortical neurons. Eur. J. Pharmacol. 1995;273:303–306. doi: 10.1016/0014-2999(94)00755-V. PubMed DOI
Erdõ S.L., Molnár P., Lakics V., Bence J.Z., Tömösközi Z. Vincamine and vincanol are potent blockers of voltage-gated Na+ channels. Eur. J. Pharmacol. 1996;314:69–73. doi: 10.1016/S0014-2999(96)00542-0. PubMed DOI
Chiu P.J.S., Tetzloff G., Ahn H.-S., Sybertz E.J. Comparative Effects of Vinpocetine and 8-Br-Cyclic GMP on the Contraction and 45Ca-Fluxes in the Rabbit Aorta. Am. J. Hypertens. 1988;1:262–268. doi: 10.1093/ajh/1.3.262. PubMed DOI
Milusheva E., Sperlágh B., Kiss B., Szporny L., Pásztor E., Papasova M., Vizi E.S. Inhibitory effect of hypoxic condition on acetylcholine release is partly due to the effect of adenosine released from the tissue. Brain Res. Bull. 1990;24:369–373. doi: 10.1016/0361-9230(90)90091-D. PubMed DOI
Miyamoto M., Murphy T.H., Schnaar R.L., Coyle J.T. Antioxidants protect against glutamate-induced cytotoxicity in a neuronal cell line. J. Pharmacol. Exp. Ther. 1989;250:1132–1140. PubMed
Krieglstein J., Rischke R. Vinpocetine increases the neuroprotective effect of adenosine in vitro. Eur. J. Pharmacol. 1991;205:7–10. doi: 10.1016/0014-2999(91)90762-F. PubMed DOI
Patyar S., Prakash A., Modi M., Medhi B. Role of vinpocetine in cerebrovascular diseases. Pharmacol. Rep. 2011;63:618–628. doi: 10.1016/S1734-1140(11)70574-6. PubMed DOI
Li J., Chen F., Hu C., He L., Yan K., Zhou L., Pan W. Optimized Preparation of in Situ Forming Microparticles for the Parenteral Delivery of Vinpocetine. Chem. Pharm. Bull. 2008;56:796–801. doi: 10.1248/cpb.56.796. PubMed DOI
Vas Á., Gulyás B. Eburnamine derivatives and the brain. Med. Res. Rev. 2005;25:737–757. doi: 10.1002/med.20043. PubMed DOI
Willson C. Reference Module in Biomedical Sciences. Elsevier; Amsterdam, The Netherlands: 2015. Vinpocetine. DOI
Avula B., Chittiboyina A.G., Sagi S., Wang Y.-H., Wang M., Khan I.A., Cohen P.A. Identification and quantification of vinpocetine and picamilon in dietary supplements sold in the United States. Drug Test. Anal. 2016;8:334–343. doi: 10.1002/dta.1853. PubMed DOI
Cohen P.A. Vinpocetine: An Unapproved Drug Sold as a Dietary Supplement. Mayo Clin. Proc. 2015;90:1455. doi: 10.1016/j.mayocp.2015.07.008. PubMed DOI
Waidyanatha S., Toy H., South N., Gibbs S., Mutlu E., Burback B., McIntyre B.S., Catlin N. Systemic exposure of vinpocetine in pregnant Sprague Dawley rats following repeated oral exposure: An investigation of fetal transfer. Toxicol. Appl. Pharmacol. 2018;338:83–92. doi: 10.1016/j.taap.2017.11.011. PubMed DOI PMC
Louis J.-C. Effect of naftidrofuryl on metabolism and survival of cultured neurons. Neurochem. Res. 1989;14:1195–1201. doi: 10.1007/BF00965509. PubMed DOI
Meynaud A., Grand M., Fontaine L. Effect of naftidrofuryl upon energy metabolism of the brain. Arzneimittelforschung. 1973;23:1431–1436. PubMed
Toussaint O., Houbion A., Remacle J. Effects of modulations of the energetic metabolism on the mortality of cultured cells. Biochim. Biophys. Acta Bioenerg. 1994;1186:209–220. doi: 10.1016/0005-2728(94)90180-5. PubMed DOI
Barradas M.A., Stansby G., Hamilton G., Mikhailidis D.P. Effect of naftidrofuryl and aspirin on platelet aggregation in peripheral vascular disease. In Vivo. 1993;7:543–548. PubMed
Kirsten R., Erdeg B., Moxter D., Hesse K., Breidert M., Nelson K. Platelet aggregation after naftidrofuryl application in vitro and ex vivo. Int. J. Clin. Pharmacol. Ther. 1995;33:81–84. PubMed
Nabeshima T., Hiramatsu M., Niwa K., Fuji K., Kameyama T. Effect of naftidrofuryl oxalate on 5-HT2 receptors in mouse brain: Evaluation based on quantitative autoradiography and head-twitch response. Eur. J. Pharmacol. 1992;223:109–115. doi: 10.1016/0014-2999(92)94828-J. PubMed DOI
Hoyer D., Clarke D.E., Fozard J.R., Hartig P.R., Martin G.R., Mylecharane E.J., Saxena P.R., Humphrey P.P. International Union of Pharmacology classification of receptors for 5-hydroxytryptamine (Serotonin) Pharmacol. Rev. 1994;46:157–203. PubMed
