Nootropic Herbs, Shrubs, and Trees as Potential Cognitive Enhancers
Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic
Document type Journal Article, Review
Grant support
SV22-2-21140
Faculty of Agrobiology, Food, and Natural Resources of CZU Prague project
PubMed
36987052
PubMed Central
PMC10056569
DOI
10.3390/plants12061364
PII: plants12061364
Knihovny.cz E-resources
- Keywords
- Ayurvedic medicinal plants, Ginkgo biloba, Panax ginseng, antioxidant activity, brahmi, gotu kola, learning ability, medicinal herbs, memory, smart drugs,
- Publication type
- Journal Article MeSH
- Review MeSH
Plant-based nootropics are a diverse group of natural drugs that can improve cognitive abilities through various physiological mechanisms, especially in cases where these functions are weakened or impaired. In many cases, the nootropics enhance erythrocyte plasticity and inhibit aggregation, which improves the blood's rheological properties and increases its flow to the brain. Many of these formulations possess antioxidant activity that protects brain tissue from neurotoxicity and improves the brain's oxygen supply. They can induce the synthesis of neuronal proteins, nucleic acids, and phospholipids for constructing and repairing neurohormonal membranes. These natural compounds can potentially be present in a great variety of herbs, shrubs, and even some trees and vines. The plant species reviewed here were selected based on the availability of verifiable experimental data and clinical trials investigating potential nootropic effects. Original research articles, relevant animal studies, meta-analyses, systematic reviews, and clinical trials were included in this review. Selected representatives of this heterogeneous group included Bacopa monnieri (L.) Wettst., Centella asiatica (L.) Urban, Eleutherococcus senticosus (Rupr. & Maxim.) Maxim., Ginkgo biloba L., Lepidium meyenii Walp., Panax ginseng C.A. Meyer, Paullinia cupana Kunth, Rhodiola rosea L., Schisandra chinensis (Turcz.) Baill., and Withania somnifera (L.) Dunal. The species are depicted and described, together with their active components and nootropic effects, and evidence of their efficacy is presented. The study provides brief descriptions of the representative species, their occurrence, history, and the chemical composition of the principle medicinal compounds, with uses, indications, experimental treatments, dosages, possible side effects, and contraindications. Most plant nootropics must be taken at optimal doses for extended periods before measurable improvement occurs, but they are generally very well tolerated. Their psychoactive properties are not produced by a single molecule but by a synergistic combination of several compounds. The available data suggest that including extracts from these plants in medicinal products to treat cognitive disorders can have substantial potential therapeutic benefits.
See more in PubMed
Saran P.L., Singh S., Solanki V., Choudhary R., Manivel P. Evaluation of Asparagus adscendens accessions for root yield and shatavarin IV content in India. Turk. J. Agric. For. 2021;45:475–483. doi: 10.3906/tar-2006-42. DOI
Tamer C.E., Temel Ş.G., Suna S., Karabacak A.Ö., Özcan T., Ersan L.Y., Kaya B.T., Çopur Ö.U. Evaluation of bioaccessibility and functional properties of kombucha beverages fortified with different medicinal plant extracts. Turk. J. Agric. For. 2021;45:13–32. doi: 10.3906/tar-2003-75. DOI
Petrovska B.B. Historical review of medicinal plants’ usage. Pharmacogn. Rev. 2012;6:1–5. doi: 10.4103/0973-7847.95849. PubMed DOI PMC
Vyas S., Kothari S., Kachhwaha S. Nootropic medicinal plants: Therapeutic alternatives for Alzheimer’s disease. J. Herb. Med. 2019;17:100291. doi: 10.1016/j.hermed.2019.100291. DOI
Giurgea C. Pharmacology of integrative activity of the brain. Attempt at nootropic concept in psychopharmacology. Actual. Pharm. 1972;25:115–156. PubMed
Giurgea C. The “nootropic” approach to the pharmacology of the integrative activity of the brain 1, 2. Integr. Psychol. Behav. Sci. 1973;8:108–115. doi: 10.1007/BF03000311. PubMed DOI
Giurgea C., Salama M. Nootropic drugs. Prog. Neuro-Psychopharmacol. 1977;1:235–247. doi: 10.1016/0364-7722(77)90046-7. DOI
Dormehl I.C., Jordaan B., Oliver D.W., Croft S. SPECT monitoring of improved cerebral blood flow during long-term treatment of elderly patients with nootropic drugs. Clin. Nucl. Med. 1999;24:29–34. doi: 10.1097/00003072-199901000-00007. PubMed DOI
Suliman N.A., Mat Taib C.N., Mohd Moklas M.A., Adenan M.I., Hidayat Baharuldin M.T., Basir R. Establishing Natural Nootropics: Recent Molecular Enhancement Influenced by Natural Nootropic. Evid.-Based Complement. Altern. Med. 2016;2016:4391375. doi: 10.1155/2016/4391375. PubMed DOI PMC
Kulkarni R., Girish K.J., Kumar A. Nootropic herbs (Medhya Rasayana) in Ayurveda: An update. Pharmacogn. Rev. 2012;6:147–153. doi: 10.4103/0973-7847.99949. PubMed DOI PMC
Malík M., Tlustoš P. Nootropics as Cognitive Enhancers: Types, Dosage and Side Effects of Smart Drugs. Nutrients. 2022;14:3367. doi: 10.3390/nu14163367. PubMed DOI PMC
Wahl D., Solon-Biet S.M., Cogger V.C., Fontana L., Simpson S.J., Le Couteur D.G., Ribeiro R.V. Aging, lifestyle and dementia. Neurobiol. Dis. 2019;130:104481. doi: 10.1016/j.nbd.2019.104481. PubMed DOI
Lo R.Y. The borderland between normal aging and dementia. Tzu. Chi. Med. J. 2017;29:65–71. doi: 10.4103/tcmj.tcmj_18_17. PubMed DOI PMC
Jalbert J.J., Daiello L.A., Lapane K.L. Dementia of the Alzheimer Type. Epidemiol. Rev. 2008;30:15–34. doi: 10.1093/epirev/mxn008. PubMed DOI
Emre M. Dementia associated with Parkinson’s disease. Lancet Neurol. 2003;2:229–237. doi: 10.1016/S1474-4422(03)00351-X. PubMed DOI
Knopman D.S., Boeve B.F., Petersen R.C. Essentials of the Proper Diagnoses of Mild Cognitive Impairment, Dementia, and Major Subtypes of Dementia. Mayo Clin. Proc. 2003;78:1290–1308. doi: 10.4065/78.10.1290. PubMed DOI
Szakiel A., Pączkowski C., Henry M. Influence of environmental abiotic factors on the content of saponins in plants. Phytochem. Rev. 2011;10:471–491. doi: 10.1007/s11101-010-9177-x. DOI
Pandey A., Savita R. Harvesting and post-harvest processing of medicinal plants: Problems and prospects. J. Pharm. Innov. 2017;6:229–235.
Tanko H., Carrier D.J., Duan L., Clausen E. Pre- and post-harvest processing of medicinal plants. Plant Genet. Res. 2005;3:304–313. doi: 10.1079/PGR200569. DOI
Rocha R.P., Melo E.C., Radünz L.L. Influence of drying process on the quality of medicinal plants: A review. J. Med. Plant Res. 2011;5:7076–7084. doi: 10.5897/JMPRX11.001. DOI
Mohammad Azmin S.N.H., Abdul Manan Z., Wan Alwi S.R., Chua L.S., Mustaffa A.A., Yunus N.A. Herbal Processing and Extraction Technologies. Sep. Purif. Rev. 2016;45:305–320. doi: 10.1080/15422119.2016.1145395. DOI
Dwivedi P., Singh R., Malik M.T., Jawaid T. A traditional approach to herbal nootropic agents: An overview. Int. J. Pharm. Sci. 2012;3:630.
