• This record comes from PubMed

Nootropic Herbs, Shrubs, and Trees as Potential Cognitive Enhancers

. 2023 Mar 18 ; 12 (6) : . [epub] 20230318

Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic

Document type Journal Article, Review

Grant support
SV22-2-21140 Faculty of Agrobiology, Food, and Natural Resources of CZU Prague project

Plant-based nootropics are a diverse group of natural drugs that can improve cognitive abilities through various physiological mechanisms, especially in cases where these functions are weakened or impaired. In many cases, the nootropics enhance erythrocyte plasticity and inhibit aggregation, which improves the blood's rheological properties and increases its flow to the brain. Many of these formulations possess antioxidant activity that protects brain tissue from neurotoxicity and improves the brain's oxygen supply. They can induce the synthesis of neuronal proteins, nucleic acids, and phospholipids for constructing and repairing neurohormonal membranes. These natural compounds can potentially be present in a great variety of herbs, shrubs, and even some trees and vines. The plant species reviewed here were selected based on the availability of verifiable experimental data and clinical trials investigating potential nootropic effects. Original research articles, relevant animal studies, meta-analyses, systematic reviews, and clinical trials were included in this review. Selected representatives of this heterogeneous group included Bacopa monnieri (L.) Wettst., Centella asiatica (L.) Urban, Eleutherococcus senticosus (Rupr. & Maxim.) Maxim., Ginkgo biloba L., Lepidium meyenii Walp., Panax ginseng C.A. Meyer, Paullinia cupana Kunth, Rhodiola rosea L., Schisandra chinensis (Turcz.) Baill., and Withania somnifera (L.) Dunal. The species are depicted and described, together with their active components and nootropic effects, and evidence of their efficacy is presented. The study provides brief descriptions of the representative species, their occurrence, history, and the chemical composition of the principle medicinal compounds, with uses, indications, experimental treatments, dosages, possible side effects, and contraindications. Most plant nootropics must be taken at optimal doses for extended periods before measurable improvement occurs, but they are generally very well tolerated. Their psychoactive properties are not produced by a single molecule but by a synergistic combination of several compounds. The available data suggest that including extracts from these plants in medicinal products to treat cognitive disorders can have substantial potential therapeutic benefits.

See more in PubMed

Saran P.L., Singh S., Solanki V., Choudhary R., Manivel P. Evaluation of Asparagus adscendens accessions for root yield and shatavarin IV content in India. Turk. J. Agric. For. 2021;45:475–483. doi: 10.3906/tar-2006-42. DOI

Tamer C.E., Temel Ş.G., Suna S., Karabacak A.Ö., Özcan T., Ersan L.Y., Kaya B.T., Çopur Ö.U. Evaluation of bioaccessibility and functional properties of kombucha beverages fortified with different medicinal plant extracts. Turk. J. Agric. For. 2021;45:13–32. doi: 10.3906/tar-2003-75. DOI

Petrovska B.B. Historical review of medicinal plants’ usage. Pharmacogn. Rev. 2012;6:1–5. doi: 10.4103/0973-7847.95849. PubMed DOI PMC

Vyas S., Kothari S., Kachhwaha S. Nootropic medicinal plants: Therapeutic alternatives for Alzheimer’s disease. J. Herb. Med. 2019;17:100291. doi: 10.1016/j.hermed.2019.100291. DOI

Giurgea C. Pharmacology of integrative activity of the brain. Attempt at nootropic concept in psychopharmacology. Actual. Pharm. 1972;25:115–156. PubMed

Giurgea C. The “nootropic” approach to the pharmacology of the integrative activity of the brain 1, 2. Integr. Psychol. Behav. Sci. 1973;8:108–115. doi: 10.1007/BF03000311. PubMed DOI

Giurgea C., Salama M. Nootropic drugs. Prog. Neuro-Psychopharmacol. 1977;1:235–247. doi: 10.1016/0364-7722(77)90046-7. DOI

Dormehl I.C., Jordaan B., Oliver D.W., Croft S. SPECT monitoring of improved cerebral blood flow during long-term treatment of elderly patients with nootropic drugs. Clin. Nucl. Med. 1999;24:29–34. doi: 10.1097/00003072-199901000-00007. PubMed DOI

Suliman N.A., Mat Taib C.N., Mohd Moklas M.A., Adenan M.I., Hidayat Baharuldin M.T., Basir R. Establishing Natural Nootropics: Recent Molecular Enhancement Influenced by Natural Nootropic. Evid.-Based Complement. Altern. Med. 2016;2016:4391375. doi: 10.1155/2016/4391375. PubMed DOI PMC

Kulkarni R., Girish K.J., Kumar A. Nootropic herbs (Medhya Rasayana) in Ayurveda: An update. Pharmacogn. Rev. 2012;6:147–153. doi: 10.4103/0973-7847.99949. PubMed DOI PMC

Malík M., Tlustoš P. Nootropics as Cognitive Enhancers: Types, Dosage and Side Effects of Smart Drugs. Nutrients. 2022;14:3367. doi: 10.3390/nu14163367. PubMed DOI PMC

Wahl D., Solon-Biet S.M., Cogger V.C., Fontana L., Simpson S.J., Le Couteur D.G., Ribeiro R.V. Aging, lifestyle and dementia. Neurobiol. Dis. 2019;130:104481. doi: 10.1016/j.nbd.2019.104481. PubMed DOI

Lo R.Y. The borderland between normal aging and dementia. Tzu. Chi. Med. J. 2017;29:65–71. doi: 10.4103/tcmj.tcmj_18_17. PubMed DOI PMC

Jalbert J.J., Daiello L.A., Lapane K.L. Dementia of the Alzheimer Type. Epidemiol. Rev. 2008;30:15–34. doi: 10.1093/epirev/mxn008. PubMed DOI

Emre M. Dementia associated with Parkinson’s disease. Lancet Neurol. 2003;2:229–237. doi: 10.1016/S1474-4422(03)00351-X. PubMed DOI

Knopman D.S., Boeve B.F., Petersen R.C. Essentials of the Proper Diagnoses of Mild Cognitive Impairment, Dementia, and Major Subtypes of Dementia. Mayo Clin. Proc. 2003;78:1290–1308. doi: 10.4065/78.10.1290. PubMed DOI

Szakiel A., Pączkowski C., Henry M. Influence of environmental abiotic factors on the content of saponins in plants. Phytochem. Rev. 2011;10:471–491. doi: 10.1007/s11101-010-9177-x. DOI

Pandey A., Savita R. Harvesting and post-harvest processing of medicinal plants: Problems and prospects. J. Pharm. Innov. 2017;6:229–235.

Tanko H., Carrier D.J., Duan L., Clausen E. Pre- and post-harvest processing of medicinal plants. Plant Genet. Res. 2005;3:304–313. doi: 10.1079/PGR200569. DOI

Rocha R.P., Melo E.C., Radünz L.L. Influence of drying process on the quality of medicinal plants: A review. J. Med. Plant Res. 2011;5:7076–7084. doi: 10.5897/JMPRX11.001. DOI

Mohammad Azmin S.N.H., Abdul Manan Z., Wan Alwi S.R., Chua L.S., Mustaffa A.A., Yunus N.A. Herbal Processing and Extraction Technologies. Sep. Purif. Rev. 2016;45:305–320. doi: 10.1080/15422119.2016.1145395. DOI

Dwivedi P., Singh R., Malik M.T., Jawaid T. A traditional approach to herbal nootropic agents: An overview. Int. J. Pharm. Sci. 2012;3:630.

Lorca C., Mulet M., Arévalo-Caro C., Sanchez M.Á., Perez A., Perrino M., Bach-Faig A., Aguilar-Martínez A., Vilella E., Gallart-Palau X., et al. Plant-derived nootropics and human cognition: A systematic review. Crit. Rev. Food Sci. Nutr. 2022;62:1–25. doi: 10.1080/10408398.2021.2021137. PubMed DOI

Akram M., Mohiuddin E., Hannan A., Usmanghani K. Withania somnifera (L.) Dunal(Pharmacology Activity) Pharmacogn. J. 2011;2:77–78. doi: 10.1016/S0975-3575(11)80030-1. DOI

Verma N., Gupta S.K., Tiwari S., Mishra A.K. Safety of Ashwagandha Root Extract: A Randomized, Placebo-Controlled, study in Healthy Volunteers. Complement. Ther. Med. 2021;57:102642. doi: 10.1016/j.ctim.2020.102642. PubMed DOI

Santhanu K., Senthil K. Therapeutic potential of Withania somnifera (Linn) Dunal (Ashwagandha) in historical perspective and pharmacological evidence. Ann. Ayurvedic Med. 2021;10:135. doi: 10.5455/AAM.122229. DOI

Mir B.A., Khazir J., Mir N.A., Hasan T.-u., Koul S. Botanical, chemical and pharmacological review of Withania somnifera (Indian ginseng): An ayurvedic medicinal plant. Indian J. Drug Dis. 2012;1:147–160.

Rajeswara Rao B.R., Rajput D.K., Nagaraju G., Adinarayana G. Opportunities and challenges in the cultivation of Ashwagandha {Withania somnifera (L.) DUNAL} J. Pharmacogn. 2012;3:88–91.

Kumar M., Patel M., Chauhan R., Tank C., Solanki S., Patel P., Bhadauria H., Gami R., Pachchigar K., Soni N., et al. Elucidation of genotype–environment interactions and genetic stability parameters for yield, quality and agromorphological traits in ashwagandha (Withania somnifera (L.) Dunal) J. Genet. 2020;99:59. doi: 10.1007/s12041-020-01207-9. PubMed DOI

Venugopal S., Padma M., Raj Kumar M., Seenivasan N., Saidaiah P., Sathish G. Genetic variability studies in ashwagandha (Withania somnifera L.) for yield and quality traits. Pharm. Innov. J. 2021;10:188–192.