Plotkine M., Massad L., Allix M., Boulu R.G. A new arterial thrombosis model to study antithrombotic agents: Efficacy of naftidrofuryl. Clin. Hemorheol. Microcirc. 1989;9:339–349. doi: 10.3233/CH-1989-9218. DOI
Kienbaum P., Braun M., Hohlfeld T., Weber A.A., Sarbia M., Schrör K. Antiatherosclerotic effects of oral naftidrofuryl in cholesterol-fed rabbits involve inhibition of neutrophil function. J. Cardiovasc. Pharmacol. 1995;25:774–781. doi: 10.1097/00005344-199505000-00013. PubMed DOI
Ogawa S.-i., Kameyama T., Nabeshima T. Naftidrofuryl oxalate, nootropic effects on the scopolamine- and the basal forebrain lesion-induced amnesia in rats. Pharmacol. Biochem. Behav. 1991;39:997–1002. doi: 10.1016/0091-3057(91)90065-A. PubMed DOI
Jung F., Kiesewetter H., Mrowietz C., Leipnitz G., Braun B., Wappler M., Scheffler P., Wenzel E. Hemorrheological, micro- and macrocirculatory effects of naftidrofuryl in an acute study: A randomized, placebo-controlled, double-blind individual comparison. Int. J. Clin. Pharmacol. Ther. Toxicol. 1987;25:507–514. PubMed
Shaw S.W.J., Johnson R.H. The Effect of Naftidrofuryl on the Metabolic Response to Exercise in Man. Acta Neurol. Scand. 1975;52:231–237. doi: 10.1111/j.1600-0404.1975.tb05777.x. PubMed DOI
De Backer T., Vander Stichele R., Lehert P., Van Bortel L. Naftidrofuryl for intermittent claudication: Meta-analysis based on individual patient data. BMJ. 2009;338:b603. doi: 10.1136/bmj.b603. PubMed DOI PMC
Yaman A., Yaman H. Complementary Medications (Statins, Nicergoline, Naftidrofuryl) in Dementia. In: Riederer P., Laux G., Nagatsu T., Le W., Riederer C., editors. NeuroPsychopharmacotherapy. Springer International Publishing; Cham, Switzerland: 2020. pp. 1–14. DOI
Möller H.J., Hartmann A., Kessler C., Rainer M., Brown T., Gamand S., Lehert P. Naftidrofuryl in the treatment of vascular dementia. Eur. Arch. Psychiatry Clin. Neurosci. 2001;251:247–254. doi: 10.1007/PL00007541. PubMed DOI
Cholongitas E., Papatheodoridis G.V., Mavrogiannaki A., Manesis E. Naftidrofuryl-induced liver injury. Am. J. Gastroenterol. 2003;98:1448–1450. doi: 10.1111/j.1572-0241.2003.07506.x. PubMed DOI
Stoll A., Hofmann A. Die Alkaloide der Ergotoxingruppe: Ergocristin, Ergokryptin und Ergocornin. (7. Mitteilung über Mutterkornalkaloide) Helv. Chim. Acta. 1943;26:1570–1601. doi: 10.1002/hlca.19430260522. DOI
Wilbrandt R. Treatment of Hypertension With Hydergine: A Review of 200 Cases. Angiology. 1953;4:183–194. doi: 10.1177/000331975300400301. PubMed DOI
Ammon R., Sharma R., Gambert S.R., Lal Gupta K. Hydergine revisited: A statistical analysis of studies showing efficacy in the treatment of cognitively impaired elderly. AGE. 1995;18:5–9. doi: 10.1007/BF02434076. DOI
Sticher O., Hamburger M. Albert Hofmann (1906–2008)–an Obituary. Planta Med. 2008;74:791–793. doi: 10.1055/s-2008-1081289. PubMed DOI
Walovitch R.C., Ingram D.K., Spangler E.L., London E.D. Co-dergocrine, cerebral glucose utilization and maze performance in middle-aged rats. Pharmacol. Biochem. Behav. 1987;26:95–101. doi: 10.1016/0091-3057(87)90540-5. PubMed DOI
Nagasawa H., Kogure K., Kawashima K., Ido T., Itoh M., Hatazawa J.U.N. Effects of Co-Dergocrine Mesylate (Hydergine®) in Multi-Infarct Dementia as Evaluated by Positron Emission Tomography. Tohoku J. Exp. Med. 1990;162:225–233. doi: 10.1620/tjem.162.225. PubMed DOI
Büyüköztürk A.l., Kanıt L., Ersöz B., Menteş G., Hariri N.İ. The effects of hydergine on the MAO activity of the aged and adult rat brain. Eur. Neuropsychopharmacol. 1995;5:527–529. doi: 10.1016/0924-977X(95)80014-S. PubMed DOI
Sözmen E.Y., Kanit L., Kutay F.Z., Hariri N.İ. Possible supportive effects of co-dergocrine mesylate on antioxidant enzyme systems in aged rat brain. Eur. Neuropsychopharmacol. 1998;8:13–16. doi: 10.1016/S0924-977X(97)00039-4. PubMed DOI
Imperato A., Obinu M.C., Dazzi L., Carta G., Mascia M.S., Casu M.A., Gessa G.L. Co-dergocrine (hydergine) regulates striatal and hippocampal acetylcholine release through D2; receptors. Neuroreport. 1994;5:674–676. doi: 10.1097/00001756-199402000-00003. PubMed DOI