Lorca C., Mulet M., Arévalo-Caro C., Sanchez M.Á., Perez A., Perrino M., Bach-Faig A., Aguilar-Martínez A., Vilella E., Gallart-Palau X., et al. Plant-derived nootropics and human cognition: A systematic review. Crit. Rev. Food Sci. Nutr. 2022;62:1–25. doi: 10.1080/10408398.2021.2021137. PubMed DOI
Akram M., Mohiuddin E., Hannan A., Usmanghani K. Withania somnifera (L.) Dunal(Pharmacology Activity) Pharmacogn. J. 2011;2:77–78. doi: 10.1016/S0975-3575(11)80030-1. DOI
Verma N., Gupta S.K., Tiwari S., Mishra A.K. Safety of Ashwagandha Root Extract: A Randomized, Placebo-Controlled, study in Healthy Volunteers. Complement. Ther. Med. 2021;57:102642. doi: 10.1016/j.ctim.2020.102642. PubMed DOI
Santhanu K., Senthil K. Therapeutic potential of Withania somnifera (Linn) Dunal (Ashwagandha) in historical perspective and pharmacological evidence. Ann. Ayurvedic Med. 2021;10:135. doi: 10.5455/AAM.122229. DOI
Mir B.A., Khazir J., Mir N.A., Hasan T.-u., Koul S. Botanical, chemical and pharmacological review of Withania somnifera (Indian ginseng): An ayurvedic medicinal plant. Indian J. Drug Dis. 2012;1:147–160.
Rajeswara Rao B.R., Rajput D.K., Nagaraju G., Adinarayana G. Opportunities and challenges in the cultivation of Ashwagandha {Withania somnifera (L.) DUNAL} J. Pharmacogn. 2012;3:88–91.
Kumar M., Patel M., Chauhan R., Tank C., Solanki S., Patel P., Bhadauria H., Gami R., Pachchigar K., Soni N., et al. Elucidation of genotype–environment interactions and genetic stability parameters for yield, quality and agromorphological traits in ashwagandha (Withania somnifera (L.) Dunal) J. Genet. 2020;99:59. doi: 10.1007/s12041-020-01207-9. PubMed DOI
Venugopal S., Padma M., Raj Kumar M., Seenivasan N., Saidaiah P., Sathish G. Genetic variability studies in ashwagandha (Withania somnifera L.) for yield and quality traits. Pharm. Innov. J. 2021;10:188–192.
Srivastava A., Gupta A.K., Shanker K., Gupta M.M., Mishra R., Lal R.K. Genetic variability, associations, and path analysis of chemical and morphological traits in Indian ginseng [Withania somnifera (L.) Dunal] for selection of higher yielding genotypes. J. Ginseng. Res. 2018;42:158–164. doi: 10.1016/j.jgr.2017.01.014. PubMed DOI PMC
Kumar V., Dey A., Hadimani M.B., Marcovic T., Emerald M. Chemistry and pharmacology of Withania somnifera: An update. CellMed. 2015;5:1.1–1.13. doi: 10.5667/tang.2014.0030. DOI
Singh N., Bhalla M., de Jager P., Gilca M. An overview on ashwagandha: A Rasayana (rejuvenator) of Ayurveda. Afr. J. Tradit. Complement. Altern. Med. 2011;8:208–213. doi: 10.4314/ajtcam.v8i5S.9. PubMed DOI PMC
Bamola N., Verma P., Negi C. A review on some traditional medicinal plants. Int. J. Life Sci. Res. 2018;4:1550–1556. doi: 10.21276/ijlssr.2018.4.1.7. DOI
Kulkarni S.K., Dhir A. Withania somnifera: An Indian ginseng. Prog. Neuropsychopharmacol. Biol. Psychiatry. 2008;32:1093–1105. doi: 10.1016/j.pnpbp.2007.09.011. PubMed DOI
Yenisetti S., Manjunath M.J., Muralidhara M. Neuropharmacological properties of Withania somnifera-Indian Ginseng: An overview on experimental evidence with emphasis on Clinical trials and patents. Recent Pat. CNS Drug Discov. 2015;10:204–215. doi: 10.2174/1574889810666160615014106. PubMed DOI
Kulkarni S.K., George B., Mathur R. Neuroprotection by Withania somnifera root extract against lithium-pilocarpine-induced seizures. Indian Drugs. 1998;35:208–215.
Candelario M., Cuellar E., Reyes-Ruiz J.M., Darabedian N., Feimeng Z., Miledi R., Russo-Neustadt A., Limon A. Direct evidence for GABAergic activity of Withania somnifera on mammalian ionotropic GABAA and GABAρ receptors. J. Ethnopharmacol. 2015;171:264–272. doi: 10.1016/j.jep.2015.05.058. PubMed DOI
Choudhary M.I., Nawaz S.A., Zaheer-ul-Haq, Lodhi M.A., Ghayur M.N., Jalil S., Riaz N., Yousuf S., Malik A., Gilani A.H., et al. Withanolides, a new class of natural cholinesterase inhibitors with calcium antagonistic properties. Biochem. Biophys. Res. Commun. 2005;334:276–287. doi: 10.1016/j.bbrc.2005.06.086. PubMed DOI
Ziauddin M., Phansalkar N., Patki P., Diwanay S., Patwardhan B. Studies on the immunomodulatory effects of Ashwagandha. J. Ethnopharmacol. 1996;50:69–76. doi: 10.1016/0378-8741(95)01318-0. PubMed DOI
Kumar P., Kumar A. Possible Neuroprotective Effect of Withania somnifera Root Extract Against 3-Nitropropionic Acid-Induced Behavioral, Biochemical, and Mitochondrial Dysfunction in an Animal Model of Huntington’s Disease. J. Med. Food. 2009;12:591–600. doi: 10.1089/jmf.2008.0028. PubMed DOI
Naidu P.S., Singh A., Kulkarni S.K. Effect of Withania somnifera root extract on reserpine-induced orofacial dyskinesia and cognitive dysfunction. Phytother. Res. 2006;20:140–146. doi: 10.1002/ptr.1823. PubMed DOI
Yadav C.S., Kumar V., Suke S.G., Ahmed R.S., Mediratta P.K., Banerjee B.D. Propoxur-induced acetylcholine esterase inhibition and impairment of cognitive function: Attenuation by Withania somnifera. Indian J. Biochem. Biophys. 2010;47:117–120. PubMed
Chengappa K.N.R., Bowie C.R., Schlicht P.J., Fleet D., Brar J.S., Jindal R. Randomized placebo-controlled adjunctive study of an extract of Withania somnifera for cognitive dysfunction in bipolar disorder. J. Clin. Psychiatry. 2013;74:16816. doi: 10.4088/JCP.13m08413. PubMed DOI
Remenapp A., Coyle K., Orange T., Lynch T., Hooper D., Hooper S., Conway K., Hausenblas H.A. Efficacy of Withania somnifera supplementation on adult’s cognition and mood. J. Ayurveda Integr. Med. 2022;13:100510. doi: 10.1016/j.jaim.2021.08.003. PubMed DOI PMC
Xing D., Yoo C., Gonzalez D., Jenkins V., Nottingham K., Dickerson B., Leonard M., Ko J., Faries M., Kephart W., et al. Effects of Acute Ashwagandha Ingestion on Cognitive Function. Int. J. Environ. Res. Public Health. 2022;19:11852. doi: 10.3390/ijerph191911852. PubMed DOI PMC
Andrade C., Aswath A., Chaturvedi S.K., Srinivasa M., Raguram R. A double-blind, placebo-controlled evaluation of the anxiolytic efficacy ff an ethanolic extract of Withania somnifera. Indian J. Psychiatry. 2000;42:295–301. PubMed PMC
Raut A.A., Rege N.N., Tadvi F.M., Solanki P.V., Kene K.R., Shirolkar S.G., Pandey S.N., Vaidya R.A., Vaidya A.B. Exploratory study to evaluate tolerability, safety, and activity of Ashwagandha (Withania somnifera) in healthy volunteers. J. Ayurveda Integr. Med. 2012;3:111–114. doi: 10.4103/0975-9476.100168. PubMed DOI PMC
Malhotra C.L., Mehta V.L., Das P.K., Dhalla N.S. Studies on Withania-ashwagandha, Kaul. V. The effect of total alkaloids (ashwagandholine) on the central nervous system. Indian J. Physiol. Pharmacol. 1965;9:127–136. PubMed
Aphale A.A., Chibba A.D., Kumbhakarna N.R., Mateenuddin M., Dahat S.H. Subacute toxicity study of the combination of ginseng (Panax ginseng) and ashwagandha (Withania somnifera) in rats: A safety assessment. Indian J. Physiol. Pharmacol. 1998;42:299–302. PubMed
Meher S.K., Das B., Panda P., Bhuyan G.C., Rao M.M. Uses of Withania somnifera (Linn) Dunal (Ashwagandha) in Ayurveda and its pharmacological evidences. Res. J. Pharmacol. Pharmacodyn. 2016;8:23. doi: 10.5958/2321-5836.2016.00006.9. DOI
Sharma A.K., Basu I., Singh S. Efficacy and Safety of Ashwagandha Root Extract in Subclinical Hypothyroid Patients: A Double-Blind, Randomized Placebo-Controlled Trial. J. Altern. Complement. Med. 2018;24:243–248. doi: 10.1089/acm.2017.0183. PubMed DOI
Franklyn J.A., Boelaert K. Thyrotoxicosis. Lancet. 2012;379:1155–1166. doi: 10.1016/S0140-6736(11)60782-4. PubMed DOI
Bevege L. Centella asiatica: A review. Aust. J. Herb. Med. 2004;16:15–27. doi: 10.3316/informit.407696078933571. DOI
Mala A., Tulika T. Therapeutic efficacy of Centella asiatica (L.) and Momordica charantia: As traditional medicinal plant. J. Plant Sci. 2015;3:1–9. doi: 10.11648/j.jps.s.2015030101.11. DOI
Torbati F.A., Ramezani M., Dehghan R., Amiri M.S., Moghadam A.T., Shakour N., Elyasi S., Sahebkar A., Emami S.A. Ethnobotany, Phytochemistry and Pharmacological Features of Centella asiatica: A Comprehensive Review. In: Barreto G.E., Sahebkar A., editors. Pharmacological Properties of Plant-Derived Natural Products and Implications for Human Health. Springer International Publishing; Cham, Switzerland: 2021. pp. 451–499. PubMed DOI
Chachai N., Pensuriya B., Pinsuntiae T., Pratubkong P., Mungngam J., Nitmee P., Kaewsri P., Wongsatchanan S., Jindajia R., Triboun P., et al. Variability of Morphological and Agronomical Characteristics of Centella asiatica in Thailand. Trends Sci. 2021;18:502. doi: 10.48048/tis.2021.502. DOI
Devkota A., Jha P.K. Phenotypic plasticity of Centella asiatica (L.) Urb. growing in different habitats of Nepal. Trop. Plant Res. 2019;6:01–07. doi: 10.22271/tpr.2019.v6.i1.001. DOI
Devkota A., Jha P.K. Variation in growth of Centella asiatica along different soil composition. Bot. Res. Int. 2009;2:55–60.