Srivastava A., Gupta A.K., Shanker K., Gupta M.M., Mishra R., Lal R.K. Genetic variability, associations, and path analysis of chemical and morphological traits in Indian ginseng [Withania somnifera (L.) Dunal] for selection of higher yielding genotypes. J. Ginseng. Res. 2018;42:158–164. doi: 10.1016/j.jgr.2017.01.014. PubMed DOI PMC

Kumar V., Dey A., Hadimani M.B., Marcovic T., Emerald M. Chemistry and pharmacology of Withania somnifera: An update. CellMed. 2015;5:1.1–1.13. doi: 10.5667/tang.2014.0030. DOI

Singh N., Bhalla M., de Jager P., Gilca M. An overview on ashwagandha: A Rasayana (rejuvenator) of Ayurveda. Afr. J. Tradit. Complement. Altern. Med. 2011;8:208–213. doi: 10.4314/ajtcam.v8i5S.9. PubMed DOI PMC

Bamola N., Verma P., Negi C. A review on some traditional medicinal plants. Int. J. Life Sci. Res. 2018;4:1550–1556. doi: 10.21276/ijlssr.2018.4.1.7. DOI

Kulkarni S.K., Dhir A. Withania somnifera: An Indian ginseng. Prog. Neuropsychopharmacol. Biol. Psychiatry. 2008;32:1093–1105. doi: 10.1016/j.pnpbp.2007.09.011. PubMed DOI

Yenisetti S., Manjunath M.J., Muralidhara M. Neuropharmacological properties of Withania somnifera-Indian Ginseng: An overview on experimental evidence with emphasis on Clinical trials and patents. Recent Pat. CNS Drug Discov. 2015;10:204–215. doi: 10.2174/1574889810666160615014106. PubMed DOI

Kulkarni S.K., George B., Mathur R. Neuroprotection by Withania somnifera root extract against lithium-pilocarpine-induced seizures. Indian Drugs. 1998;35:208–215.

Candelario M., Cuellar E., Reyes-Ruiz J.M., Darabedian N., Feimeng Z., Miledi R., Russo-Neustadt A., Limon A. Direct evidence for GABAergic activity of Withania somnifera on mammalian ionotropic GABAA and GABAρ receptors. J. Ethnopharmacol. 2015;171:264–272. doi: 10.1016/j.jep.2015.05.058. PubMed DOI

Choudhary M.I., Nawaz S.A., Zaheer-ul-Haq, Lodhi M.A., Ghayur M.N., Jalil S., Riaz N., Yousuf S., Malik A., Gilani A.H., et al. Withanolides, a new class of natural cholinesterase inhibitors with calcium antagonistic properties. Biochem. Biophys. Res. Commun. 2005;334:276–287. doi: 10.1016/j.bbrc.2005.06.086. PubMed DOI

Ziauddin M., Phansalkar N., Patki P., Diwanay S., Patwardhan B. Studies on the immunomodulatory effects of Ashwagandha. J. Ethnopharmacol. 1996;50:69–76. doi: 10.1016/0378-8741(95)01318-0. PubMed DOI

Kumar P., Kumar A. Possible Neuroprotective Effect of Withania somnifera Root Extract Against 3-Nitropropionic Acid-Induced Behavioral, Biochemical, and Mitochondrial Dysfunction in an Animal Model of Huntington’s Disease. J. Med. Food. 2009;12:591–600. doi: 10.1089/jmf.2008.0028. PubMed DOI

Naidu P.S., Singh A., Kulkarni S.K. Effect of Withania somnifera root extract on reserpine-induced orofacial dyskinesia and cognitive dysfunction. Phytother. Res. 2006;20:140–146. doi: 10.1002/ptr.1823. PubMed DOI

Yadav C.S., Kumar V., Suke S.G., Ahmed R.S., Mediratta P.K., Banerjee B.D. Propoxur-induced acetylcholine esterase inhibition and impairment of cognitive function: Attenuation by Withania somnifera. Indian J. Biochem. Biophys. 2010;47:117–120. PubMed

Chengappa K.N.R., Bowie C.R., Schlicht P.J., Fleet D., Brar J.S., Jindal R. Randomized placebo-controlled adjunctive study of an extract of Withania somnifera for cognitive dysfunction in bipolar disorder. J. Clin. Psychiatry. 2013;74:16816. doi: 10.4088/JCP.13m08413. PubMed DOI

Remenapp A., Coyle K., Orange T., Lynch T., Hooper D., Hooper S., Conway K., Hausenblas H.A. Efficacy of Withania somnifera supplementation on adult’s cognition and mood. J. Ayurveda Integr. Med. 2022;13:100510. doi: 10.1016/j.jaim.2021.08.003. PubMed DOI PMC

Xing D., Yoo C., Gonzalez D., Jenkins V., Nottingham K., Dickerson B., Leonard M., Ko J., Faries M., Kephart W., et al. Effects of Acute Ashwagandha Ingestion on Cognitive Function. Int. J. Environ. Res. Public Health. 2022;19:11852. doi: 10.3390/ijerph191911852. PubMed DOI PMC

Andrade C., Aswath A., Chaturvedi S.K., Srinivasa M., Raguram R. A double-blind, placebo-controlled evaluation of the anxiolytic efficacy ff an ethanolic extract of Withania somnifera. Indian J. Psychiatry. 2000;42:295–301. PubMed PMC

Raut A.A., Rege N.N., Tadvi F.M., Solanki P.V., Kene K.R., Shirolkar S.G., Pandey S.N., Vaidya R.A., Vaidya A.B. Exploratory study to evaluate tolerability, safety, and activity of Ashwagandha (Withania somnifera) in healthy volunteers. J. Ayurveda Integr. Med. 2012;3:111–114. doi: 10.4103/0975-9476.100168. PubMed DOI PMC

Malhotra C.L., Mehta V.L., Das P.K., Dhalla N.S. Studies on Withania-ashwagandha, Kaul. V. The effect of total alkaloids (ashwagandholine) on the central nervous system. Indian J. Physiol. Pharmacol. 1965;9:127–136. PubMed

Aphale A.A., Chibba A.D., Kumbhakarna N.R., Mateenuddin M., Dahat S.H. Subacute toxicity study of the combination of ginseng (Panax ginseng) and ashwagandha (Withania somnifera) in rats: A safety assessment. Indian J. Physiol. Pharmacol. 1998;42:299–302. PubMed

Meher S.K., Das B., Panda P., Bhuyan G.C., Rao M.M. Uses of Withania somnifera (Linn) Dunal (Ashwagandha) in Ayurveda and its pharmacological evidences. Res. J. Pharmacol. Pharmacodyn. 2016;8:23. doi: 10.5958/2321-5836.2016.00006.9. DOI

Sharma A.K., Basu I., Singh S. Efficacy and Safety of Ashwagandha Root Extract in Subclinical Hypothyroid Patients: A Double-Blind, Randomized Placebo-Controlled Trial. J. Altern. Complement. Med. 2018;24:243–248. doi: 10.1089/acm.2017.0183. PubMed DOI

Franklyn J.A., Boelaert K. Thyrotoxicosis. Lancet. 2012;379:1155–1166. doi: 10.1016/S0140-6736(11)60782-4. PubMed DOI

Bevege L. Centella asiatica: A review. Aust. J. Herb. Med. 2004;16:15–27. doi: 10.3316/informit.407696078933571. DOI

Mala A., Tulika T. Therapeutic efficacy of Centella asiatica (L.) and Momordica charantia: As traditional medicinal plant. J. Plant Sci. 2015;3:1–9. doi: 10.11648/j.jps.s.2015030101.11. DOI

Torbati F.A., Ramezani M., Dehghan R., Amiri M.S., Moghadam A.T., Shakour N., Elyasi S., Sahebkar A., Emami S.A. Ethnobotany, Phytochemistry and Pharmacological Features of Centella asiatica: A Comprehensive Review. In: Barreto G.E., Sahebkar A., editors. Pharmacological Properties of Plant-Derived Natural Products and Implications for Human Health. Springer International Publishing; Cham, Switzerland: 2021. pp. 451–499. PubMed DOI

Chachai N., Pensuriya B., Pinsuntiae T., Pratubkong P., Mungngam J., Nitmee P., Kaewsri P., Wongsatchanan S., Jindajia R., Triboun P., et al. Variability of Morphological and Agronomical Characteristics of Centella asiatica in Thailand. Trends Sci. 2021;18:502. doi: 10.48048/tis.2021.502. DOI

Devkota A., Jha P.K. Phenotypic plasticity of Centella asiatica (L.) Urb. growing in different habitats of Nepal. Trop. Plant Res. 2019;6:01–07. doi: 10.22271/tpr.2019.v6.i1.001. DOI

Devkota A., Jha P.K. Variation in growth of Centella asiatica along different soil composition. Bot. Res. Int. 2009;2:55–60.

Devkota A., Jha P.K. Growth performance and Nutrient status of Centella asiatica (L.) Urban in different landuses of Kathmandu valley, Nepal. Int. J. Ecol. Environ. Sci. 2008;34:269–275.

Rohini M.R., Smitha G.R. Studying the effect of morphotype and harvest season on yield and quality of Indian genotypes of Centella asiatica: A potential medicinal herb cum underutilized green leafy vegetable. S. Afr. J. Bot. 2022;145:275–283. doi: 10.1016/j.sajb.2021.11.024. DOI

Yousaf S., Hanif M.A., Rehman R., Azeem M.W., Racoti A. Chapter 32—Indian Pennywort. In: Hanif M.A., Nawaz H., Khan M.M., Byrne H.J., editors. Medicinal Plants of South Asia. Elsevier; Amsterdam, The Netherlands: 2020. pp. 423–437. DOI

Siddiqui B.S., Aslam H., Ali S.T., Khan S., Begum S. Chemical constituents of Centella asiatica. J. Asian Nat. Prod. Res. 2007;9:407–414. doi: 10.1080/10286020600782454. PubMed DOI

Zainol N., Voo S., Sarmidi M., Aziz R. Profiling of Centella asiatica (L.) Urban extract. Malaysian J. Anal. Sci. 2008;12:322–327.

Seevaratnam V., Banumathi P., Premalatha M., Sundaram S., Arumugam T. Functional properties of Centella asiatica (L.): A review. Int. J. Pharm. Pharm. Sci. 2012;4:8–14.