Amenta F., Cavallotti C., Franch F., Ricci A. Muscarinic cholinergic receptors in the hippocampus of the aged rat: Effects of long-term hydergine administration. Arch. Int. Pharmacodyn. Ther. 1989;297:225–234. PubMed
Amenta D., Ferrante F., Franch F., Amenta F. Effects of Long-Term Hydergine® Administration on Lipofuscin Accumulation in Senescent Rat Brain. Gerontology. 1988;34:250–256. doi: 10.1159/000212963. PubMed DOI
Szewczykowski J., Meyer J.S., Kondo A., Nomura F., Teraura T. Effects of ergot alkaloids (Hydergine) on cerebral hemodynamics and oxygen consumption in monkeys. J. Neurol. Sci. 1970;10:25–31. doi: 10.1016/0022-510X(70)90089-4. PubMed DOI
Saletu B., Grünberger J., Anderer R. On brain protection of co-dergocrine mesylate (Hydergine) against hypoxic hypoxidosis of different severity: Double-blind placebo-controlled quantitative EEG and psychometric studies. Int. J. Clin. Pharmacol. Ther. Toxicol. 1990;28:510–524. PubMed
Schneider L.S., Olin J.T. Overview of Clinical Trials of Hydergine in Dementia. Arch. Neurol. 1994;51:787–798. doi: 10.1001/archneur.1994.00540200063018. PubMed DOI
Flynn B.L., Ranno A.E. Pharmacologic Management of Alzheimer Disease Part II: Antioxidants, Antihypertensives, and Ergoloid Derivatives. Ann. Pharmacother. 1999;33:188–197. doi: 10.1345/aph.17172. PubMed DOI
Thompson T.L., Filley C.M., Mitchell W.D., Culig K.M., LoVerde M., Byyny R.L. Lack of Efficacy of Hydergine in Patients with Alzheimer’s Disease. N. Engl. J. Med. 1990;323:445–448. doi: 10.1056/NEJM199008163230704. PubMed DOI
Olpe H.R., Steinmann M.W. The effect of vincamine, hydergine and piracetam on the firing rate of locus coeruleus neurons. J. Neural Transm. 1982;55:101–109. doi: 10.1007/BF01243753. PubMed DOI
Zoglio M.A., Maulding H.V. Complexes of Ergot Alkaloids and Derivatives II: Interaction of Dihydroergotoxine with Certain Xanthines. J. Pharm. Sci. 1970;59:215–219. doi: 10.1002/jps.2600590215. PubMed DOI
Cannon J.G. Burger’s Medicinal Chemistry and Drug Discovery. Spring; Berlin/Heidelberg, Germany: 1984. Cholinergics; pp. 39–108. DOI
White H.L., Scates P.W. Acetyl-L-carnitine as a precursor of acetylcholine. Neurochem. Res. 1990;15:597–601. doi: 10.1007/BF00973749. PubMed DOI
Heise G.A. Facilitation of memory and cognition by drugs. Trends Pharmacol. Sci. 1987;8:65–68. doi: 10.1016/0165-6147(87)90012-5. DOI
Fernandes G.D., Alberici R.M., Pereira G.G., Cabral E.C., Eberlin M.N., Barrera-Arellano D. Direct characterization of commercial lecithins by easy ambient sonic-spray ionization mass spectrometry. Food Chem. 2012;135:1855–1860. doi: 10.1016/j.foodchem.2012.06.072. PubMed DOI
Wendel A. Kirk-Othmer Encyclopedia of Chemical Technology. Wiley; New York, NY, USA: 2000. Lecithin. DOI
Canty D.J., Zeisel S.H. Lecithin and Choline in Human Health and Disease. Nutr. Rev. 1994;52:327–339. doi: 10.1111/j.1753-4887.1994.tb01357.x. PubMed DOI
Chung S.-Y., Moriyama T., Uezu E., Uezu K., Hirata R., Yohena N., Masuda Y., Kokubu Y., Yamamoto S. Administration of Phosphatidylcholine Increases Brain Acetylcholine Concentration and Improves Memory in Mice with Dementia. J. Nutr. 1995;125:1484–1489. doi: 10.1093/jn/125.6.1484. PubMed DOI
Higgins J.P.T., Flicker L. Lecithin for dementia and cognitive impairment. Cochrane Database Syst. Rev. 2000 doi: 10.1002/14651858.CD001015. PubMed DOI
Ladd S.L., Sommer S.A., LaBerge S., Toscano W. Effect of phosphatidylcholine on explicit memory. Clin. Neuropharmacol. 1993;16:540–549. doi: 10.1097/00002826-199312000-00007. PubMed DOI
Kulkarni R., Girish K.J., Kumar A. Nootropic herbs (Medhya Rasayana) in Ayurveda: An update. Pharmacogn. Rev. 2012;6:147–153. doi: 10.4103/0973-7847.99949. PubMed DOI PMC
Dwivedi P., Singh R., Malik M.T., Jawaid T. A traditional approach to herbal nootropic agents: An overview. Int. J. Pharm. Sci. 2012;3:630–636.
Zuin V.G., Vilegas J.H.Y. Pesticide residues in medicinal plants and phytomedicines. Phytother. Res. 2000;14:73–88. doi: 10.1002/(SICI)1099-1573(200003)14:2<73::AID-PTR577>3.0.CO;2-#. PubMed DOI
Pandey A., Savita R. Harvesting and post-harvest processing of medicinal plants: Problems and prospects. J. Pharm. Innov. 2017;6:229–235.