Devkota A., Jha P.K. Growth performance and Nutrient status of Centella asiatica (L.) Urban in different landuses of Kathmandu valley, Nepal. Int. J. Ecol. Environ. Sci. 2008;34:269–275.
Rohini M.R., Smitha G.R. Studying the effect of morphotype and harvest season on yield and quality of Indian genotypes of Centella asiatica: A potential medicinal herb cum underutilized green leafy vegetable. S. Afr. J. Bot. 2022;145:275–283. doi: 10.1016/j.sajb.2021.11.024. DOI
Yousaf S., Hanif M.A., Rehman R., Azeem M.W., Racoti A. Chapter 32—Indian Pennywort. In: Hanif M.A., Nawaz H., Khan M.M., Byrne H.J., editors. Medicinal Plants of South Asia. Elsevier; Amsterdam, The Netherlands: 2020. pp. 423–437. DOI
Siddiqui B.S., Aslam H., Ali S.T., Khan S., Begum S. Chemical constituents of Centella asiatica. J. Asian Nat. Prod. Res. 2007;9:407–414. doi: 10.1080/10286020600782454. PubMed DOI
Zainol N., Voo S., Sarmidi M., Aziz R. Profiling of Centella asiatica (L.) Urban extract. Malaysian J. Anal. Sci. 2008;12:322–327.
Seevaratnam V., Banumathi P., Premalatha M., Sundaram S., Arumugam T. Functional properties of Centella asiatica (L.): A review. Int. J. Pharm. Pharm. Sci. 2012;4:8–14.
Jayasinghe M., Senadheera S., Wijesekara I., Ranaweera K. Determination of macronutrient compositions in selected, frequently consumed leafy vegetables, prepared according to common culinary methods in Sri Lanka. Vidyodaya J. Sci. 2019;22:1–6. doi: 10.31357/vjs.v22i2.4384. PubMed DOI PMC
Cox D.N., Rajasuriya S.V., Soysa P.E., Gladwin J., Ashworth A. Problems encountered in the community-based production of leaf concentrate as a supplement for pre-school children in Sri Lanka. Int. J. Food Sci. Nutr. 1993;44:123–132. doi: 10.3109/09637489309017430. DOI
Chen C.-L., Tsai W.-H., Chen C.-J., Pan T.-M. Centella asiatica extract protects against amyloid β1–40-induced neurotoxicity in neuronal cells by activating the antioxidative defence system. J. Tradit. Complement. Med. 2016;6:362–369. doi: 10.1016/j.jtcme.2015.07.002. PubMed DOI PMC
Veerendra Kumar M.H., Gupta Y.K. Effect of different extracts of Centella asiatica on cognition and markers of oxidative stress in rats. J. Ethnopharmacol. 2002;79:253–260. doi: 10.1016/S0378-8741(01)00394-4. PubMed DOI
Jayashree G., Kurup Muraleedhara G., Sudarslal S., Jacob V.B. Anti-oxidant activity of Centella asiatica on lymphoma-bearing mice. Fitoterapia. 2003;74:431–434. doi: 10.1016/S0367-326X(03)00121-7. PubMed DOI
Zainol M.K., Abd-Hamid A., Yusof S., Muse R. Antioxidative activity and total phenolic compounds of leaf, root and petiole of four accessions of Centella asiatica (L.) Urban. Food Chem. 2003;81:575–581. doi: 10.1016/S0308-8146(02)00498-3. DOI
Subathra M., Shila S., Devi M.A., Panneerselvam C. Emerging role of Centella asiatica in improving age-related neurological antioxidant status. Exp. Gerontol. 2005;40:707–715. doi: 10.1016/j.exger.2005.06.001. PubMed DOI
Chanana P., Kumar A. Possible Involvement of Nitric Oxide Modulatory Mechanisms in the Neuroprotective Effect of Centella asiatica Against Sleep Deprivation Induced Anxiety Like Behaviour, Oxidative Damage and Neuroinflammation. Phytother. Res. 2016;30:671–680. doi: 10.1002/ptr.5582. PubMed DOI
Soumyanath A., Zhong Y.-P., Yu X., Bourdette D., Koop D.R., Gold S.A., Gold B.G. Centella asiatica accelerates nerve regeneration upon oral administration and contains multiple active fractions increasing neurite elongation in-vitro. J. Pharm. Pharmacol. 2005;57:1221–1229. doi: 10.1211/jpp.57.9.0018. PubMed DOI
Rao S.B., Chetana M., Uma Devi P. Centella asiatica treatment during postnatal period enhances learning and memory in mice. Physiol. Behav. 2005;86:449–457. doi: 10.1016/j.physbeh.2005.07.019. PubMed DOI
Wijeweera P., Arnason J.T., Koszycki D., Merali Z. Evaluation of anxiolytic properties of Gotukola—(Centella asiatica) extracts and asiaticoside in rat behavioral models. Phytomedicine. 2006;13:668–676. doi: 10.1016/j.phymed.2006.01.011. PubMed DOI
Jana U., Sur T.K., Maity L.N., Debnath P.K., Bhattacharyya D. A clinical study on the management of generalized anxiety disorder with Centella asiatica. Nepal. Med. Coll. J. 2010;12:8–11. PubMed
Wattanathorn J., Mator L., Muchimapura S., Tongun T., Pasuriwong O., Piyawatkul N., Yimtae K., Sripanidkulchai B., Singkhoraard J. Positive modulation of cognition and mood in the healthy elderly volunteer following the administration of Centella asiatica. J. Ethnopharmacol. 2008;116:325–332. doi: 10.1016/j.jep.2007.11.038. PubMed DOI
Gohil K.J., Patel J.A., Gajjar A.K. Pharmacological Review on Centella asiatica: A Potential Herbal Cure-all. Indian J. Pharm. Sci. 2010;72:546–556. doi: 10.4103/0250-474X.78519. PubMed DOI PMC
Anukunwithaya T., Tantisira M.H., Tantisira B., Khemawoot P. Pharmacokinetics of a standardized extract of Centella asiatica ECa 233 in rats. Planta Med. 2017;83:710–717. doi: 10.1055/s-0042-122344. PubMed DOI
Brinkhaus B., Lindner M., Schuppan D., Hahn E.G. Chemical, pharmacological and clinical profile of the East Asian medical plant Centella aslatica. Phytomedicine. 2000;7:427–448. doi: 10.1016/S0944-7113(00)80065-3. PubMed DOI
Izu R., Aguirre A., Gil N., Diaz-Perez J.L. Allergic contact dermatitis from a cream containing Centella asiatica extract. Contact Derm. 1992;26:192–193. doi: 10.1111/j.1600-0536.1992.tb00291.x. PubMed DOI
Chivapat S., Chavalittumrong P., Tantisira M.H. Acute and sub-chronic toxicity studies of a standardized extract of Centella asiatica ECa 233. Thai J. Pharm. Sci. 2011;35:55–64.