Jayasinghe M., Senadheera S., Wijesekara I., Ranaweera K. Determination of macronutrient compositions in selected, frequently consumed leafy vegetables, prepared according to common culinary methods in Sri Lanka. Vidyodaya J. Sci. 2019;22:1–6. doi: 10.31357/vjs.v22i2.4384. PubMed DOI PMC

Cox D.N., Rajasuriya S.V., Soysa P.E., Gladwin J., Ashworth A. Problems encountered in the community-based production of leaf concentrate as a supplement for pre-school children in Sri Lanka. Int. J. Food Sci. Nutr. 1993;44:123–132. doi: 10.3109/09637489309017430. DOI

Chen C.-L., Tsai W.-H., Chen C.-J., Pan T.-M. Centella asiatica extract protects against amyloid β1–40-induced neurotoxicity in neuronal cells by activating the antioxidative defence system. J. Tradit. Complement. Med. 2016;6:362–369. doi: 10.1016/j.jtcme.2015.07.002. PubMed DOI PMC

Veerendra Kumar M.H., Gupta Y.K. Effect of different extracts of Centella asiatica on cognition and markers of oxidative stress in rats. J. Ethnopharmacol. 2002;79:253–260. doi: 10.1016/S0378-8741(01)00394-4. PubMed DOI

Jayashree G., Kurup Muraleedhara G., Sudarslal S., Jacob V.B. Anti-oxidant activity of Centella asiatica on lymphoma-bearing mice. Fitoterapia. 2003;74:431–434. doi: 10.1016/S0367-326X(03)00121-7. PubMed DOI

Zainol M.K., Abd-Hamid A., Yusof S., Muse R. Antioxidative activity and total phenolic compounds of leaf, root and petiole of four accessions of Centella asiatica (L.) Urban. Food Chem. 2003;81:575–581. doi: 10.1016/S0308-8146(02)00498-3. DOI

Subathra M., Shila S., Devi M.A., Panneerselvam C. Emerging role of Centella asiatica in improving age-related neurological antioxidant status. Exp. Gerontol. 2005;40:707–715. doi: 10.1016/j.exger.2005.06.001. PubMed DOI

Chanana P., Kumar A. Possible Involvement of Nitric Oxide Modulatory Mechanisms in the Neuroprotective Effect of Centella asiatica Against Sleep Deprivation Induced Anxiety Like Behaviour, Oxidative Damage and Neuroinflammation. Phytother. Res. 2016;30:671–680. doi: 10.1002/ptr.5582. PubMed DOI

Soumyanath A., Zhong Y.-P., Yu X., Bourdette D., Koop D.R., Gold S.A., Gold B.G. Centella asiatica accelerates nerve regeneration upon oral administration and contains multiple active fractions increasing neurite elongation in-vitro. J. Pharm. Pharmacol. 2005;57:1221–1229. doi: 10.1211/jpp.57.9.0018. PubMed DOI

Rao S.B., Chetana M., Uma Devi P. Centella asiatica treatment during postnatal period enhances learning and memory in mice. Physiol. Behav. 2005;86:449–457. doi: 10.1016/j.physbeh.2005.07.019. PubMed DOI

Wijeweera P., Arnason J.T., Koszycki D., Merali Z. Evaluation of anxiolytic properties of Gotukola—(Centella asiatica) extracts and asiaticoside in rat behavioral models. Phytomedicine. 2006;13:668–676. doi: 10.1016/j.phymed.2006.01.011. PubMed DOI

Jana U., Sur T.K., Maity L.N., Debnath P.K., Bhattacharyya D. A clinical study on the management of generalized anxiety disorder with Centella asiatica. Nepal. Med. Coll. J. 2010;12:8–11. PubMed

Wattanathorn J., Mator L., Muchimapura S., Tongun T., Pasuriwong O., Piyawatkul N., Yimtae K., Sripanidkulchai B., Singkhoraard J. Positive modulation of cognition and mood in the healthy elderly volunteer following the administration of Centella asiatica. J. Ethnopharmacol. 2008;116:325–332. doi: 10.1016/j.jep.2007.11.038. PubMed DOI

Gohil K.J., Patel J.A., Gajjar A.K. Pharmacological Review on Centella asiatica: A Potential Herbal Cure-all. Indian J. Pharm. Sci. 2010;72:546–556. doi: 10.4103/0250-474X.78519. PubMed DOI PMC

Anukunwithaya T., Tantisira M.H., Tantisira B., Khemawoot P. Pharmacokinetics of a standardized extract of Centella asiatica ECa 233 in rats. Planta Med. 2017;83:710–717. doi: 10.1055/s-0042-122344. PubMed DOI

Brinkhaus B., Lindner M., Schuppan D., Hahn E.G. Chemical, pharmacological and clinical profile of the East Asian medical plant Centella aslatica. Phytomedicine. 2000;7:427–448. doi: 10.1016/S0944-7113(00)80065-3. PubMed DOI

Izu R., Aguirre A., Gil N., Diaz-Perez J.L. Allergic contact dermatitis from a cream containing Centella asiatica extract. Contact Derm. 1992;26:192–193. doi: 10.1111/j.1600-0536.1992.tb00291.x. PubMed DOI

Chivapat S., Chavalittumrong P., Tantisira M.H. Acute and sub-chronic toxicity studies of a standardized extract of Centella asiatica ECa 233. Thai J. Pharm. Sci. 2011;35:55–64.

Davydov M., Krikorian A.D. Eleutherococcus senticosus (Rupr. & Maxim.) Maxim. (Araliaceae) as an adaptogen: A closer look. J. Ethnopharmacol. 2000;72:345–393. doi: 10.1016/S0378-8741(00)00181-1. PubMed DOI

Todorova V., Ivanov K., Delattre C., Nalbantova V., Karcheva-Bahchevanska D., Ivanova S. Plant Adaptogens—History and Future Perspectives. Nutrients. 2021;13:2861. doi: 10.3390/nu13082861. PubMed DOI PMC

Sonnenbora U., Hänsel R. Eleutherococcus senticosus. In: De Smet P.A.G.M., Keller K., Hänsel R., Chandler R.F., editors. Adverse Effects of Herbal Drugs 2. Springer; Berlin/Heidelberg, Germany: 1993. pp. 159–169. DOI

Bączek K., Pawełczak A., Przybył J.L., Kosakowska O., Węglarz Z. Secondary Metabolites of Various Eleuthero (Eleutherococcus senticosus/Rupr. et Maxim./Maxim) Organs Derived from Plants Obtained by Somatic Embryogenesis. In: Ramawat K.G., Ekiert H.M., Goyal S., editors. Plant Cell and Tissue Differentiation and Secondary Metabolites: Fundamentals and Applications. Springer International Publishing; Cham, Switzerland: 2021. pp. 433–466. DOI

An C. In Vitro propagation of commonly used medicinal trees in Korea. J. For. Environ. Sci. 2019;35:272–280. doi: 10.7747/JFES.2019.35.4.272. DOI

Załuski D., Olech M., Galanty A., Verpoorte R., Kuźniewski R., Nowak R., Bogucka-Kocka A. Phytochemical Content and Pharma-Nutrition Study on Eleutherococcus senticosus Fruits Intractum. Oxid. Med. Cell Longev. 2016;2016:9270691. doi: 10.1155/2016/9270691. PubMed DOI PMC

Yan-Lin S., Lin-De L., Soon-Kwan H. Eleutherococcus senticosus as a crude medicine: Review of biological and pharmacological effects. J. Med. Plant Res. 2011;5:5946–5952. doi: 10.5897/JMPR.9000557. DOI

Huang Y.-H., Ding W.-L., Li X.-T., Cai M.-T., Li H.-L., Yang Z.-Y., Piao X.-H., Zhu S., Tohda C., Komatsu K., et al. Memory enhancement effect of saponins from Eleutherococcus senticosus leaves and blood–brain barrier-permeated saponins profiling using a pseudotargeted monitoring strategy. Food Funct. 2022;13:3603–3620. doi: 10.1039/D1FO03078G. PubMed DOI

Bajpai V.K., Sharma A., Kim S.H., Kim Y., Kim J.-J., Baek K.-H. Microwave-Assisted Seed Essential Oil of Eleutherococcus senticosus and Its Antioxidant and Free Radical-Scavenging Activities. J. Food Biochem. 2013;37:119–127. doi: 10.1111/jfbc.12013. DOI

Gromovaya V.F., Shapoval G.S., Mironyuk I.E., Nestyuk N.V. Antioxidant properties of medicinal plants. Pharm. Chem. J. 2008;42:25–28. doi: 10.1007/s11094-008-0050-9. DOI

Tohda C., Ichimura M., Bai Y., Tanaka K., Zhu S., Komatsu K. Inhibitory Effects of Eleutherococcus senticosus Extracts on Amyloid β(25-35)–Induced Neuritic Atrophy and Synaptic Loss. J. Pharmacol. Sci. 2008;107:329–339. doi: 10.1254/jphs.08046FP. PubMed DOI

Ge Y.-W., Tohda C., Zhu S., He Y.-M., Yoshimatsu K., Komatsu K. Effects of Oleanane-Type Triterpene Saponins from the Leaves of Eleutherococcus senticosus in an Axonal Outgrowth Assay. J. Nat. Prod. 2016;79:1834–1841. doi: 10.1021/acs.jnatprod.6b00329. PubMed DOI

Yamauchi Y., Ge Y.-W., Yoshimatsu K., Komatsu K., Kuboyama T., Yang X., Tohda C. Memory Enhancement by Oral Administration of Extract of Eleutherococcus senticosus Leaves and Active Compounds Transferred in the Brain. Nutrients. 2019;11:1142. doi: 10.3390/nu11051142. PubMed DOI PMC

Cicero A.F.G., Derosa G., Brillante R., Bernardi R., Nascetti S., Gaddi A. Effects of Siberian ginseng (Eleutherococcus senticosus maxim.) on elderly quality of life: A randomized clinical trial. Arch. Gerontol. Geriatr. 2004;38:69–73. doi: 10.1016/j.archger.2004.04.012. PubMed DOI

Tohda C., Matsui M., Inada Y., Yang X., Kuboyama T., Kimbara Y., Watari H. Combined Treatment with Two Water Extracts of Eleutherococcus senticosus Leaf and Rhizome of Drynaria fortunei Enhances Cognitive Function: A Placebo-Controlled, Randomized, Double-Blind Study in Healthy Adults. Nutrients. 2020;12:303. doi: 10.3390/nu12020303. PubMed DOI PMC

Mahady G.B., Gyllenhaal C., Fong H.H., Farnsworth N.R. Ginsengs: A Review of Safety and Efficacy. Nutr. Clin. Care. 2000;3:90–101. doi: 10.1046/j.1523-5408.2000.00020.x. DOI

Gerontakos S., Taylor A., Avdeeva A.Y., Shikova V.A., Pozharitskaya O.N., Casteleijn D., Wardle J., Shikov A.N. Findings of Russian literature on the clinical application of Eleutherococcus senticosus (Rupr. & Maxim.): A narrative review. J. Ethnopharmacol. 2021;278:114274. doi: 10.1016/j.jep.2021.114274. PubMed DOI

Bleakney T.L. Deconstructing an Adaptogen: Eleutherococcus senticosus. Holist. Nurs. Pract. 2008;22:220–224. doi: 10.1097/01.HNP.0000326005.65310.7c. PubMed DOI

Schmidt M., Thomsen M., Kelber O., Kraft K. Myths and facts in herbal medicines: Eleutherococcus senticosus (Siberian ginseng) and its contraindication in hypertensive patients. Botanics. 2014;4:27–32. doi: 10.2147/BTAT.S60734. DOI

Crane P.R., Crane P., von Knorring P. Ginkgo: The Tree That Time Forgot. Yale University Press; New Haven, CT, USA: 2013.