Mishra M., Kotwal P., Prasad C. Harvesting of medicinal plants in the forest of Central India and its impact on quality of raw materials: A case of Nagpur District, India. Ecoprint Int. J. Ecol. 2009;16:35–42. doi: 10.3126/eco.v16i0.3471. DOI
Harnischfeger G. Proposed Guidelines for Commercial Collection of Medicinal Plant Material. J. Herbs Spices Med. Plants. 2000;7:43–50. doi: 10.1300/J044v07n01_06. DOI
Tanko H., Carrier D.J., Duan L., Clausen E. Pre- and post-harvest processing of medicinal plants. Plant Genet. Res. 2005;3:304–313. doi: 10.1079/PGR200569. DOI
Belwal T., Cravotto C., Prieto M.A., Venskutonis P.R., Daglia M., Devkota H.P., Baldi A., Ezzat S.M., Gómez-Gómez L., Salama M.M., et al. Effects of different drying techniques on the quality and bioactive compounds of plant-based products: A critical review on current trends. Dry. 2022;40:1539–1561. doi: 10.1080/07373937.2022.2068028. DOI
Lewicki P.P. Effect of pre-drying treatment, drying and rehydration on plant tissue properties: A review. Int. J. Food Prop. 1998;1:1–22. doi: 10.1080/10942919809524561. DOI
Abascal K., Ganora L., Yarnell E. The effect of freeze-drying and its implications for botanical medicine: A review. Phytother. Res. 2005;19:655–660. doi: 10.1002/ptr.1651. PubMed DOI
Liapis A.I., Bruttini R. Freeze drying. In: Mujumdar A.S., editor. Handbook of Industrial Drying. CRC Press; Boca Raton, FL, USA: 2020. pp. 309–343.
Wijesekera R. The Medicinal Plant Industry. Routledge; London, UK: 2017.
Fonmboh D.J., Abah E.R., Fokunang T.E., Herve B., Teke G.N., Rose N.M., Borgia N.N., Fokunang L.B., Andrew B.N., Kaba N. An overview of methods of extraction, isolation and characterization of natural medicinal plant products in improved traditional medicine research. Asian J. Res. Med. Pharm. Sci. 2020;9:31–57. doi: 10.9734/ajrimps/2020/v9i230152. DOI
Fu Y., Ji L.L. Chronic Ginseng Consumption Attenuates Age-Associated Oxidative Stress in Rats. J. Nutr. 2003;133:3603–3609. doi: 10.1093/jn/133.11.3603. PubMed DOI
Churchill J.D., Gerson J.L., Hinton K.A., Mifek J.L., Walter M.J., Winslow C.L., Deyo R.A. The nootropic properties of ginseng saponin Rb1 are linked to effects on anxiety. Integr. Physiol. Behav. Sci. 2002;37:178–187. doi: 10.1007/BF02734180. PubMed DOI
Wang Y., Liu J., Zhang Z., Bi P., Qi Z., Zhang C. Anti-neuroinflammation effect of ginsenoside Rbl in a rat model of Alzheimer disease. Neurosci. Lett. 2011;487:70–72. doi: 10.1016/j.neulet.2010.09.076. PubMed DOI
Yang L., Zhang J., Zheng K., Shen H., Chen X. Long-term Ginsenoside Rg1 Supplementation Improves Age-Related Cognitive Decline by Promoting Synaptic Plasticity Associated Protein Expression in C57BL/6J Mice. J. Gerontol. A. 2013;69A:282–294. doi: 10.1093/gerona/glt091. PubMed DOI
Yu J., Eto M., Akishita M., Kaneko A., Ouchi Y., Okabe T. Signaling pathway of nitric oxide production induced by ginsenoside Rb1 in human aortic endothelial cells: A possible involvement of androgen receptor. Biochem. Biophys. Res. Commun. 2007;353:764–769. doi: 10.1016/j.bbrc.2006.12.119. PubMed DOI
Diamond B.J., Shiflett S.C., Feiwel N., Matheis R.J., Noskin O., Richards J.A., Schoenberger N.E. Ginkgo biloba extract: Mechanisms and clinical indications. Arch. Phys. Med. Rehabil. 2000;81:668–678. doi: 10.1016/S0003-9993(00)90052-2. PubMed DOI
Kim M.-S., Bang J.H., Lee J., Han J.-S., Baik T.G., Jeon W.K. Ginkgo biloba L. extract protects against chronic cerebral hypoperfusion by modulating neuroinflammation and the cholinergic system. Phytomedicine. 2016;23:1356–1364. doi: 10.1016/j.phymed.2016.07.013. PubMed DOI
Nishimon S., Yamaguchi M., Muraki H., Sakai N., Nishino S. Intraperitoneal injection of ginkgolide B, a major active compound of Ginkgo biloba, dose-dependently increases the amount of wake and decreases non-rapid eye movement sleep in C57BL/6 mice. Neurosci. Lett. 2020;722:134832. doi: 10.1016/j.neulet.2020.134832. PubMed DOI
Stough C., Clarke J., Lloyd J., Nathan P.J. Neuropsychological changes after 30-day Ginkgo biloba administration in healthy participants. Int. J. Neuropsychopharmacol. 2001;4:131–134. doi: 10.1017/S1461145701002292. PubMed DOI