Davydov M., Krikorian A.D. Eleutherococcus senticosus (Rupr. & Maxim.) Maxim. (Araliaceae) as an adaptogen: A closer look. J. Ethnopharmacol. 2000;72:345–393. doi: 10.1016/S0378-8741(00)00181-1. PubMed DOI
Todorova V., Ivanov K., Delattre C., Nalbantova V., Karcheva-Bahchevanska D., Ivanova S. Plant Adaptogens—History and Future Perspectives. Nutrients. 2021;13:2861. doi: 10.3390/nu13082861. PubMed DOI PMC
Sonnenbora U., Hänsel R. Eleutherococcus senticosus. In: De Smet P.A.G.M., Keller K., Hänsel R., Chandler R.F., editors. Adverse Effects of Herbal Drugs 2. Springer; Berlin/Heidelberg, Germany: 1993. pp. 159–169. DOI
Bączek K., Pawełczak A., Przybył J.L., Kosakowska O., Węglarz Z. Secondary Metabolites of Various Eleuthero (Eleutherococcus senticosus/Rupr. et Maxim./Maxim) Organs Derived from Plants Obtained by Somatic Embryogenesis. In: Ramawat K.G., Ekiert H.M., Goyal S., editors. Plant Cell and Tissue Differentiation and Secondary Metabolites: Fundamentals and Applications. Springer International Publishing; Cham, Switzerland: 2021. pp. 433–466. DOI
An C. In Vitro propagation of commonly used medicinal trees in Korea. J. For. Environ. Sci. 2019;35:272–280. doi: 10.7747/JFES.2019.35.4.272. DOI
Załuski D., Olech M., Galanty A., Verpoorte R., Kuźniewski R., Nowak R., Bogucka-Kocka A. Phytochemical Content and Pharma-Nutrition Study on Eleutherococcus senticosus Fruits Intractum. Oxid. Med. Cell Longev. 2016;2016:9270691. doi: 10.1155/2016/9270691. PubMed DOI PMC
Yan-Lin S., Lin-De L., Soon-Kwan H. Eleutherococcus senticosus as a crude medicine: Review of biological and pharmacological effects. J. Med. Plant Res. 2011;5:5946–5952. doi: 10.5897/JMPR.9000557. DOI
Huang Y.-H., Ding W.-L., Li X.-T., Cai M.-T., Li H.-L., Yang Z.-Y., Piao X.-H., Zhu S., Tohda C., Komatsu K., et al. Memory enhancement effect of saponins from Eleutherococcus senticosus leaves and blood–brain barrier-permeated saponins profiling using a pseudotargeted monitoring strategy. Food Funct. 2022;13:3603–3620. doi: 10.1039/D1FO03078G. PubMed DOI
Bajpai V.K., Sharma A., Kim S.H., Kim Y., Kim J.-J., Baek K.-H. Microwave-Assisted Seed Essential Oil of Eleutherococcus senticosus and Its Antioxidant and Free Radical-Scavenging Activities. J. Food Biochem. 2013;37:119–127. doi: 10.1111/jfbc.12013. DOI
Gromovaya V.F., Shapoval G.S., Mironyuk I.E., Nestyuk N.V. Antioxidant properties of medicinal plants. Pharm. Chem. J. 2008;42:25–28. doi: 10.1007/s11094-008-0050-9. DOI
Tohda C., Ichimura M., Bai Y., Tanaka K., Zhu S., Komatsu K. Inhibitory Effects of Eleutherococcus senticosus Extracts on Amyloid β(25-35)–Induced Neuritic Atrophy and Synaptic Loss. J. Pharmacol. Sci. 2008;107:329–339. doi: 10.1254/jphs.08046FP. PubMed DOI
Ge Y.-W., Tohda C., Zhu S., He Y.-M., Yoshimatsu K., Komatsu K. Effects of Oleanane-Type Triterpene Saponins from the Leaves of Eleutherococcus senticosus in an Axonal Outgrowth Assay. J. Nat. Prod. 2016;79:1834–1841. doi: 10.1021/acs.jnatprod.6b00329. PubMed DOI
Yamauchi Y., Ge Y.-W., Yoshimatsu K., Komatsu K., Kuboyama T., Yang X., Tohda C. Memory Enhancement by Oral Administration of Extract of Eleutherococcus senticosus Leaves and Active Compounds Transferred in the Brain. Nutrients. 2019;11:1142. doi: 10.3390/nu11051142. PubMed DOI PMC
Cicero A.F.G., Derosa G., Brillante R., Bernardi R., Nascetti S., Gaddi A. Effects of Siberian ginseng (Eleutherococcus senticosus maxim.) on elderly quality of life: A randomized clinical trial. Arch. Gerontol. Geriatr. 2004;38:69–73. doi: 10.1016/j.archger.2004.04.012. PubMed DOI
Tohda C., Matsui M., Inada Y., Yang X., Kuboyama T., Kimbara Y., Watari H. Combined Treatment with Two Water Extracts of Eleutherococcus senticosus Leaf and Rhizome of Drynaria fortunei Enhances Cognitive Function: A Placebo-Controlled, Randomized, Double-Blind Study in Healthy Adults. Nutrients. 2020;12:303. doi: 10.3390/nu12020303. PubMed DOI PMC
Mahady G.B., Gyllenhaal C., Fong H.H., Farnsworth N.R. Ginsengs: A Review of Safety and Efficacy. Nutr. Clin. Care. 2000;3:90–101. doi: 10.1046/j.1523-5408.2000.00020.x. DOI
Gerontakos S., Taylor A., Avdeeva A.Y., Shikova V.A., Pozharitskaya O.N., Casteleijn D., Wardle J., Shikov A.N. Findings of Russian literature on the clinical application of Eleutherococcus senticosus (Rupr. & Maxim.): A narrative review. J. Ethnopharmacol. 2021;278:114274. doi: 10.1016/j.jep.2021.114274. PubMed DOI
Bleakney T.L. Deconstructing an Adaptogen: Eleutherococcus senticosus. Holist. Nurs. Pract. 2008;22:220–224. doi: 10.1097/01.HNP.0000326005.65310.7c. PubMed DOI
Schmidt M., Thomsen M., Kelber O., Kraft K. Myths and facts in herbal medicines: Eleutherococcus senticosus (Siberian ginseng) and its contraindication in hypertensive patients. Botanics. 2014;4:27–32. doi: 10.2147/BTAT.S60734. DOI
Crane P.R., Crane P., von Knorring P. Ginkgo: The Tree That Time Forgot. Yale University Press; New Haven, CT, USA: 2013.