Hori S., Hori T. A Cultural History of Ginkgo in Japan and the Generic Name Ginkgo. In: Hori T., Ridge R.W., Tulecke W., Del Tredici P., Trémouillaux-Guiller J., Tobe H., editors. Ginkgo biloba a Global Treasure: From Biology to Medicine. Springer; Tokyo, Japan: 1997. pp. 385–411. DOI

Zhao Y., Paule J., Fu C., Koch M.A. Out of China: Distribution history of Ginkgo biloba L. Taxon. 2010;59:495–504. doi: 10.1002/tax.592014. DOI

Jacobs B.P., Browner W.S. Ginkgo biloba: A living fossil. Am. J. Med. 2000;108:341–342. doi: 10.1016/S0002-9343(00)00290-4. PubMed DOI

Huh H., Staba E.J. The Botany and Chemistry of Ginkgo biloba L. J. Herbs Spices Med. Plants. 1992;1:91–124. doi: 10.1300/J044v01n01_10. DOI

van Beek T.A. Chemical analysis of Ginkgo biloba leaves and extracts. J. Chromatogr. A. 2002;967:21–55. doi: 10.1016/S0021-9673(02)00172-3. PubMed DOI

Boateng I.D., Yang X.-M. Effect of different drying methods on product quality, bioactive and toxic components of Ginkgo biloba L. seed. J. Sci. Food Agric. 2021;101:3290–3297. doi: 10.1002/jsfa.10958. PubMed DOI

Masteikova R., Muselik J., Bernatonienė J., Bernatonienė R. Antioxidative activity of Ginkgo, Echinacea, and Ginseng tinctures. Medicina. 2007;43:306. doi: 10.3390/medicina43040038. PubMed DOI

Shin C.-S., Yoon N., Oh B.-S., Jeong H.-S., Yeoun P.-S., Kim D.-J. Variation of Toxin Content in Ginkgo Fruits according to Thermal Treatment. Natl. Acad. Sci. Lett. 2020;43:673–676. doi: 10.1007/s40009-020-00913-3. DOI

Maitra I., Marcocci L., Droy-Lefaix M.T., Packer L. Peroxyl radical scavenging activity of Ginkgo biloba extract EGb 761. Biochem. Pharmacol. 1995;49:1649–1655. doi: 10.1016/0006-2952(95)00089-I. PubMed DOI

Verma S., Ranawat P., Sharma N., Nehru B. Ginkgo biloba attenuates aluminum lactate-induced neurotoxicity in reproductive senescent female rats: Behavioral, biochemical, and histopathological study. Environ. Sci. Pollut. Res. 2019;26:27148–27167. doi: 10.1007/s11356-019-05743-5. PubMed DOI

Kim M.-S., Bang J.H., Lee J., Han J.-S., Baik T.G., Jeon W.K. Ginkgo biloba L. extract protects against chronic cerebral hypoperfusion by modulating neuroinflammation and the cholinergic system. Phytomedicine. 2016;23:1356–1364. doi: 10.1016/j.phymed.2016.07.013. PubMed DOI

Williams B., Watanabe C.M.H., Schultz P.G., Rimbach G., Krucker T. Age-related effects of Ginkgo biloba extract on synaptic plasticity and excitability. Neurobiol. Aging. 2004;25:955–962. doi: 10.1016/j.neurobiolaging.2003.10.008. PubMed DOI

Luo Y., Smith J.V., Paramasivam V., Burdick A., Curry K.J., Buford J.P., Khan I., Netzer W.J., Xu H., Butko P. Inhibition of amyloid-β aggregation and caspase-3 activation by the Ginkgo biloba extract EGb761. Proc. Natl. Acad. Sci. USA. 2002;99:12197–12202. doi: 10.1073/pnas.182425199. PubMed DOI PMC

Kanowski S., Herrmann W.M., Stephan K., Wierich W., Hörr R. Proof of efficacy of the Ginkgo biloba special extract EGb 761 in outpatients suffering from mild to moderate primary degenerative dementia of the Alzheimer type or multi-infarct dementia. Phytomedicine. 1997;4:3–13. doi: 10.1016/S0944-7113(97)80021-9. PubMed DOI

Stough C., Clarke J., Lloyd J., Nathan P.J. Neuropsychological changes after 30-day Ginkgo biloba administration in healthy participants. Int. J. Neuropsychopharmacol. 2001;4:131–134. doi: 10.1017/S1461145701002292. PubMed DOI

Bidzan L., Biliekiewicz A., Turczyński J. Preliminary assessment of Ginkgo biloba (Ginkofar) in patients with dementia. Psychiatr. Pol. 2005;39:559–566. PubMed

Canter P., Ernst E. Ginkgo biloba is not a smart drug: An updated systematic review of randomised clinical trials testing the nootropic effects of G. biloba extracts in healthy people. Hum. Psychopharmacol. 2007;22:265–278. doi: 10.1002/hup.843. PubMed DOI

Vellas B., Coley N., Ousset P.-J., Berrut G., Dartigues J.-F., Dubois B., Grandjean H., Pasquier F., Piette F., Robert P., et al. Long-term use of standardised Ginkgo biloba extract for the prevention of Alzheimer’s disease (GuidAge): A randomised placebo-controlled trial. Lancet Neurol. 2012;11:851–859. doi: 10.1016/S1474-4422(12)70206-5. PubMed DOI

Diamond B.J., Shiflett S.C., Feiwel N., Matheis R.J., Noskin O., Richards J.A., Schoenberger N.E. Ginkgo biloba extract: Mechanisms and clinical indications. Arch. Phys. Med. Rehabil. 2000;81:668–678. doi: 10.1016/S0003-9993(00)90052-2. PubMed DOI

Le Bars P.L., Kastelan J. Efficacy and safety of a Ginkgo biloba extract. Public Health Nutr. 2000;3:495–499. doi: 10.1017/S1368980000000574. PubMed DOI

R&D EGb 761. Drugs R D. 2003;4:188–193. doi: 10.2165/00126839-200304030-00009. PubMed DOI

Ekor M. The growing use of herbal medicines: Issues relating to adverse reactions and challenges in monitoring safety. Front. Pharmacol. 2014;4:177. doi: 10.3389/fphar.2013.00177. PubMed DOI PMC

Mahady G.B. Ginkgo biloba: A Review of Quality, Safety, and Efficacy. Nutr. Clin. Care. 2001;4:140–147. doi: 10.1046/j.1523-5408.2001.00135.x. DOI

Stoddard G.J., Archer M., Shane-McWhorter L., Bray B.E., Redd D.F., Proulx J., Zeng-Treitler Q. Ginkgo and warfarin interaction in a large veterans administration population; Proceedings of the AMIA Annual Symposium Proceedings; San Francisco, CA, USA. 14–18 November 2015; pp. 1174–1183. PubMed PMC

Jang H.-s., Roh S.Y., Jeong E.H., Kim B.-S., Sunwoo M.K. Ginkgotoxin Induced Seizure Caused by Vitamin B6 Deficiency. J. Epilepsy Res. 2015;5:104–106. doi: 10.14581/jer.15018. PubMed DOI PMC

Kosaki Y., Naito H., Nojima T., Nakao A. Epileptic Seizure from Ginkgo Nut Intoxication in an Adult. Case Rep. Emerg. Med. 2020;2020:5072954. doi: 10.1155/2020/5072954. PubMed DOI PMC

Boateng I.D. A critical review of current technologies used to reduce ginkgotoxin, ginkgotoxin-5′-glucoside, ginkgolic acid, allergic glycoprotein, and cyanide in Ginkgo biloba L. seed. Food Chem. 2022;382:132408. doi: 10.1016/j.foodchem.2022.132408. PubMed DOI

Goldstein B. Ginseng: Its History, Dispersion, and Folk Tradition. Am. J. Chin. Med. 1975;3:223–234. doi: 10.1142/S0192415X75000244. PubMed DOI

Nair R., Sellaturay S., Sriprasad S. The history of ginseng in the management of erectile dysfunction in ancient China (3500–2600 BCE) Indian J. Urol. 2012;28:15–20. doi: 10.4103/0970-1591.94946. PubMed DOI PMC

Flagg A.J. Traditional and current use of ginseng. Nurs. Clin. 2021;56:109–121. doi: 10.1016/j.cnur.2020.10.011. PubMed DOI

Proctor J.T.A., Bailey W.G. Ginseng: Industry, Botany, and Culture. Hortic. Rev. 1987;9:187–236. doi: 10.1002/9781118060827.ch6. DOI

Choi K.-t. Botanical characteristics, pharmacological effects and medicinal components of Korean Panax ginseng C A Meyer. Acta Pharmacol. Sin. 2008;29:1109–1118. doi: 10.1111/j.1745-7254.2008.00869.x. PubMed DOI

Proctor J.T., Lee J.C., Lee S.-S. Ginseng production in Korea. HortScience. 1990;25:746–750. doi: 10.21273/HORTSCI.25.7.746. DOI