Valli G., Giardina E.-G.V. Benefits, adverse effects and drug interactionsof herbal therapies with cardiovascular effects. J. Am. Coll. Cardiol. 2002;39:1083–1095. doi: 10.1016/S0735-1097(02)01749-7. PubMed DOI
Chanana P., Kumar A. Possible Involvement of Nitric Oxide Modulatory Mechanisms in the Neuroprotective Effect of Centella asiatica Against Sleep Deprivation Induced Anxiety Like Behaviour, Oxidative Damage and Neuroinflammation. Phytother. Res. 2016;30:671–680. doi: 10.1002/ptr.5582. PubMed DOI
Chen C.-L., Tsai W.-H., Chen C.-J., Pan T.-M. Centella asiatica extract protects against amyloid β1–40-induced neurotoxicity in neuronal cells by activating the antioxidative defence system. J. Tradit. Complement. Med. 2016;6:362–369. doi: 10.1016/j.jtcme.2015.07.002. PubMed DOI PMC
Rao S.B., Chetana M., Uma Devi P. Centella asiatica treatment during postnatal period enhances learning and memory in mice. Physiol. Behav. 2005;86:449–457. doi: 10.1016/j.physbeh.2005.07.019. PubMed DOI
Bhattacharya S.K., Kumar A., Ghosal S. Effects of glycowithanolides from Withania somnifera on an animal model of Alzheimer’s disease and perturbed central cholinergic markers of cognition in rats. Phytother. Res. 1995;9:110–113. doi: 10.1002/ptr.2650090206. DOI
Naidu P.S., Singh A., Kulkarni S.K. Effect of Withania somnifera root extract on reserpine-induced orofacial dyskinesia and cognitive dysfunction. Phytother. Res. 2006;20:140–146. doi: 10.1002/ptr.1823. PubMed DOI
Schliebs R., Liebmann A., Bhattacharya S.K., Kumar A., Ghosal S., Bigl V. Systemic administration of defined extracts from Withania somnifera (Indian ginseng) and Shilajit differentially affects cholinergic but not glutamatergic and GABAergic markers in rat brain. Neurochem. Int. 1997;30:181–190. doi: 10.1016/S0197-0186(96)00025-3. PubMed DOI
Ziauddin M., Phansalkar N., Patki P., Diwanay S., Patwardhan B. Studies on the immunomodulatory effects of Ashwagandha. J. Ethnopharmacol. 1996;50:69–76. doi: 10.1016/0378-8741(95)01318-0. PubMed DOI
Le X.T., Pham H.T.N., Do P.T., Fujiwara H., Tanaka K., Li F., Van Nguyen T., Nguyen K.M., Matsumoto K. Bacopa monnieri Ameliorates Memory Deficits in Olfactory Bulbectomized Mice: Possible Involvement of Glutamatergic and Cholinergic Systems. Neurochem. Res. 2013;38:2201–2215. doi: 10.1007/s11064-013-1129-6. PubMed DOI
Russo A., Borrelli F., Campisi A., Acquaviva R., Raciti G., Vanella A. Nitric oxide-related toxicity in cultured astrocytes: Effect of Bacopa monniera. Life Sci. 2003;73:1517–1526. doi: 10.1016/S0024-3205(03)00476-4. PubMed DOI
Singh H., Dhawan B. Neuropsychopharmacological effects of the Ayurvedic nootropic Bacopa monniera Linn.(Brahmi) Indian J. Pharmacol. 1997;29:359.
Uabundit N., Wattanathorn J., Mucimapura S., Ingkaninan K. Cognitive enhancement and neuroprotective effects of Bacopa monnieri in Alzheimer’s disease model. J. Ethnopharmacol. 2010;127:26–31. doi: 10.1016/j.jep.2009.09.056. PubMed DOI
Espinola E.B., Dias R.F., Mattei R., Carlini E.A. Pharmacological activity of Guarana (Paullinia cupana Mart.) in laboratory animals. J. Ethnopharmacol. 1997;55:223–229. doi: 10.1016/S0378-8741(96)01506-1. PubMed DOI
Otobone F.J., Sanches A.C., Nagae R.L., Martins J.V.C., Obici S., Mello J.C.P.d., Audi E.A. Effect of crude extract and its semi purified constituents from guaraná seeds [Paullinia cupana var. sorbilis (Mart.) lucke] on cognitive performance in Morris water maze in rats. Braz. Arch. Biol. Technol. 2005;48:723–728. doi: 10.1590/S1516-89132005000600007. DOI
Cropley M., Banks A.P., Boyle J. The Effects of Rhodiola rosea L. Extract on Anxiety, Stress, Cognition and Other Mood Symptoms. Phytother. Res. 2015;29:1934–1939. doi: 10.1002/ptr.5486. PubMed DOI
Perfumi M., Mattioli L. Adaptogenic and central nervous system effects of single doses of 3% rosavin and 1% salidroside Rhodiola rosea L. extract in mice. Phytother. Res. 2007;21:37–43. doi: 10.1002/ptr.2013. PubMed DOI
Yu S., Liu M., Gu X., Ding F. Neuroprotective Effects of Salidroside in the PC12 Cell Model Exposed to Hypoglycemia and Serum Limitation. Cell Mol. Neurobiol. 2008;28:1067–1078. doi: 10.1007/s10571-008-9284-z. PubMed DOI PMC