Hori S., Hori T. A Cultural History of Ginkgo in Japan and the Generic Name Ginkgo. In: Hori T., Ridge R.W., Tulecke W., Del Tredici P., Trémouillaux-Guiller J., Tobe H., editors. Ginkgo biloba a Global Treasure: From Biology to Medicine. Springer; Tokyo, Japan: 1997. pp. 385–411. DOI
Zhao Y., Paule J., Fu C., Koch M.A. Out of China: Distribution history of Ginkgo biloba L. Taxon. 2010;59:495–504. doi: 10.1002/tax.592014. DOI
Jacobs B.P., Browner W.S. Ginkgo biloba: A living fossil. Am. J. Med. 2000;108:341–342. doi: 10.1016/S0002-9343(00)00290-4. PubMed DOI
Huh H., Staba E.J. The Botany and Chemistry of Ginkgo biloba L. J. Herbs Spices Med. Plants. 1992;1:91–124. doi: 10.1300/J044v01n01_10. DOI
van Beek T.A. Chemical analysis of Ginkgo biloba leaves and extracts. J. Chromatogr. A. 2002;967:21–55. doi: 10.1016/S0021-9673(02)00172-3. PubMed DOI
Boateng I.D., Yang X.-M. Effect of different drying methods on product quality, bioactive and toxic components of Ginkgo biloba L. seed. J. Sci. Food Agric. 2021;101:3290–3297. doi: 10.1002/jsfa.10958. PubMed DOI
Masteikova R., Muselik J., Bernatonienė J., Bernatonienė R. Antioxidative activity of Ginkgo, Echinacea, and Ginseng tinctures. Medicina. 2007;43:306. doi: 10.3390/medicina43040038. PubMed DOI
Shin C.-S., Yoon N., Oh B.-S., Jeong H.-S., Yeoun P.-S., Kim D.-J. Variation of Toxin Content in Ginkgo Fruits according to Thermal Treatment. Natl. Acad. Sci. Lett. 2020;43:673–676. doi: 10.1007/s40009-020-00913-3. DOI
Maitra I., Marcocci L., Droy-Lefaix M.T., Packer L. Peroxyl radical scavenging activity of Ginkgo biloba extract EGb 761. Biochem. Pharmacol. 1995;49:1649–1655. doi: 10.1016/0006-2952(95)00089-I. PubMed DOI
Verma S., Ranawat P., Sharma N., Nehru B. Ginkgo biloba attenuates aluminum lactate-induced neurotoxicity in reproductive senescent female rats: Behavioral, biochemical, and histopathological study. Environ. Sci. Pollut. Res. 2019;26:27148–27167. doi: 10.1007/s11356-019-05743-5. PubMed DOI
Kim M.-S., Bang J.H., Lee J., Han J.-S., Baik T.G., Jeon W.K. Ginkgo biloba L. extract protects against chronic cerebral hypoperfusion by modulating neuroinflammation and the cholinergic system. Phytomedicine. 2016;23:1356–1364. doi: 10.1016/j.phymed.2016.07.013. PubMed DOI
Williams B., Watanabe C.M.H., Schultz P.G., Rimbach G., Krucker T. Age-related effects of Ginkgo biloba extract on synaptic plasticity and excitability. Neurobiol. Aging. 2004;25:955–962. doi: 10.1016/j.neurobiolaging.2003.10.008. PubMed DOI
Luo Y., Smith J.V., Paramasivam V., Burdick A., Curry K.J., Buford J.P., Khan I., Netzer W.J., Xu H., Butko P. Inhibition of amyloid-β aggregation and caspase-3 activation by the Ginkgo biloba extract EGb761. Proc. Natl. Acad. Sci. USA. 2002;99:12197–12202. doi: 10.1073/pnas.182425199. PubMed DOI PMC
Kanowski S., Herrmann W.M., Stephan K., Wierich W., Hörr R. Proof of efficacy of the Ginkgo biloba special extract EGb 761 in outpatients suffering from mild to moderate primary degenerative dementia of the Alzheimer type or multi-infarct dementia. Phytomedicine. 1997;4:3–13. doi: 10.1016/S0944-7113(97)80021-9. PubMed DOI
Stough C., Clarke J., Lloyd J., Nathan P.J. Neuropsychological changes after 30-day Ginkgo biloba administration in healthy participants. Int. J. Neuropsychopharmacol. 2001;4:131–134. doi: 10.1017/S1461145701002292. PubMed DOI
Bidzan L., Biliekiewicz A., Turczyński J. Preliminary assessment of Ginkgo biloba (Ginkofar) in patients with dementia. Psychiatr. Pol. 2005;39:559–566. PubMed
Canter P., Ernst E. Ginkgo biloba is not a smart drug: An updated systematic review of randomised clinical trials testing the nootropic effects of G. biloba extracts in healthy people. Hum. Psychopharmacol. 2007;22:265–278. doi: 10.1002/hup.843. PubMed DOI
Vellas B., Coley N., Ousset P.-J., Berrut G., Dartigues J.-F., Dubois B., Grandjean H., Pasquier F., Piette F., Robert P., et al. Long-term use of standardised Ginkgo biloba extract for the prevention of Alzheimer’s disease (GuidAge): A randomised placebo-controlled trial. Lancet Neurol. 2012;11:851–859. doi: 10.1016/S1474-4422(12)70206-5. PubMed DOI
Diamond B.J., Shiflett S.C., Feiwel N., Matheis R.J., Noskin O., Richards J.A., Schoenberger N.E. Ginkgo biloba extract: Mechanisms and clinical indications. Arch. Phys. Med. Rehabil. 2000;81:668–678. doi: 10.1016/S0003-9993(00)90052-2. PubMed DOI
Le Bars P.L., Kastelan J. Efficacy and safety of a Ginkgo biloba extract. Public Health Nutr. 2000;3:495–499. doi: 10.1017/S1368980000000574. PubMed DOI
R&D EGb 761. Drugs R D. 2003;4:188–193. doi: 10.2165/00126839-200304030-00009. PubMed DOI
Ekor M. The growing use of herbal medicines: Issues relating to adverse reactions and challenges in monitoring safety. Front. Pharmacol. 2014;4:177. doi: 10.3389/fphar.2013.00177. PubMed DOI PMC
Mahady G.B. Ginkgo biloba: A Review of Quality, Safety, and Efficacy. Nutr. Clin. Care. 2001;4:140–147. doi: 10.1046/j.1523-5408.2001.00135.x. DOI
Stoddard G.J., Archer M., Shane-McWhorter L., Bray B.E., Redd D.F., Proulx J., Zeng-Treitler Q. Ginkgo and warfarin interaction in a large veterans administration population; Proceedings of the AMIA Annual Symposium Proceedings; San Francisco, CA, USA. 14–18 November 2015; pp. 1174–1183. PubMed PMC
Jang H.-s., Roh S.Y., Jeong E.H., Kim B.-S., Sunwoo M.K. Ginkgotoxin Induced Seizure Caused by Vitamin B6 Deficiency. J. Epilepsy Res. 2015;5:104–106. doi: 10.14581/jer.15018. PubMed DOI PMC
Kosaki Y., Naito H., Nojima T., Nakao A. Epileptic Seizure from Ginkgo Nut Intoxication in an Adult. Case Rep. Emerg. Med. 2020;2020:5072954. doi: 10.1155/2020/5072954. PubMed DOI PMC
Boateng I.D. A critical review of current technologies used to reduce ginkgotoxin, ginkgotoxin-5′-glucoside, ginkgolic acid, allergic glycoprotein, and cyanide in Ginkgo biloba L. seed. Food Chem. 2022;382:132408. doi: 10.1016/j.foodchem.2022.132408. PubMed DOI
Goldstein B. Ginseng: Its History, Dispersion, and Folk Tradition. Am. J. Chin. Med. 1975;3:223–234. doi: 10.1142/S0192415X75000244. PubMed DOI
Nair R., Sellaturay S., Sriprasad S. The history of ginseng in the management of erectile dysfunction in ancient China (3500–2600 BCE) Indian J. Urol. 2012;28:15–20. doi: 10.4103/0970-1591.94946. PubMed DOI PMC
Flagg A.J. Traditional and current use of ginseng. Nurs. Clin. 2021;56:109–121. doi: 10.1016/j.cnur.2020.10.011. PubMed DOI
Proctor J.T.A., Bailey W.G. Ginseng: Industry, Botany, and Culture. Hortic. Rev. 1987;9:187–236. doi: 10.1002/9781118060827.ch6. DOI