Chen W., Balan P., Popovich D.G. Ginsenosides analysis of New Zealand-grown forest Panax ginseng by LC-QTOF-MS/MS. J. Ginseng. Res. 2020;44:552–562. doi: 10.1016/j.jgr.2019.04.007. PubMed DOI PMC

Chen W., Balan P., Popovich D.G. Analysis of Ginsenoside Content (Panax ginseng) from Different Regions. Molecules. 2019;24:3491. doi: 10.3390/molecules24193491. PubMed DOI PMC

Lu J.-M., Yao Q., Chen C. Ginseng compounds: An update on their molecular mechanisms and medical applications. Curr. Vasc. Pharmacol. 2009;7:293–302. doi: 10.2174/157016109788340767. PubMed DOI PMC

Hou J.P. The chemical constituents of ginseng plants. Am. J. Chin. Med. 1977;5:123–145. doi: 10.1142/S0147291777000209. PubMed DOI

Ha D.-C., Ryu G.-H. Chemical components of red, white and extruded root ginseng. J. Korean Soc. Food Sci. Nutr. 2005;34:247–254. doi: 10.3746/jkfn.2005.34.2.247. DOI

Kwon I.-S., Kim H., Hong G.-P. Utilization of pulsed infrared for the rapid semidrying of fresh ginseng with advanced qualities and extended shelf life. Food Control. 2022;138:109043. doi: 10.1016/j.foodcont.2022.109043. DOI

Yu J., Eto M., Akishita M., Kaneko A., Ouchi Y., Okabe T. Signaling pathway of nitric oxide production induced by ginsenoside Rb1 in human aortic endothelial cells: A possible involvement of androgen receptor. Biochem. Biophys. Res. Commun. 2007;353:764–769. doi: 10.1016/j.bbrc.2006.12.119. PubMed DOI

Churchill J.D., Gerson J.L., Hinton K.A., Mifek J.L., Walter M.J., Winslow C.L., Deyo R.A. The nootropic properties of ginseng saponin Rb1 are linked to effects on anxiety. Integr. Psychol. Behav. Sci. 2002;37:178–187. doi: 10.1007/BF02734180. PubMed DOI

Wang Y., Liu J., Zhang Z., Bi P., Qi Z., Zhang C. Anti-neuroinflammation effect of ginsenoside Rbl in a rat model of Alzheimer disease. Neurosci. Lett. 2011;487:70–72. doi: 10.1016/j.neulet.2010.09.076. PubMed DOI

Kim D.H., Kim D.W., Jung B.H., Lee J.H., Lee H., Hwang G.S., Kang K.S., Lee J.W. Ginsenoside Rb2 suppresses the glutamate-mediated oxidative stress and neuronal cell death in HT22 cells. J. Ginseng. Res. 2019;43:326–334. doi: 10.1016/j.jgr.2018.12.002. PubMed DOI PMC

Yang L., Zhang J., Zheng K., Shen H., Chen X. Long-term Ginsenoside Rg1 Supplementation Improves Age-Related Cognitive Decline by Promoting Synaptic Plasticity Associated Protein Expression in C57BL/6J Mice. J. Gerontol. A. 2013;69A:282–294. doi: 10.1093/gerona/glt091. PubMed DOI

Shin S.J., Park Y.H., Jeon S.G., Kim S., Nam Y., Oh S.-M., Lee Y.Y., Moon M. Red Ginseng Inhibits Tau Aggregation and Promotes Tau Dissociation In Vitro. Oxid. Med. Cell Longev. 2020;2020:7829842. doi: 10.1155/2020/7829842. PubMed DOI PMC

Goedert M. Tau protein and neurodegeneration. Semin. Cell Dev. Biol. 2004;15:45–49. doi: 10.1016/j.semcdb.2003.12.015. PubMed DOI

Petkov V.D., Belcheva S., Konstantinova E., Kehayov R., Petkov V.V., Hadjiivanova C. Participation of the serotonergic system in the memory effects of Ginkgo biloba L. and Panax ginseng C. A. Mey. Phytother. Res. 1994;8:470–477. doi: 10.1002/ptr.2650080807. DOI

Kim H.-G., Yoo S.-R., Park H.-J., Lee N.-H., Shin J.-W., Sathyanath R., Cho J.-H., Son C.-G. Antioxidant effects of Panax ginseng C.A. Meyer in healthy subjects: A randomized, placebo-controlled clinical trial. Food Chem. Toxicol. 2011;49:2229–2235. doi: 10.1016/j.fct.2011.06.020. PubMed DOI

Park K.-C., Jin H., Zheng R., Kim S., Lee S.-E., Kim B.-H., Yim S.-V. Cognition enhancing effect of panax ginseng in Korean volunteers with mild cognitive impairment: A randomized, double-blind, placebo-controlled clinical trial. Transl. Clin. Pharmacol. 2019;27:92–97. doi: 10.12793/tcp.2019.27.3.92. PubMed DOI PMC

Kiefer D.S., Pantuso T. Panax ginseng. Am. Fam. Physician. 2003;68:1539–1542. PubMed

Lee M.-H., Kwak J.H., Jeon G., Lee J.-W., Seo J.-H., Lee H.-S., Lee J.H. Red ginseng relieves the effects of alcohol consumption and hangover symptoms in healthy men: A randomized crossover study. Food Funct. 2014;5:528–534. doi: 10.1039/c3fo60481k. PubMed DOI

Je J., Kim H., Park E.J., Kim S.R., Dusabimana T., Jeong K., Yun S.P., Kim H.J., Cho K.M., Park S.W. Fermentation of Sprouted Ginseng (Panax ginseng) Increases Flavonoid and Phenolic Contents to Attenuate Alcoholic Hangover and Acute Liver Injury in Mice. Am. J. Chin. Med. 2020;49:131–146. doi: 10.1142/S0192415X21500075. PubMed DOI

Karmazyn M., Gan X.T. Chemical components of ginseng, their biotransformation products and their potential as treatment of hypertension. Mol. Cell Biochem. 2021;476:333–347. doi: 10.1007/s11010-020-03910-8. PubMed DOI

Park S.H., Chung S., Chung M.-Y., Choi H.-K., Hwang J.-T., Park J.H. Effects of Panax ginseng on hyperglycemia, hypertension, and hyperlipidemia: A systematic review and meta-analysis. J. Ginseng. Res. 2022;46:188–205. doi: 10.1016/j.jgr.2021.10.002. PubMed DOI PMC

Kim K.-M., Kwon H.-S., Jeon S.-G., Park C.-H., Sohn S.-W., Kim D.-I., Kim S.-S., Chang Y.-S., Kim Y.-K., Cho S.-H., et al. Korean Ginseng-Induced Occupational Asthma and Determination of IgE Binding Components. J. Korean Med. Sci. 2008;23:232–235. doi: 10.3346/jkms.2008.23.2.232. PubMed DOI PMC

Marques L.L.M., Ferreira E.D.F., Paula M.N.d., Klein T., Mello J.C.P.d. Paullinia cupana: A multipurpose plant-a review. Rev. Bras. Farmacogn. 2019;29:77–110. doi: 10.1016/j.bjp.2018.08.007. DOI

d’Angelo S., Ascione A. Guarana and physical performance: A myth or reality? J. Hum. Sport. Exerc. 2020;15:S539–S551. doi: 10.14198/jhse.2020.15.Proc3.07. DOI

Hamerski L., Somner G.V., Tamaio N. Paullinia cupana Kunth (Sapindaceae): A review of its ethnopharmacology, phytochemistry and pharmacology. J. Med. Plant Res. 2013;7:2221–2229. doi: 10.5897/JMPR2013.5067. DOI

Erickson H.T., Correa M.P.F., Escobar J.r. Guaraná (Paullinia cupana) as a commercial crop in Brazilian Amazonia. Econ. Bot. 1984;38:273–286. doi: 10.1007/BF02859006. DOI

Ushirobira T.A., Yamaguti E., Uemura L.M., Nakamura C.V., Dias Filho B.P., Mello J.P. Chemical and microbiological study of extract from seeds of guaraná (Paullinia cupana var. sorbilis). Lat. Am. J. Pharm. 2007;26:5–9.

Cavalcanti V., Marques M., do Nascimento W.M., Rocha A.W.D.O., Ferreira I.D.J., Leao D.P., Félix P.H.C., de Oliveira C.M.C. Bioproducts based on guarana (Paulinia cupana) for practitioners of physical activity. Eur. Acad. Res. 2020;8:1746–1759.

Banga S., Kumar V., Suri S., Kaushal M., Prasad R., Kaur S. Nutraceutical Potential of Diet Drinks: A Critical Review on Components, Health Effects, and Consumer Safety. J. Am. Coll. Nutr. 2020;39:272–286. doi: 10.1080/07315724.2019.1642811. PubMed DOI

Boasquívis P.F., Silva G.M.M., Paiva F.A., Cavalcanti R.M., Nunez C.V., de Paula Oliveira R. Guarana (Paullinia cupana) Extract Protects Caenorhabditis elegans Models for Alzheimer Disease and Huntington Disease through Activation of Antioxidant and Protein Degradation Pathways. Oxid. Med. Cell Longev. 2018;2018:9241308. doi: 10.1155/2018/9241308. PubMed DOI PMC

Bittencourt L.d.S., Zeidán-Chuliá F., Yatsu F.K.J., Schnorr C.E., Moresco K.S., Kolling E.A., Gelain D.P., Bassani V.L., Moreira J.C.F. Guarana (Paullinia cupana Mart.) Prevents β-Amyloid Aggregation, Generation of Advanced Glycation-end Products (AGEs), and Acrolein-Induced Cytotoxicity on Human Neuronal-Like Cells. Phytother. Res. 2014;28:1615–1624. doi: 10.1002/ptr.5173. PubMed DOI

Rangel M.P., de Mello J.C.P., Audi E.A. Evaluation of neurotransmitters involved in the anxiolytic and panicolytic effect of the aqueous fraction of Paullinia cupana (guaraná) in elevated T maze. Rev. Bras. Farmacogn. 2013;23:358–365. doi: 10.1590/S0102-695X2013005000024. DOI

Otobone F.J., Sanches A.C., Nagae R.L., Martins J.V.C., Obici S., Mello J.C.P.d., Audi E.A. Effect of crude extract and its semi purified constituents from guaraná seeds [Paullinia cupana var. sorbilis (Mart.) lucke] on cognitive performance in Morris water maze in rats. Braz. Arch. Biol. Technol. 2005;48:723–728. doi: 10.1590/S1516-89132005000600007. DOI