Sa F., Zhang L.Q., Chong C.M., Guo B.J., Li S., Zhang Z.J., Zheng Y., Hoi P.M., Lee S.M.Y. Discovery of novel anti-parkinsonian effect of schisantherin A in in vitro and in vivo. Neurosci. Lett. 2015;593:7–12. doi: 10.1016/j.neulet.2015.03.016. PubMed DOI
Yan T., Shang L., Wang M., Zhang C., Zhao X., Bi K., Jia Y. Lignans from Schisandra chinensis ameliorate cognition deficits and attenuate brain oxidative damage induced by D-galactose in rats. Metab. Brain Dis. 2016;31:653–661. doi: 10.1007/s11011-016-9804-3. PubMed DOI
Zhang L.Q., Sa F., Chong C.M., Wang Y., Zhou Z.Y., Chang R.C.C., Chan S.W., Hoi P.M., Yuen Lee S.M. Schisantherin A protects against 6-OHDA-induced dopaminergic neuron damage in zebrafish and cytotoxicity in SH-SY5Y cells through the ROS/NO and AKT/GSK3β pathways. J. Ethnopharmacol. 2015;170:8–15. doi: 10.1016/j.jep.2015.04.040. PubMed DOI
Bajpai V.K., Sharma A., Kim S.H., Kim Y., Kim J.-J., Baeak K.-H. Microwave-Assisted seed essential oil of eleutherococcus senticosus and its antioxidant and free radical-scavenging activities. J. Food Biochem. 2013;37:119–127. doi: 10.1111/jfbc.12013. DOI
Gromovaya V.F., Shapoval G.S., Mironyuk I.E., Nestyuk N.V. Antioxidant properties of medicinal plants. Pharm. Chem. J. 2008;42:25–28. doi: 10.1007/s11094-008-0050-9. DOI
Szołomicki S., Samochowiec L., Wójcicki J., Droździk M. The influence of active components of Eleutherococcus senticosus on cellular defence and physical fitness in man. Phytother. Res. 2000;14:30–35. doi: 10.1002/(SICI)1099-1573(200002)14:1<30::AID-PTR543>3.0.CO;2-V. PubMed DOI
Takasugi N., Moriguchi T., Fuwa T., Sanada S., Ida Y., Shoji J., Saito H. Effect of Eleutherococcus senticosus and its components on rectal temperature, body and grip tones, motor coordination, and exploratory and spontaneous movements in acute stressed mice. Pharmacogn. Mag. 1985;39:232–237.
Yamauchi Y., Ge Y.-W., Yoshimatsu K., Komatsu K., Kuboyama T., Yang X., Tohda C. Memory Enhancement by Oral Administration of Extract of Eleutherococcus senticosus Leaves and Active Compounds Transferred in the Brain. Nutrients. 2019;11:1142. doi: 10.3390/nu11051142. PubMed DOI PMC
Caicai K., Limin H., Liming Z., Zhiqiang Z., Yongwu Y. Isolation, purification and antioxidant activity of polysaccharides from the leaves of maca (Lepidium Meyenii) Int. J. Biol. Macromol. 2018;107:2611–2619. doi: 10.1016/j.ijbiomac.2017.10.139. PubMed DOI
Guo S.-S., Gao X.-F., Gu Y.-R., Wan Z.-X., Lu A.M., Qin Z.-H., Luo L. Preservation of Cognitive Function by Lepidium meyenii (Maca) Is Associated with Improvement of Mitochondrial Activity and Upregulation of Autophagy-Related Proteins in Middle-Aged Mouse Cortex. J. Evid. Based Complement. Altern. Med. 2016;2016:4394261. doi: 10.1155/2016/4394261. PubMed DOI PMC
Rubio J., Caldas M., Dávila S., Gasco M., Gonzales G.F. Effect of three different cultivars of Lepidium meyenii (Maca) on learning and depression in ovariectomized mice. BMC Complement. Altern. Med. 2006;6:23. doi: 10.1186/1472-6882-6-23. PubMed DOI PMC
Ha D.-C., Ryu G.-H. Chemical components of red, white and extruded root ginseng. J. Korean Soc. Food Sci. Nutr. 2005;34:247–254. doi: 10.3746/jkfn.2005.34.2.247. DOI
Petkov V.D., Belcheva S., Konstantinova E., Kehayov R., Petkov V.V., Hadjiivanova C. Participation of the serotonergic system in the memory effects of Ginkgo biloba L. and Panax ginseng C. A. Mey. Phytother. Res. 1994;8:470–477. doi: 10.1002/ptr.2650080807. DOI
Nocerino E., Amato M., Izzo A.A. The aphrodisiac and adaptogenic properties of ginseng. Fitoterapia. 2000;71:S1–S5. doi: 10.1016/S0367-326X(00)00170-2. PubMed DOI
Kiefer D.S., Pantuso T. Panax ginseng. Am. Fam. Physician. 2003;68:1539–1542. PubMed
Ekor M. The growing use of herbal medicines: Issues relating to adverse reactions and challenges in monitoring safety. Front. Pharmacol. 2014;4:177. doi: 10.3389/fphar.2013.00177. PubMed DOI PMC
Masteikova R., Muselik J., Bernatonienė J., Bernatonienė R. Antioxidative activity of Ginkgo, Echinacea, and Ginseng tinctures. Medicina. 2007;43:306. doi: 10.3390/medicina43040038. PubMed DOI