Choi K.-t. Botanical characteristics, pharmacological effects and medicinal components of Korean Panax ginseng C A Meyer. Acta Pharmacol. Sin. 2008;29:1109–1118. doi: 10.1111/j.1745-7254.2008.00869.x. PubMed DOI
Proctor J.T., Lee J.C., Lee S.-S. Ginseng production in Korea. HortScience. 1990;25:746–750. doi: 10.21273/HORTSCI.25.7.746. DOI
Chen W., Balan P., Popovich D.G. Ginsenosides analysis of New Zealand-grown forest Panax ginseng by LC-QTOF-MS/MS. J. Ginseng. Res. 2020;44:552–562. doi: 10.1016/j.jgr.2019.04.007. PubMed DOI PMC
Chen W., Balan P., Popovich D.G. Analysis of Ginsenoside Content (Panax ginseng) from Different Regions. Molecules. 2019;24:3491. doi: 10.3390/molecules24193491. PubMed DOI PMC
Lu J.-M., Yao Q., Chen C. Ginseng compounds: An update on their molecular mechanisms and medical applications. Curr. Vasc. Pharmacol. 2009;7:293–302. doi: 10.2174/157016109788340767. PubMed DOI PMC
Hou J.P. The chemical constituents of ginseng plants. Am. J. Chin. Med. 1977;5:123–145. doi: 10.1142/S0147291777000209. PubMed DOI
Ha D.-C., Ryu G.-H. Chemical components of red, white and extruded root ginseng. J. Korean Soc. Food Sci. Nutr. 2005;34:247–254. doi: 10.3746/jkfn.2005.34.2.247. DOI
Kwon I.-S., Kim H., Hong G.-P. Utilization of pulsed infrared for the rapid semidrying of fresh ginseng with advanced qualities and extended shelf life. Food Control. 2022;138:109043. doi: 10.1016/j.foodcont.2022.109043. DOI
Yu J., Eto M., Akishita M., Kaneko A., Ouchi Y., Okabe T. Signaling pathway of nitric oxide production induced by ginsenoside Rb1 in human aortic endothelial cells: A possible involvement of androgen receptor. Biochem. Biophys. Res. Commun. 2007;353:764–769. doi: 10.1016/j.bbrc.2006.12.119. PubMed DOI
Churchill J.D., Gerson J.L., Hinton K.A., Mifek J.L., Walter M.J., Winslow C.L., Deyo R.A. The nootropic properties of ginseng saponin Rb1 are linked to effects on anxiety. Integr. Psychol. Behav. Sci. 2002;37:178–187. doi: 10.1007/BF02734180. PubMed DOI
Wang Y., Liu J., Zhang Z., Bi P., Qi Z., Zhang C. Anti-neuroinflammation effect of ginsenoside Rbl in a rat model of Alzheimer disease. Neurosci. Lett. 2011;487:70–72. doi: 10.1016/j.neulet.2010.09.076. PubMed DOI
Kim D.H., Kim D.W., Jung B.H., Lee J.H., Lee H., Hwang G.S., Kang K.S., Lee J.W. Ginsenoside Rb2 suppresses the glutamate-mediated oxidative stress and neuronal cell death in HT22 cells. J. Ginseng. Res. 2019;43:326–334. doi: 10.1016/j.jgr.2018.12.002. PubMed DOI PMC
Yang L., Zhang J., Zheng K., Shen H., Chen X. Long-term Ginsenoside Rg1 Supplementation Improves Age-Related Cognitive Decline by Promoting Synaptic Plasticity Associated Protein Expression in C57BL/6J Mice. J. Gerontol. A. 2013;69A:282–294. doi: 10.1093/gerona/glt091. PubMed DOI
Shin S.J., Park Y.H., Jeon S.G., Kim S., Nam Y., Oh S.-M., Lee Y.Y., Moon M. Red Ginseng Inhibits Tau Aggregation and Promotes Tau Dissociation In Vitro. Oxid. Med. Cell Longev. 2020;2020:7829842. doi: 10.1155/2020/7829842. PubMed DOI PMC
Goedert M. Tau protein and neurodegeneration. Semin. Cell Dev. Biol. 2004;15:45–49. doi: 10.1016/j.semcdb.2003.12.015. PubMed DOI
Petkov V.D., Belcheva S., Konstantinova E., Kehayov R., Petkov V.V., Hadjiivanova C. Participation of the serotonergic system in the memory effects of Ginkgo biloba L. and Panax ginseng C. A. Mey. Phytother. Res. 1994;8:470–477. doi: 10.1002/ptr.2650080807. DOI
Kim H.-G., Yoo S.-R., Park H.-J., Lee N.-H., Shin J.-W., Sathyanath R., Cho J.-H., Son C.-G. Antioxidant effects of Panax ginseng C.A. Meyer in healthy subjects: A randomized, placebo-controlled clinical trial. Food Chem. Toxicol. 2011;49:2229–2235. doi: 10.1016/j.fct.2011.06.020. PubMed DOI
Park K.-C., Jin H., Zheng R., Kim S., Lee S.-E., Kim B.-H., Yim S.-V. Cognition enhancing effect of panax ginseng in Korean volunteers with mild cognitive impairment: A randomized, double-blind, placebo-controlled clinical trial. Transl. Clin. Pharmacol. 2019;27:92–97. doi: 10.12793/tcp.2019.27.3.92. PubMed DOI PMC
Kiefer D.S., Pantuso T. Panax ginseng. Am. Fam. Physician. 2003;68:1539–1542. PubMed
Lee M.-H., Kwak J.H., Jeon G., Lee J.-W., Seo J.-H., Lee H.-S., Lee J.H. Red ginseng relieves the effects of alcohol consumption and hangover symptoms in healthy men: A randomized crossover study. Food Funct. 2014;5:528–534. doi: 10.1039/c3fo60481k. PubMed DOI
Je J., Kim H., Park E.J., Kim S.R., Dusabimana T., Jeong K., Yun S.P., Kim H.J., Cho K.M., Park S.W. Fermentation of Sprouted Ginseng (Panax ginseng) Increases Flavonoid and Phenolic Contents to Attenuate Alcoholic Hangover and Acute Liver Injury in Mice. Am. J. Chin. Med. 2020;49:131–146. doi: 10.1142/S0192415X21500075. PubMed DOI
Karmazyn M., Gan X.T. Chemical components of ginseng, their biotransformation products and their potential as treatment of hypertension. Mol. Cell Biochem. 2021;476:333–347. doi: 10.1007/s11010-020-03910-8. PubMed DOI
Park S.H., Chung S., Chung M.-Y., Choi H.-K., Hwang J.-T., Park J.H. Effects of Panax ginseng on hyperglycemia, hypertension, and hyperlipidemia: A systematic review and meta-analysis. J. Ginseng. Res. 2022;46:188–205. doi: 10.1016/j.jgr.2021.10.002. PubMed DOI PMC
Kim K.-M., Kwon H.-S., Jeon S.-G., Park C.-H., Sohn S.-W., Kim D.-I., Kim S.-S., Chang Y.-S., Kim Y.-K., Cho S.-H., et al. Korean Ginseng-Induced Occupational Asthma and Determination of IgE Binding Components. J. Korean Med. Sci. 2008;23:232–235. doi: 10.3346/jkms.2008.23.2.232. PubMed DOI PMC
Marques L.L.M., Ferreira E.D.F., Paula M.N.d., Klein T., Mello J.C.P.d. Paullinia cupana: A multipurpose plant-a review. Rev. Bras. Farmacogn. 2019;29:77–110. doi: 10.1016/j.bjp.2018.08.007. DOI
d’Angelo S., Ascione A. Guarana and physical performance: A myth or reality? J. Hum. Sport. Exerc. 2020;15:S539–S551. doi: 10.14198/jhse.2020.15.Proc3.07. DOI
Hamerski L., Somner G.V., Tamaio N. Paullinia cupana Kunth (Sapindaceae): A review of its ethnopharmacology, phytochemistry and pharmacology. J. Med. Plant Res. 2013;7:2221–2229. doi: 10.5897/JMPR2013.5067. DOI
Erickson H.T., Correa M.P.F., Escobar J.r. Guaraná (Paullinia cupana) as a commercial crop in Brazilian Amazonia. Econ. Bot. 1984;38:273–286. doi: 10.1007/BF02859006. DOI
Ushirobira T.A., Yamaguti E., Uemura L.M., Nakamura C.V., Dias Filho B.P., Mello J.P. Chemical and microbiological study of extract from seeds of guaraná (Paullinia cupana var. sorbilis). Lat. Am. J. Pharm. 2007;26:5–9.
Cavalcanti V., Marques M., do Nascimento W.M., Rocha A.W.D.O., Ferreira I.D.J., Leao D.P., Félix P.H.C., de Oliveira C.M.C. Bioproducts based on guarana (Paulinia cupana) for practitioners of physical activity. Eur. Acad. Res. 2020;8:1746–1759.