Espinola E.B., Dias R.F., Mattei R., Carlini E.A. Pharmacological activity of Guarana (Paullinia cupana Mart.) in laboratory animals. J. Ethnopharmacol. 1997;55:223–229. doi: 10.1016/S0378-8741(96)01506-1. PubMed DOI

Veloso C.F., Machado A.K., Cadoná F.C., Azzolin V.F., Cruz I.B.M., Silveira A.F. Neuroprotective Effects of Guarana (Paullinia cupana Mart.) against Vincristine in Vitro Exposure. J. Prev. Alzheimers Dis. 2018;5:65–70. doi: 10.14283/jpad.2017.45. PubMed DOI

Yonekura L., Martins C.A., Sampaio G.R., Monteiro M.P., César L.A.M., Mioto B.M., Mori C.S., Mendes T.M.N., Ribeiro M.L., Arçari D.P., et al. Bioavailability of catechins from guaraná (Paullinia cupana) and its effect on antioxidant enzymes and other oxidative stress markers in healthy human subjects. Food Funct. 2016;7:2970–2978. doi: 10.1039/C6FO00513F. PubMed DOI

Kennedy D.O., Haskell C.F., Wesnes K.A., Scholey A.B. Improved cognitive performance in human volunteers following administration of guarana (Paullinia cupana) extract: Comparison and interaction with Panax ginseng. Pharmacol. Biochem. Behav. 2004;79:401–411. doi: 10.1016/j.pbb.2004.07.014. PubMed DOI

Patrick M., Kim H.A., Oketch-Rabah H., Marles R.J., Roe A.L., Calderón A.I. Safety of Guarana Seed as a Dietary Ingredient: A Review. J. Agric. Food. Chem. 2019;67:11281–11287. doi: 10.1021/acs.jafc.9b03781. PubMed DOI

Marques L.L.M., Klein T., de Mello J.C.P. Chapter 3.24—Guarana. In: Nabavi S.M., Silva A.S., editors. Nonvitamin and Nonmineral Nutritional Supplements. Academic Press; Cambridge, MA, USA: 2019. pp. 283–288. DOI

Turnbull D., Rodricks J.V., Mariano G.F., Chowdhury F. Caffeine and cardiovascular health. Regul. Toxicol. Pharmacol. 2017;89:165–185. doi: 10.1016/j.yrtph.2017.07.025. PubMed DOI

Torres E.A.F.S., Pinaffi-Langley A.C.d.C., Figueira M.d.S., Cordeiro K.S., Negrão L.D., Soares M.J., da Silva C.P., Alfino M.C.Z., Sampaio G.R., de Camargo A.C. Effects of the consumption of guarana on human health: A narrative review. Compr. Rev. Food Sci. Food Saf. 2022;21:272–295. doi: 10.1111/1541-4337.12862. PubMed DOI

Silva C.P., Sampaio G.R., Freitas R.A.M.S., Torres E.A.F.S. Polyphenols from guaraná after in vitro digestion: Evaluation of bioacessibility and inhibition of activity of carbohydrate-hydrolyzing enzymes. Food Chem. 2018;267:405–409. doi: 10.1016/j.foodchem.2017.08.078. PubMed DOI

Pinaffi A.C.d.C., Sampaio G.R., Soares M.J., Shahidi F., de Camargo A.C., Torres E.A.F.S. Insoluble-Bound Polyphenols Released from Guarana Powder: Inhibition of Alpha-Glucosidase and Proanthocyanidin Profile. Molecules. 2020;25:679. doi: 10.3390/molecules25030679. PubMed DOI PMC

Rienks J., Barbaresko J., Oluwagbemigun K., Schmid M., Nöthlings U. Polyphenol exposure and risk of type 2 diabetes: Dose-response meta-analyses and systematic review of prospective cohort studies. Am. J. Clin. Nutr. 2018;108:49–61. doi: 10.1093/ajcn/nqy083. PubMed DOI

León J. The “Maca” (Lepidium meyenii), a little known food plant of peru. Econ. Bot. 1964;18:122–127. doi: 10.1007/BF02862707. DOI

Muhammad I., Zhao J., Khan I.A. Maca (Lepidium meyenii) In: Coates P., Blackman M.R., Cragg G., Levine M., Moss J., White J., editors. Encyclopedia of Dietary Supplement. CRC Press; Boca Raton, FL, USA: 2005. pp. 522–531. DOI

Flores H.E., Walker T.S., Guimarães R.L., Bais H.P., Vivanco J.M. Andean Root and Tuber Crops: Underground Rainbows. HortSci. 2003;38:161–167. doi: 10.21273/HORTSCI.38.2.161. DOI

Zaytseva O., Terrel Gutierrez M., Graeff-Hönninger S. Effect of Day Length on Growth and Root Morphology of Yellow Maca (Lepidium meyenii) Seedlings. Int. J. Plant Biol. 2022;13:71–81. doi: 10.3390/ijpb13020008. DOI

Tafuri S., Cocchia N., Vassetti A., Carotenuto D., Esposito L., Maruccio L., Avallone L., Ciani F. Lepidium meyenii (Maca) in male reproduction. Nat. Prod. Res. 2021;35:4550–4559. doi: 10.1080/14786419.2019.1698572. PubMed DOI

Huarancca Reyes T., Esparza E., Crestani G., Limonchi F., Cruz R., Salinas N., Scartazza A., Guglielminetti L., Cosio E. Physiological responses of maca (Lepidium meyenii Walp.) plants to UV radiation in its high-altitude mountain ecosystem. Sci. Rep. 2020;10:1–13. doi: 10.1038/s41598-020-59638-4. PubMed DOI PMC

Dini A., Migliuolo G., Rastrelli L., Saturnino P., Schettino O. Chemical composition of Lepidium meyenii. Food Chem. 1994;49:347–349. doi: 10.1016/0308-8146(94)90003-5. DOI

Muhammad I., Zhao J., Dunbar D.C., Khan I.A. Constituents of Lepidium meyenii ‘maca’. Phytochemistry. 2002;59:105–110. doi: 10.1016/S0031-9422(01)00395-8. PubMed DOI

Huang Y.-J., Peng X.-R., Qiu M.-H. Progress on the Chemical Constituents Derived from Glucosinolates in Maca (Lepidium meyenii) Nat. Prod. Bioprospect. 2018;8:405–412. doi: 10.1007/s13659-018-0185-7. PubMed DOI PMC

Brinckmann J., Smith E. Maca Culture of the Junín Plateau. J. Altern. Complement. Med. 2004;10:426–430. doi: 10.1089/1075553041323821. PubMed DOI

Smith E. MACA ROOT: Modern Rediscovery of an Ancient Andean Fertility Food. J. Am. Herbal. Guild. 2003;4:15–21.

Jin W., Chen X., Huo Q., Cui Y., Yu Z., Yu L. Aerial parts of maca (Lepidium meyenii Walp.) as functional vegetables with gastrointestinal prokinetic efficacy in vivo. Food Funct. 2018;9:3456–3465. doi: 10.1039/C8FO00405F. PubMed DOI

Caicai K., Limin H., Liming Z., Zhiqiang Z., Yongwu Y. Isolation, purification and antioxidant activity of polysaccharides from the leaves of maca (Lepidium meyenii) Int. J. Biol. Macromol. 2018;107:2611–2619. doi: 10.1016/j.ijbiomac.2017.10.139. PubMed DOI

Li S., Hao L., Kang Q., Cui Y., Jiang H., Liu X., Lu J. Purification, characterization and biological activities of a polysaccharide from Lepidium meyenii leaves. Int. J. Biol. Macromol. 2017;103:1302–1310. doi: 10.1016/j.ijbiomac.2017.05.165. PubMed DOI

Pino-Figueroa A., Nguyen D., Maher T.J. Neuroprotective effects of Lepidium meyenii (Maca) Ann. N. Y. Acad. Sci. 2010;1199:77–85. doi: 10.1111/j.1749-6632.2009.05174.x. PubMed DOI

Zhou Y., Li P., Brantner A., Wang H., Shu X., Yang J., Si N., Han L., Zhao H., Bian B. Chemical profiling analysis of Maca using UHPLC-ESI-Orbitrap MS coupled with UHPLC-ESI-QqQ MS and the neuroprotective study on its active ingredients. Sci. Rep. 2017;7:44660. doi: 10.1038/srep44660. PubMed DOI PMC

Rubio J., Caldas M., Dávila S., Gasco M., Gonzales G.F. Effect of three different cultivars of Lepidium meyenii (Maca) on learning and depression in ovariectomized mice. BMC Complement. Altern. Med. 2006;6:23. doi: 10.1186/1472-6882-6-23. PubMed DOI PMC

Guo S.-S., Gao X.-F., Gu Y.-R., Wan Z.-X., Lu A.M., Qin Z.-H., Luo L. Preservation of Cognitive Function by Lepidium meyenii (Maca) Is Associated with Improvement of Mitochondrial Activity and Upregulation of Autophagy-Related Proteins in Middle-Aged Mouse Cortex. J. Evid.-Based. Complement. Altern. Med. 2016;2016:4394261. doi: 10.1155/2016/4394261. PubMed DOI PMC

Yu Z., Li D., Zhai S., Xu H., Liu H., Ao M., Zhao C., Jin W., Yu L. Neuroprotective effects of macamide from maca (Lepidium meyenii Walp.) on corticosterone-induced hippocampal impairments through its anti-inflammatory, neurotrophic, and synaptic protection properties. Food Funct. 2021;12:9211–9228. doi: 10.1039/D1FO01720A. PubMed DOI

Honma A., Fujiwara Y., Takei S., Kino T. The improvement of daily fatigue in women following the intake of maca (Lepidium meyenii) extract containing benzyl glucosinolate. Funct. Food Health Dis. 2022;12:175–187. doi: 10.31989/ffhd.v12i4.912. DOI

Gonzales G.F., Córdova A., Vega K., Chung A., Villena A., Góñez C., Castillo S. Effect of Lepidium meyenii (MACA) on sexual desire and its absent relationship with serum testosterone levels in adult healthy men. Andrologia. 2002;34:367–372. doi: 10.1046/j.1439-0272.2002.00519.x. PubMed DOI