Boateng I.D., Yang X.-M. Effect of different drying methods on product quality, bioactive and toxic components of Ginkgo biloba L. seed. J. Sci. Food Agric. 2021;101:3290–3297. doi: 10.1002/jsfa.10958. PubMed DOI
Canter P., Ernst E. Ginkgo biloba is not a smart drug: An updated systematic review of randomised clinical trials testing the nootropic effects of G. biloba extracts in healthy people. Hum. Psychopharmacol. 2007;22:265–278. doi: 10.1002/hup.843. PubMed DOI
Le Bars P.L., Kastelan J. Efficacy and safety of a Ginkgo biloba extract. Public Health Nutr. 2000;3:495–499. doi: 10.1017/S1368980000000574. PubMed DOI
EGb 761 . Drugs R & D. Volume 4. Springer; Berlin/Heidelberg, Germany: 2003. pp. 188–193. PubMed DOI
Mahady G.B. Ginkgo Biloba: A Review of Quality, Safety, and Efficacy. Nutr. Clin. Care. 2001;4:140–147. doi: 10.1046/j.1523-5408.2001.00135.x. DOI
Jayasinghe M., Senadheera S., Wijesekara I., Ranaweera K. Determination of macronutrient compositions in selected, frequently consumed leafy vegetables, prepared according to common culinary methods in Sri Lanka. Vidyodaya J. Sci. 2019;22:816–820. doi: 10.31357/vjs.v22i2.4384. PubMed DOI PMC
Wijeweera P., Arnason J.T., Koszycki D., Merali Z. Evaluation of anxiolytic properties of Gotukola—(Centella asiatica) extracts and asiaticoside in rat behavioral models. Phytomedicine. 2006;13:668–676. doi: 10.1016/j.phymed.2006.01.011. PubMed DOI
Gohil K.J., Patel J.A., Gajjar A.K. Pharmacological Review on Centella asiatica: A Potential Herbal Cure-all. Indian J. Pharm. Sci. 2010;72:546–556. doi: 10.4103/0250-474X.78519. PubMed DOI PMC
Anukunwithaya T., Tantisira M.H., Tantisira B., Khemawoot P. Pharmacokinetics of a standardized extract of Centella asiatica ECa 233 in rats. Planta Med. 2017;83:710–717. doi: 10.1055/s-0042-122344. PubMed DOI
Brinkhaus B., Lindner M., Schuppan D., Hahn E.G. Chemical, pharmacological and clinical profile of the East Asian medical plant Centella aslatica. Phytomedicine. 2000;7:427–448. doi: 10.1016/S0944-7113(00)80065-3. PubMed DOI
Bamola N., Verma P., Negi C. A review on some traditional medicinal plants. Int. J. Life Sci. Res. 2018;4:1550–1556. doi: 10.21276/ijlssr.2018.4.1.7. DOI
Patel K., Singh R.B., Patel D.K. Pharmacological and analytical aspects of withaferin A: A concise report of current scientific literature. Asian Pac. J. Reprod. 2013;2:238–243. doi: 10.1016/S2305-0500(13)60154-2. DOI
Raut A.A., Rege N.N., Tadvi F.M., Solanki P.V., Kene K.R., Shirolkar S.G., Pandey S.N., Vaidya R.A., Vaidya A.B. Exploratory study to evaluate tolerability, safety, and activity of Ashwagandha (Withania somnifera) in healthy volunteers. J. Ayurveda Integr. Med. 2012;3:111–114. doi: 10.4103/0975-9476.100168. PubMed DOI PMC
Meher S.K., Das B., Panda P., Bhuyan G.C., Rao M.M. Uses of Withania somnifera (Linn) Dunal (Ashwagandha) in Ayurveda and its pharmacological evidences. Res. J. Pharmacol. Pharmacodyn. 2016;8:23–29. doi: 10.5958/2321-5836.2016.00006.9. DOI
Chadha M.L. Indigenous vegetables of India with potentials for improving livelihood. Acta Hortic. 2009;806:579–586. doi: 10.17660/ActaHortic.2009.806.72. DOI
Devendra P., Patel S.S., Birwal P., Basu S., Deshmukh G., Datir R. Brahmi (Bacopa monnieri) as functional food ingredient in food processing industry. J. Pharmacogn. Phytochem. 2018;7:189–194.
Gohil K.J., Patel J.A. A review on Bacopa monniera: Current research and future prospects. Int. J. Green Pharm. 2010;4:1–9. doi: 10.4103/0973-8258.62156. DOI
Russo A., Borrelli F. Bacopa monniera, a reputed nootropic plant: An overview. Phytomedicine. 2005;12:305–317. doi: 10.1016/j.phymed.2003.12.008. PubMed DOI
Kean J.D., Downey L.A., Stough C. A systematic review of the Ayurvedic medicinal herb Bacopa monnieri in child and adolescent populations. Complement. Ther. Med. 2016;29:56–62. doi: 10.1016/j.ctim.2016.09.002. PubMed DOI
Cavalcanti V., Marques M., Do Nascimento W.M., Rocha A.W.D.O., Ferreira I.D.J., Leão D.P., Félix P.H.C., De Oliveira C.M.C. Bioproducts based on guarana (Paulinia cupana) for practitioners of physical activity. Eur. Acad. Res. 2020;8:1746–1759.