Banga S., Kumar V., Suri S., Kaushal M., Prasad R., Kaur S. Nutraceutical Potential of Diet Drinks: A Critical Review on Components, Health Effects, and Consumer Safety. J. Am. Coll. Nutr. 2020;39:272–286. doi: 10.1080/07315724.2019.1642811. PubMed DOI
Boasquívis P.F., Silva G.M.M., Paiva F.A., Cavalcanti R.M., Nunez C.V., de Paula Oliveira R. Guarana (Paullinia cupana) Extract Protects Caenorhabditis elegans Models for Alzheimer Disease and Huntington Disease through Activation of Antioxidant and Protein Degradation Pathways. Oxid. Med. Cell Longev. 2018;2018:9241308. doi: 10.1155/2018/9241308. PubMed DOI PMC
Bittencourt L.d.S., Zeidán-Chuliá F., Yatsu F.K.J., Schnorr C.E., Moresco K.S., Kolling E.A., Gelain D.P., Bassani V.L., Moreira J.C.F. Guarana (Paullinia cupana Mart.) Prevents β-Amyloid Aggregation, Generation of Advanced Glycation-end Products (AGEs), and Acrolein-Induced Cytotoxicity on Human Neuronal-Like Cells. Phytother. Res. 2014;28:1615–1624. doi: 10.1002/ptr.5173. PubMed DOI
Rangel M.P., de Mello J.C.P., Audi E.A. Evaluation of neurotransmitters involved in the anxiolytic and panicolytic effect of the aqueous fraction of Paullinia cupana (guaraná) in elevated T maze. Rev. Bras. Farmacogn. 2013;23:358–365. doi: 10.1590/S0102-695X2013005000024. DOI
Otobone F.J., Sanches A.C., Nagae R.L., Martins J.V.C., Obici S., Mello J.C.P.d., Audi E.A. Effect of crude extract and its semi purified constituents from guaraná seeds [Paullinia cupana var. sorbilis (Mart.) lucke] on cognitive performance in Morris water maze in rats. Braz. Arch. Biol. Technol. 2005;48:723–728. doi: 10.1590/S1516-89132005000600007. DOI
Espinola E.B., Dias R.F., Mattei R., Carlini E.A. Pharmacological activity of Guarana (Paullinia cupana Mart.) in laboratory animals. J. Ethnopharmacol. 1997;55:223–229. doi: 10.1016/S0378-8741(96)01506-1. PubMed DOI
Veloso C.F., Machado A.K., Cadoná F.C., Azzolin V.F., Cruz I.B.M., Silveira A.F. Neuroprotective Effects of Guarana (Paullinia cupana Mart.) against Vincristine in Vitro Exposure. J. Prev. Alzheimers Dis. 2018;5:65–70. doi: 10.14283/jpad.2017.45. PubMed DOI
Yonekura L., Martins C.A., Sampaio G.R., Monteiro M.P., César L.A.M., Mioto B.M., Mori C.S., Mendes T.M.N., Ribeiro M.L., Arçari D.P., et al. Bioavailability of catechins from guaraná (Paullinia cupana) and its effect on antioxidant enzymes and other oxidative stress markers in healthy human subjects. Food Funct. 2016;7:2970–2978. doi: 10.1039/C6FO00513F. PubMed DOI
Kennedy D.O., Haskell C.F., Wesnes K.A., Scholey A.B. Improved cognitive performance in human volunteers following administration of guarana (Paullinia cupana) extract: Comparison and interaction with Panax ginseng. Pharmacol. Biochem. Behav. 2004;79:401–411. doi: 10.1016/j.pbb.2004.07.014. PubMed DOI
Patrick M., Kim H.A., Oketch-Rabah H., Marles R.J., Roe A.L., Calderón A.I. Safety of Guarana Seed as a Dietary Ingredient: A Review. J. Agric. Food. Chem. 2019;67:11281–11287. doi: 10.1021/acs.jafc.9b03781. PubMed DOI
Marques L.L.M., Klein T., de Mello J.C.P. Chapter 3.24—Guarana. In: Nabavi S.M., Silva A.S., editors. Nonvitamin and Nonmineral Nutritional Supplements. Academic Press; Cambridge, MA, USA: 2019. pp. 283–288. DOI
Turnbull D., Rodricks J.V., Mariano G.F., Chowdhury F. Caffeine and cardiovascular health. Regul. Toxicol. Pharmacol. 2017;89:165–185. doi: 10.1016/j.yrtph.2017.07.025. PubMed DOI
Torres E.A.F.S., Pinaffi-Langley A.C.d.C., Figueira M.d.S., Cordeiro K.S., Negrão L.D., Soares M.J., da Silva C.P., Alfino M.C.Z., Sampaio G.R., de Camargo A.C. Effects of the consumption of guarana on human health: A narrative review. Compr. Rev. Food Sci. Food Saf. 2022;21:272–295. doi: 10.1111/1541-4337.12862. PubMed DOI
Silva C.P., Sampaio G.R., Freitas R.A.M.S., Torres E.A.F.S. Polyphenols from guaraná after in vitro digestion: Evaluation of bioacessibility and inhibition of activity of carbohydrate-hydrolyzing enzymes. Food Chem. 2018;267:405–409. doi: 10.1016/j.foodchem.2017.08.078. PubMed DOI
Pinaffi A.C.d.C., Sampaio G.R., Soares M.J., Shahidi F., de Camargo A.C., Torres E.A.F.S. Insoluble-Bound Polyphenols Released from Guarana Powder: Inhibition of Alpha-Glucosidase and Proanthocyanidin Profile. Molecules. 2020;25:679. doi: 10.3390/molecules25030679. PubMed DOI PMC
Rienks J., Barbaresko J., Oluwagbemigun K., Schmid M., Nöthlings U. Polyphenol exposure and risk of type 2 diabetes: Dose-response meta-analyses and systematic review of prospective cohort studies. Am. J. Clin. Nutr. 2018;108:49–61. doi: 10.1093/ajcn/nqy083. PubMed DOI
León J. The “Maca” (Lepidium meyenii), a little known food plant of peru. Econ. Bot. 1964;18:122–127. doi: 10.1007/BF02862707. DOI
Muhammad I., Zhao J., Khan I.A. Maca (Lepidium meyenii) In: Coates P., Blackman M.R., Cragg G., Levine M., Moss J., White J., editors. Encyclopedia of Dietary Supplement. CRC Press; Boca Raton, FL, USA: 2005. pp. 522–531. DOI
Flores H.E., Walker T.S., Guimarães R.L., Bais H.P., Vivanco J.M. Andean Root and Tuber Crops: Underground Rainbows. HortSci. 2003;38:161–167. doi: 10.21273/HORTSCI.38.2.161. DOI
Zaytseva O., Terrel Gutierrez M., Graeff-Hönninger S. Effect of Day Length on Growth and Root Morphology of Yellow Maca (Lepidium meyenii) Seedlings. Int. J. Plant Biol. 2022;13:71–81. doi: 10.3390/ijpb13020008. DOI
Tafuri S., Cocchia N., Vassetti A., Carotenuto D., Esposito L., Maruccio L., Avallone L., Ciani F. Lepidium meyenii (Maca) in male reproduction. Nat. Prod. Res. 2021;35:4550–4559. doi: 10.1080/14786419.2019.1698572. PubMed DOI
Huarancca Reyes T., Esparza E., Crestani G., Limonchi F., Cruz R., Salinas N., Scartazza A., Guglielminetti L., Cosio E. Physiological responses of maca (Lepidium meyenii Walp.) plants to UV radiation in its high-altitude mountain ecosystem. Sci. Rep. 2020;10:1–13. doi: 10.1038/s41598-020-59638-4. PubMed DOI PMC
Dini A., Migliuolo G., Rastrelli L., Saturnino P., Schettino O. Chemical composition of Lepidium meyenii. Food Chem. 1994;49:347–349. doi: 10.1016/0308-8146(94)90003-5. DOI
Muhammad I., Zhao J., Dunbar D.C., Khan I.A. Constituents of Lepidium meyenii ‘maca’. Phytochemistry. 2002;59:105–110. doi: 10.1016/S0031-9422(01)00395-8. PubMed DOI
Huang Y.-J., Peng X.-R., Qiu M.-H. Progress on the Chemical Constituents Derived from Glucosinolates in Maca (Lepidium meyenii) Nat. Prod. Bioprospect. 2018;8:405–412. doi: 10.1007/s13659-018-0185-7. PubMed DOI PMC
Brinckmann J., Smith E. Maca Culture of the Junín Plateau. J. Altern. Complement. Med. 2004;10:426–430. doi: 10.1089/1075553041323821. PubMed DOI
Smith E. MACA ROOT: Modern Rediscovery of an Ancient Andean Fertility Food. J. Am. Herbal. Guild. 2003;4:15–21.