Gonzales-Arimborgo C., Yupanqui I., Montero E., Alarcón-Yaquetto D.E., Zevallos-Concha A., Caballero L., Gasco M., Zhao J., Khan I.A., Gonzales G.F. Acceptability, Safety, and Efficacy of Oral Administration of Extracts of Black or Red Maca (Lepidium meyenii) in Adult Human Subjects: A Randomized, Double-Blind, Placebo-Controlled Study. Pharmaceuticals. 2016;9:49. doi: 10.3390/ph9030049. PubMed DOI PMC

Xiao A., He H.-Y., Chen Q., Ma S.-W., Chen X. Drug-induced Liver Injury Due to Lepidium meyenii (Maca) Medicinal Liquor. Chin. Med. J. 2017;130:3005–3006. doi: 10.4103/0366-6999.220314. PubMed DOI PMC

Valerio L.G., Gonzales G.F. Toxicological Aspects of the South American Herbs Cat’s Claw (Uncaria tomentosa) and Maca (Lepidium meyenii) Toxicol. Rev. 2005;24:11–35. doi: 10.2165/00139709-200524010-00002. PubMed DOI

Valentová K., Buckiová D., Křen V., Pěknicová J., Ulrichová J., Šimánek V. The in vitro biological activity of Lepidium meyenii extracts. Cell Biol. Toxicol. 2006;22:91–99. doi: 10.1007/s10565-006-0033-0. PubMed DOI

D’Arrigo G., Benavides V., Pino J. Preliminary Evaluation Effect of Lepidium meyenii Walp on the embryonic development of mouse. Rev. Peru Biol. 2004;11:103–106. doi: 10.15381/rpb.v11i1.2440. DOI

Brown R.P., Gerbarg P.L., Ramazanov Z. Rhodiola rosea A phytomedicinal overview. HerbalGram. 2002;56:40–52.

Galambosi B. Cultivation of Rhodiola rosea in Europe. In: Cuerrier A., Ampong-Nyarko K., editors. Rhodiola rosea. CRC Press, Taylor & Francis Group; Boca Raton, FL, USA: 2014. pp. 87–124.

Tasheva K., Kosturkova G. The Role of Biotechnology for Conservation and Biologically Active Substances Production of Rhodiola rosea: Endangered Medicinal Species. Sci. World J. 2012;2012:274942. doi: 10.1100/2012/274942. PubMed DOI PMC

Liu Z., Liu Y., Liu C., Song Z., Li Q., Zha Q., Lu C., Wang C., Ning Z., Zhang Y., et al. The chemotaxonomic classification of Rhodiola plants and its correlation with morphological characteristics and genetic taxonomy. Chem. Cent. J. 2013;7:118. doi: 10.1186/1752-153X-7-118. PubMed DOI PMC

Bejar E., Upton R., John H. Adulteration of Rhodiola (Rhodiola rosea) rhizome and root and extracts. Bot. Adulterants Bull. 2017;Fall 2017:1–8.

Panossian A., Wikman G., Sarris J. Rosenroot (Rhodiola rosea): Traditional use, chemical composition, pharmacology and clinical efficacy. Phytomedicine. 2010;17:481–493. doi: 10.1016/j.phymed.2010.02.002. PubMed DOI

Kołodziej B., Sugier D. Influence of plants age on the chemical composition of roseroot (Rhodiola rosea L.) Acta Sci. Pol. 2013;12:147–160.

Mardones V., Cuerrier A., Hermanutz L. Developing a community-based enterprise: Nunatsiavut Inuit knowledge and perspectives on the use of medicinal plant Rhodiola rosea. Ethnobot. Res. Appl. 2021;22:1–13. doi: 10.32859/era.22.06.1-13. DOI

Jang S.I., Pae H.O., Choi B.M., Oh G.S., Jeong S., Lee H.J., Kim H.Y., Kang K.J., Yun Y.G., Kim Y.C., et al. Salidroside from Rhodiola sachalinensis Protects Neuronal PC12 Cells Against Cytotoxicity Induced by Amyloid-β. Immunopharmacol. Immunotoxicol. 2003;25:295–304. doi: 10.1081/IPH-120024498. PubMed DOI

Yu S., Liu M., Gu X., Ding F. Neuroprotective Effects of Salidroside in the PC12 Cell Model Exposed to Hypoglycemia and Serum Limitation. Cell Mol. Neurobiol. 2008;28:1067. doi: 10.1007/s10571-008-9284-z. PubMed DOI PMC

Zhou L., Yao P., Jiang L., Wang Z., Ma X., Wen G., Yang J., Zhou B., Yu Q. Salidroside-pretreated mesenchymal stem cells contribute to neuroprotection in cerebral ischemic injury in vitro and in vivo. J. Mol. Histol. 2021;52:1145–1154. doi: 10.1007/s10735-021-10022-0. PubMed DOI

Zhu L., Liu Z., Ren Y., Wu X., Liu Y., Wang T., Li Y., Cong Y., Guo Y. Neuroprotective effects of salidroside on ageing hippocampal neurons and naturally ageing mice via the PI3K/Akt/TERT pathway. Phytother. Res. 2021;35:5767–5780. doi: 10.1002/ptr.7235. PubMed DOI

Perfumi M., Mattioli L. Adaptogenic and central nervous system effects of single doses of 3% rosavin and 1% salidroside Rhodiola rosea L. extract in mice. Phytother. Res. 2007;21:37–43. doi: 10.1002/ptr.2013. PubMed DOI

Spasov A.A., Wikman G.K., Mandrikov V.B., Mironova I.A., Neumoin V.V. A double-blind, placebo-controlled pilot study of the stimulating and adaptogenic effect of Rhodiola rosea SHR-5 extract on the fatigue of students caused by stress during an examination period with a repeated low-dose regimen. Phytomedicine. 2000;7:85–89. doi: 10.1016/S0944-7113(00)80078-1. PubMed DOI

Cropley M., Banks A.P., Boyle J. The Effects of Rhodiola rosea L. Extract on Anxiety, Stress, Cognition and Other Mood Symptoms. Phytother. Res. 2015;29:1934–1939. doi: 10.1002/ptr.5486. PubMed DOI

Kelly G.S. Rhodiola rosea: A Possible Plant Adaptogen. Altern. Med. Rev. 2001;6:293–302. PubMed

Jagtap P.N., Mhetre O.S., Malavdkar P.R. A Review Article on Rhodiola rosea: An Adaptogen Having Multiple Benefits. Int. J. Pharmacogn. 2020;7:62–69. doi: 10.13040/IJPSR.0975-8232.IJP.7(3).62-69. DOI

Kucinskaite A., Briedis V., Savickas A. Experimental analysis of therapeutic properties of Rhodiola rosea L. and its possible application in medicine. Medicina. 2004;40:614–619. PubMed

Razgonova M., Zakharenko A., Pikula K., Kim E., Chernyshev V., Ercisli S., Cravotto G., Golokhvast K. Rapid mass spectrometric study of a supercritical CO2-extract from woody liana Schisandra chinensis by HPLC-SPD-ESI-MS/MS. Molecules. 2020;25:2689. doi: 10.3390/molecules25112689. PubMed DOI PMC

Saunders R.M.K. Monograph of Schisandra (Schisandraceae) Syst. Bot. Monogr. 2000;58:1–146. doi: 10.2307/25027879. DOI

Hancke J.L., Burgos R.A., Ahumada F. Schisandra chinensis (Turcz.) Baill. Fitoterapia. 1999;70:451–471. doi: 10.1016/S0367-326X(99)00102-1. DOI

Szopa A., Ekiert R., Ekiert H. Current knowledge of Schisandra chinensis (Turcz.) Baill. (Chinese magnolia vine) as a medicinal plant species: A review on the bioactive components, pharmacological properties, analytical and biotechnological studies. Phytochem. Rev. 2017;16:195–218. doi: 10.1007/s11101-016-9470-4. PubMed DOI PMC

Raj S.P., Solomon P.R., Thangaraj B. Biodiesel from Flowering Plants. Springer; Singapore: 2022. Schisandraceae; pp. 529–532. DOI

Qiu F., Liu H., Duan H., Chen P., Lu S.-J., Yang G.-Z., Lei X.-X. Isolation, Structural Elucidation of Three New Triterpenoids from the Stems and Leaves of Schisandra chinensis (Turcz) Baill. Molecules. 2018;23:1624. doi: 10.3390/molecules23071624. PubMed DOI PMC

Wang M., Wu Q.-L., Tadmor Y., Simon J.E., Sang S., Ho C.-T. Oriental Foods and Herbs. Volume 859. American Chemical Society; Washington, DC, USA: 2003. Schisandra chinensis: Chemistry and Analysis; pp. 234–246.

Lu Y., Chen D.-F. Analysis of Schisandra chinensis and Schisandra sphenanthera. J. Chromatogr. A. 2009;1216:1980–1990. doi: 10.1016/j.chroma.2008.09.070. PubMed DOI

Panossian A., Wikman G. Pharmacology of Schisandra chinensis Bail.: An overview of Russian research and uses in medicine. J. Ethnopharmacol. 2008;118:183–212. doi: 10.1016/j.jep.2008.04.020. PubMed DOI

Liu X., Guo Y., Cai G., Gong J., Wang Y., Liu S. Chemical composition analysis of Schisandra chinensis fructus and its three processed products using UHPLC-Q-Orbitrap/MS-based metabolomics approach. Nat. Prod. Res. 2022;36:3464–3468. doi: 10.1080/14786419.2020.1858416. PubMed DOI

Song Y., Shan B., Zeng S., Zhang J., Jin C., Liao Z., Wang T., Zeng Q., He H., Wei F., et al. Raw and wine processed Schisandra chinensis attenuate anxiety like behavior via modulating gut microbiota and lipid metabolism pathway. J. Ethnopharmacol. 2021;266:113426. doi: 10.1016/j.jep.2020.113426. PubMed DOI

Chen X., Tang R., Liu T., Dai W., Liu Q., Gong G., Song S., Hu M., Huang L., Wang Z. Physicochemical properties, antioxidant activity and immunological effects in vitro of polysaccharides from Schisandra sphenanthera and Schisandra chinensis. Int. J. Biol. Macromol. 2019;131:744–751. doi: 10.1016/j.ijbiomac.2019.03.129. PubMed DOI