Banga S., Kumar V., Suri S., Kaushal M., Prasad R., Kaur S. Nutraceutical Potential of Diet Drinks: A Critical Review on Components, Health Effects, and Consumer Safety. J. Am. Coll. Nutr. 2020;39:272–286. doi: 10.1080/07315724.2019.1642811. PubMed DOI
Rangel M.P., De Mello J.C.P., Audi E.A. Evaluation of neurotransmitters involved in the anxiolytic and panicolytic effect of the aqueous fraction of Paullinia cupana (guaraná) in elevated T maze. Rev. Bras. Farmacogn. 2013;23:358–365. doi: 10.1590/S0102-695X2013005000024. DOI
Kennedy D.O., Haskell C.F., Wesnes K.A., Scholey A.B. Improved cognitive performance in human volunteers following administration of guarana (Paullinia cupana) extract: Comparison and interaction with Panax ginseng. Pharmacol. Biochem. Behav. 2004;79:401–411. doi: 10.1016/j.pbb.2004.07.014. PubMed DOI
Marques L.L.M., Klein T., De Mello J.C.P. Chapter 3.24—Guarana. In: Nabavi S.M., Silva A.S., editors. Nonvitamin and Nonmineral Nutritional Supplements. Academic Press; New York, NY, USA: 2019. pp. 283–288. DOI
Davydov M., Krikorian A.D. Eleutherococcus senticosus (Rupr. & Maxim.) Maxim. (Araliaceae) as an adaptogen: A closer look. J. Ethnopharmacol. 2000;72:345–393. doi: 10.1016/S0378-8741(00)00181-1. PubMed DOI
Gerontakos S., Taylor A., Avdeeva A.Y., Shikova V.A., Pozharitskaya O.N., Casteleijn D., Wardle J., Shikov A.N. Findings of Russian literature on the clinical application of Eleutherococcus senticosus (Rupr. & Maxim.): A narrative review. J. Ethnopharmacol. 2021;278:114274. doi: 10.1016/j.jep.2021.114274. PubMed DOI
Mahady G.B., Gyllenhaal C., Fong H.H., Farnsworth N.R. Ginsengs: A Review of Safety and Efficacy. Nutr. Clin. Care. 2000;3:90–101. doi: 10.1046/j.1523-5408.2000.00020.x. DOI
Bleakney T.L. Deconstructing an Adaptogen: Eleutherococcus senticosus. Holist. Nurs. Pract. 2008;22:220–224. doi: 10.1097/01.HNP.0000326005.65310.7c. PubMed DOI
Schmidt M., Thomsen M., Kelber O., Kraft K. Myths and facts in herbal medicines: Eleutherococcus senticosus (Siberian ginseng) and its contraindication in hypertensive patients. Botanics. 2014;4:27–32. doi: 10.2147/BTAT.S60734. DOI
Kołodziej B., Sugier D. Influence of plants age on the chemical composition of roseroot (Rhodiola rosea L.) Acta Sci. Pol. 2013;12:147–160.
Gregory S., Kelly N. Rhodiola rosea: A Possible Plant Adaptogen. Altern. Med. Rev. 2001;6:293–302. PubMed
Jagtap P.N., Mhetre O.S., Malavdkar P.R. A Review Article on Rhodiola Rosea: An Adaptogen Having Multiple Benefits. Int. J. Pharmacogn. 2020;7:62–69. doi: 10.13040/IJPSR.0975-8232.IJP.7(3).62-69. DOI
Panossian A., Wikman G. Pharmacology of Schisandra chinensis Bail.: An overview of Russian research and uses in medicine. J. Ethnopharmacol. 2008;118:183–212. doi: 10.1016/j.jep.2008.04.020. PubMed DOI
Liu X., Guo Y., Cai G., Gong J., Wang Y., Liu S. Chemical composition analysis of Schisandra chinensis fructus and its three processed products using UHPLC-Q-Orbitrap/MS-based metabolomics approach. Nat. Prod. Res. 2020;36:3464–3468. doi: 10.1080/14786419.2020.1858416. PubMed DOI
Li N., Liu C., Jing S., Wang M., Wang H., Sun J., Wang C., Chen J., Li H. Compound Schisandra-Ginseng-Notoginseng-Lycium Extract Ameliorates Scopolamine-Induced Learning and Memory Disorders in Mice. Evid. Based Complement. Altern. Med. 2017;2017:8632016. doi: 10.1155/2017/8632016. PubMed DOI PMC
Zovko Koncic M., Tomczyk M. New insights into dietary supplements used in sport: Active substances, pharmacological and side effects. Curr. Drug Targets. 2013;14:1079–1092. doi: 10.2174/1389450111314090016. PubMed DOI
Brinckmann J., Smith E. Maca Culture of the Junín Plateau. J. Altern. Complement. Med. 2004;10:426–430. doi: 10.1089/1075553041323821. PubMed DOI
Smith E. Maca root: Modern Rediscovery of An Ancient Andean Fertility Food. J. Am. Herb. Guild. 2004;4:15–21.
Gonzales G.F., Córdova A., Vega K., Chung A., Villena A., Góñez C., Castillo S. Effect of Lepidium meyenii (MACA) on sexual desire and its absent relationship with serum testosterone levels in adult healthy men. Andrologia. 2002;34:367–372. doi: 10.1046/j.1439-0272.2002.00519.x. PubMed DOI
Gonzales-Arimborgo C., Yupanqui I., Montero E., Alarcón-Yaquetto D.E., Zevallos-Concha A., Caballero L., Gasco M., Zhao J., Khan I.A., Gonzales G.F. Acceptability, Safety, and Efficacy of Oral Administration of Extracts of Black or Red Maca (Lepidium meyenii) in Adult Human Subjects: A Randomized, Double-Blind, Placebo-Controlled Study. Pharmaceuticals. 2016;9:49. doi: 10.3390/ph9030049. PubMed DOI PMC
West E., Krychman M. Natural Aphrodisiacs—A Review of Selected Sexual Enhancers. Sex. Med. Rev. 2015;3:279–288. doi: 10.1002/smrj.62. PubMed DOI
Turnbull D., Rodricks J.V., Mariano G.F., Chowdhury F. Caffeine and cardiovascular health. Regul. Toxicol. Pharmacol. 2017;89:165–185. doi: 10.1016/j.yrtph.2017.07.025. PubMed DOI
Nootropic Herbs, Shrubs, and Trees as Potential Cognitive Enhancers