Yan T., Shang L., Wang M., Zhang C., Zhao X., Bi K., Jia Y. Lignans from Schisandra chinensis ameliorate cognition deficits and attenuate brain oxidative damage induced by D-galactose in rats. Metab. Brain Dis. 2016;31:653–661. doi: 10.1007/s11011-016-9804-3. PubMed DOI

Giridharan V.V., Thandavarayan R.A., Sato S., Ko K.M., Konishi T. Prevention of scopolamine-induced memory deficits by schisandrin B, an antioxidant lignan from Schisandra chinensis in mice. Free Radic. Res. 2011;45:950–958. doi: 10.3109/10715762.2011.571682. PubMed DOI

Sa F., Zhang L.Q., Chong C.M., Guo B.J., Li S., Zhang Z.J., Zheng Y., Hoi P.M., Lee S.M.Y. Discovery of novel anti-parkinsonian effect of schisantherin A in in vitro and in vivo. Neurosci. Lett. 2015;593:7–12. doi: 10.1016/j.neulet.2015.03.016. PubMed DOI

Zhang L.Q., Sa F., Chong C.M., Wang Y., Zhou Z.Y., Chang R.C.C., Chan S.W., Hoi P.M., Yuen Lee S.M. Schisantherin A protects against 6-OHDA-induced dopaminergic neuron damage in zebrafish and cytotoxicity in SH-SY5Y cells through the ROS/NO and AKT/GSK3β pathways. J. Ethnopharmacol. 2015;170:8–15. doi: 10.1016/j.jep.2015.04.040. PubMed DOI

Li N., Liu C., Jing S., Wang M., Wang H., Sun J., Wang C., Chen J., Li H. Compound Schisandra-Ginseng-Notoginseng-Lycium Extract Ameliorates Scopolamine-Induced Learning and Memory Disorders in Mice. Evid.-Based Complement. Altern. Med. 2017;2017:8632016. doi: 10.1155/2017/8632016. PubMed DOI PMC

Koncic M.Z., Tomczyk M. New insights into dietary supplements used in sport: Active substances, pharmacological and side effects. Curr. Drug Targets. 2013;14:1079–1092. doi: 10.2174/1389450111314090016. PubMed DOI

Abascal K., Yarnell E. Bacopa for the Brain: A Smart Addition to Western Medicine. Altern. Complement. Ther. 2011;17:21–25. doi: 10.1089/act.2011.17106. DOI

Kean J., Stough C. Natural Medicines. CRC Press; Boca Raton, FL, USA: 2019. Role of the Ayurvedic Medicinal Herb Bacopa monnieri in Child and Adolescent Populations; pp. 333–348. PubMed

Devendra P., Patel S.S., Birwal P., Basu S., Deshmukh G., Datir R. Brahmi (Bacopa monnieri) as functional food ingredient in food processing industry. J. Pharmacogn. Phytochem. 2018;7:189–194.

Srivastava A., Srivastava P., Pandey A., Khanna V.K., Pant A.B. Chapter 24—Phytomedicine: A Potential Alternative Medicine in Controlling Neurological Disorders. In: Ahmad Khan M.S., Ahmad I., Chattopadhyay D., editors. New Look to Phytomedicine. Academic Press; Cambridge, MA, USA: 2019. pp. 625–655. DOI

Binita B.C., Ashok M.D., Yogesh T.J. Bacopa monnieri (L.) Pennell: A rapid, efficient and cost effective micropropagation. Plant Tissue Cult Biotechnol. 2005;15:167–175.

Akbar S. Handbook of 200 Medicinal Plants: A Comprehensive Review of Their Traditional Medical Uses and Scientific Justifications. Springer International Publishing; Cham, Switzerland: 2020. Bacopa monnieri (L.) Wettst. (Plantaginaceae) pp. 401–412. DOI

Deolankar S.C., Najar M.A., Ramesh P., Kanichery A., Kudva A.K., Raghu S.V., Prasad T.S.K. Discovery of Molecular Networks of Neuroprotection Conferred by Brahmi Extract in Aβ42-Induced Toxicity Model of Drosophila melanogaster Using a Quantitative Proteomic Approach. Mol. Neurobiol. 2023;60:303–316. doi: 10.1007/s12035-022-03066-0. PubMed DOI

Bhandari P., Kumar N., Singh B., Kaur I. Dammarane triterpenoid saponins from Bacopa monnieri. Can. J. Chem. 2009;87:1230–1234. doi: 10.1139/V09-111. DOI

Phrompittayarat W., Wittaya-Areekul S., Jetiyanon K., Putalun W., Tanaka H., Ingkaninan K. Determination of saponin glycosides in Bacopa monnieri by reversed phase high performance liquid chromatography. Thai Pharmaceut. Health Sci. J. 2007;2:26–32.

Chadha M.L. Indigenous vegetables of India with potentials for improving livelihood. Acta Hortic. 2009;806:579–586. doi: 10.17660/ActaHortic.2009.806.72. DOI

Amaravathi T., Geetha P.S., Murugan M., Selvam S., Kanchana S. Traditional value added products from Indian penny wort (Centella asiatica) and water hyssop (Bacopa monnieri) to alleviate ADHD. J. Pharm. Innov. 2020;9:432–441.

Russo A., Borrelli F., Campisi A., Acquaviva R., Raciti G., Vanella A. Nitric oxide-related toxicity in cultured astrocytes: Effect of Bacopa monniera. Life Sci. 2003;73:1517–1526. doi: 10.1016/S0024-3205(03)00476-4. PubMed DOI

Brimson J.M., Prasanth M.I., Plaingam W., Tencomnao T. Bacopa monnieri (L.) wettst. Extract protects against glutamate toxicity and increases the longevity of Caenorhabditis elegans. J. Tradit. Complement. Med. 2020;10:460–470. doi: 10.1016/j.jtcme.2019.10.001. PubMed DOI PMC

Dhanasekaran M., Tharakan B., Holcomb L.A., Hitt A.R., Young K.A., Manyam B.V. Neuroprotective mechanisms of ayurvedic antidementia botanical Bacopa monniera. Phytother. Res. 2007;21:965–969. doi: 10.1002/ptr.2195. PubMed DOI

Singh M., Murthy V., Ramassamy C. Modulation of Hydrogen Peroxide and Acrolein-Induced Oxidative Stress, Mitochondrial Dysfunctions and Redox Regulated Pathways by the Bacopa monniera Extract: Potential Implication in Alzheimer’s Disease. J. Alzheimer’s Dis. 2010;21:229–247. doi: 10.3233/JAD-2010-091729. PubMed DOI

Holcomb L.A., Dhanasekaran M., Hitt A.R., Young K.A., Riggs M., Manyam B.V. Bacopa monniera extract reduces amyloid levels in PSAPP mice. J. Alzheimer’s Dis. 2006;9:243–251. doi: 10.3233/JAD-2006-9303. PubMed DOI

Le X.T., Pham H.T.N., Do P.T., Fujiwara H., Tanaka K., Li F., Van Nguyen T., Nguyen K.M., Matsumoto K. Bacopa monnieri Ameliorates Memory Deficits in Olfactory Bulbectomized Mice: Possible Involvement of Glutamatergic and Cholinergic Systems. Neurochem. Res. 2013;38:2201–2215. doi: 10.1007/s11064-013-1129-6. PubMed DOI

Uabundit N., Wattanathorn J., Mucimapura S., Ingkaninan K. Cognitive enhancement and neuroprotective effects of Bacopa monnieri in Alzheimer’s disease model. J. Ethnopharmacol. 2010;127:26–31. doi: 10.1016/j.jep.2009.09.056. PubMed DOI

Singh H., Dhawan B. Neuropsychopharmacological effects of the Ayurvedic nootropic Bacopa monniera Linn. (Brahmi) Indian J. Pharmacol. 1997;29:359.

Kamkaew N., Norman Scholfield C., Ingkaninan K., Taepavarapruk N., Chootip K. Bacopa monnieri Increases Cerebral Blood Flow in Rat Independent of Blood Pressure. Phytother. Res. 2013;27:135–138. doi: 10.1002/ptr.4685. PubMed DOI

Roodenrys S., Booth D., Bulzomi S., Phipps A., Micallef C., Smoker J. Chronic Effects of Brahmi (Bacopa monnieri) on Human Memory. Neuropsychopharmacology. 2002;27:279–281. doi: 10.1016/S0893-133X(01)00419-5. PubMed DOI

Dimpfel W., Schombert L., Biller A. Psychophysiological Effects of Sideritis and Bacopa Extract and Three Combinations Thereof—A Quantitative EEG Study in Subjects Suffering from Mild Cognitive Impairment (MCI) Adv. Alzheimer’s Dis. 2016;5:1–22. doi: 10.4236/aad.2016.51001. DOI

McPhee G.M., Downey L.A., Wesnes K.A., Stough C. The Neurocognitive Effects of Bacopa monnieri and Cognitive Training on Markers of Brain Microstructure in Healthy Older Adults. Front. Aging Neurosci. 2021;13:638109. doi: 10.3389/fnagi.2021.638109. PubMed DOI PMC

Gohil K.J., Patel J.A. A review on Bacopa monniera: Current research and future prospects. Int. J. Green Pharm. 2010;4:1–9. doi: 10.4103/0973-8258.62156. DOI

Chaudhari K.S., Tiwari N.R., Tiwari R.R., Sharma R.S. Neurocognitive Effect of Nootropic Drug Brahmi (Bacopa monnieri) in Alzheimer’s Disease. Ann. Neurosci. 2017;24:111–122. doi: 10.1159/000475900. PubMed DOI PMC

Kean J.D., Downey L.A., Stough C. A systematic review of the Ayurvedic medicinal herb Bacopa monnieri in child and adolescent populations. Complement. Ther. Med. 2016;29:56–62. doi: 10.1016/j.ctim.2016.09.002. PubMed DOI

Joshua Allan J., Damodaran A., Deshmukhda N.S., Goudar K.S., Amit A. Safety evaluation of a standardized phytochemical composition extracted from Bacopa monnieri in Sprague–Dawley rats. Food Chem. Toxicol. 2007;45:1928–1937. doi: 10.1016/j.fct.2007.04.010. PubMed DOI

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...