Jin W., Chen X., Huo Q., Cui Y., Yu Z., Yu L. Aerial parts of maca (Lepidium meyenii Walp.) as functional vegetables with gastrointestinal prokinetic efficacy in vivo. Food Funct. 2018;9:3456–3465. doi: 10.1039/C8FO00405F. PubMed DOI
Caicai K., Limin H., Liming Z., Zhiqiang Z., Yongwu Y. Isolation, purification and antioxidant activity of polysaccharides from the leaves of maca (Lepidium meyenii) Int. J. Biol. Macromol. 2018;107:2611–2619. doi: 10.1016/j.ijbiomac.2017.10.139. PubMed DOI
Li S., Hao L., Kang Q., Cui Y., Jiang H., Liu X., Lu J. Purification, characterization and biological activities of a polysaccharide from Lepidium meyenii leaves. Int. J. Biol. Macromol. 2017;103:1302–1310. doi: 10.1016/j.ijbiomac.2017.05.165. PubMed DOI
Pino-Figueroa A., Nguyen D., Maher T.J. Neuroprotective effects of Lepidium meyenii (Maca) Ann. N. Y. Acad. Sci. 2010;1199:77–85. doi: 10.1111/j.1749-6632.2009.05174.x. PubMed DOI
Zhou Y., Li P., Brantner A., Wang H., Shu X., Yang J., Si N., Han L., Zhao H., Bian B. Chemical profiling analysis of Maca using UHPLC-ESI-Orbitrap MS coupled with UHPLC-ESI-QqQ MS and the neuroprotective study on its active ingredients. Sci. Rep. 2017;7:44660. doi: 10.1038/srep44660. PubMed DOI PMC
Rubio J., Caldas M., Dávila S., Gasco M., Gonzales G.F. Effect of three different cultivars of Lepidium meyenii (Maca) on learning and depression in ovariectomized mice. BMC Complement. Altern. Med. 2006;6:23. doi: 10.1186/1472-6882-6-23. PubMed DOI PMC
Guo S.-S., Gao X.-F., Gu Y.-R., Wan Z.-X., Lu A.M., Qin Z.-H., Luo L. Preservation of Cognitive Function by Lepidium meyenii (Maca) Is Associated with Improvement of Mitochondrial Activity and Upregulation of Autophagy-Related Proteins in Middle-Aged Mouse Cortex. J. Evid.-Based. Complement. Altern. Med. 2016;2016:4394261. doi: 10.1155/2016/4394261. PubMed DOI PMC
Yu Z., Li D., Zhai S., Xu H., Liu H., Ao M., Zhao C., Jin W., Yu L. Neuroprotective effects of macamide from maca (Lepidium meyenii Walp.) on corticosterone-induced hippocampal impairments through its anti-inflammatory, neurotrophic, and synaptic protection properties. Food Funct. 2021;12:9211–9228. doi: 10.1039/D1FO01720A. PubMed DOI
Honma A., Fujiwara Y., Takei S., Kino T. The improvement of daily fatigue in women following the intake of maca (Lepidium meyenii) extract containing benzyl glucosinolate. Funct. Food Health Dis. 2022;12:175–187. doi: 10.31989/ffhd.v12i4.912. DOI
Gonzales G.F., Córdova A., Vega K., Chung A., Villena A., Góñez C., Castillo S. Effect of Lepidium meyenii (MACA) on sexual desire and its absent relationship with serum testosterone levels in adult healthy men. Andrologia. 2002;34:367–372. doi: 10.1046/j.1439-0272.2002.00519.x. PubMed DOI
Gonzales-Arimborgo C., Yupanqui I., Montero E., Alarcón-Yaquetto D.E., Zevallos-Concha A., Caballero L., Gasco M., Zhao J., Khan I.A., Gonzales G.F. Acceptability, Safety, and Efficacy of Oral Administration of Extracts of Black or Red Maca (Lepidium meyenii) in Adult Human Subjects: A Randomized, Double-Blind, Placebo-Controlled Study. Pharmaceuticals. 2016;9:49. doi: 10.3390/ph9030049. PubMed DOI PMC
Xiao A., He H.-Y., Chen Q., Ma S.-W., Chen X. Drug-induced Liver Injury Due to Lepidium meyenii (Maca) Medicinal Liquor. Chin. Med. J. 2017;130:3005–3006. doi: 10.4103/0366-6999.220314. PubMed DOI PMC
Valerio L.G., Gonzales G.F. Toxicological Aspects of the South American Herbs Cat’s Claw (Uncaria tomentosa) and Maca (Lepidium meyenii) Toxicol. Rev. 2005;24:11–35. doi: 10.2165/00139709-200524010-00002. PubMed DOI
Valentová K., Buckiová D., Křen V., Pěknicová J., Ulrichová J., Šimánek V. The in vitro biological activity of Lepidium meyenii extracts. Cell Biol. Toxicol. 2006;22:91–99. doi: 10.1007/s10565-006-0033-0. PubMed DOI
D’Arrigo G., Benavides V., Pino J. Preliminary Evaluation Effect of Lepidium meyenii Walp on the embryonic development of mouse. Rev. Peru Biol. 2004;11:103–106. doi: 10.15381/rpb.v11i1.2440. DOI
Brown R.P., Gerbarg P.L., Ramazanov Z. Rhodiola rosea A phytomedicinal overview. HerbalGram. 2002;56:40–52.
Galambosi B. Cultivation of Rhodiola rosea in Europe. In: Cuerrier A., Ampong-Nyarko K., editors. Rhodiola rosea. CRC Press, Taylor & Francis Group; Boca Raton, FL, USA: 2014. pp. 87–124.
Tasheva K., Kosturkova G. The Role of Biotechnology for Conservation and Biologically Active Substances Production of Rhodiola rosea: Endangered Medicinal Species. Sci. World J. 2012;2012:274942. doi: 10.1100/2012/274942. PubMed DOI PMC
Liu Z., Liu Y., Liu C., Song Z., Li Q., Zha Q., Lu C., Wang C., Ning Z., Zhang Y., et al. The chemotaxonomic classification of Rhodiola plants and its correlation with morphological characteristics and genetic taxonomy. Chem. Cent. J. 2013;7:118. doi: 10.1186/1752-153X-7-118. PubMed DOI PMC
Bejar E., Upton R., John H. Adulteration of Rhodiola (Rhodiola rosea) rhizome and root and extracts. Bot. Adulterants Bull. 2017;Fall 2017:1–8.
Panossian A., Wikman G., Sarris J. Rosenroot (Rhodiola rosea): Traditional use, chemical composition, pharmacology and clinical efficacy. Phytomedicine. 2010;17:481–493. doi: 10.1016/j.phymed.2010.02.002. PubMed DOI
Kołodziej B., Sugier D. Influence of plants age on the chemical composition of roseroot (Rhodiola rosea L.) Acta Sci. Pol. 2013;12:147–160.
Mardones V., Cuerrier A., Hermanutz L. Developing a community-based enterprise: Nunatsiavut Inuit knowledge and perspectives on the use of medicinal plant Rhodiola rosea. Ethnobot. Res. Appl. 2021;22:1–13. doi: 10.32859/era.22.06.1-13. DOI
Jang S.I., Pae H.O., Choi B.M., Oh G.S., Jeong S., Lee H.J., Kim H.Y., Kang K.J., Yun Y.G., Kim Y.C., et al. Salidroside from Rhodiola sachalinensis Protects Neuronal PC12 Cells Against Cytotoxicity Induced by Amyloid-β. Immunopharmacol. Immunotoxicol. 2003;25:295–304. doi: 10.1081/IPH-120024498. PubMed DOI
Yu S., Liu M., Gu X., Ding F. Neuroprotective Effects of Salidroside in the PC12 Cell Model Exposed to Hypoglycemia and Serum Limitation. Cell Mol. Neurobiol. 2008;28:1067. doi: 10.1007/s10571-008-9284-z. PubMed DOI PMC
Zhou L., Yao P., Jiang L., Wang Z., Ma X., Wen G., Yang J., Zhou B., Yu Q. Salidroside-pretreated mesenchymal stem cells contribute to neuroprotection in cerebral ischemic injury in vitro and in vivo. J. Mol. Histol. 2021;52:1145–1154. doi: 10.1007/s10735-021-10022-0. PubMed DOI
Zhu L., Liu Z., Ren Y., Wu X., Liu Y., Wang T., Li Y., Cong Y., Guo Y. Neuroprotective effects of salidroside on ageing hippocampal neurons and naturally ageing mice via the PI3K/Akt/TERT pathway. Phytother. Res. 2021;35:5767–5780. doi: 10.1002/ptr.7235. PubMed DOI
Perfumi M., Mattioli L. Adaptogenic and central nervous system effects of single doses of 3% rosavin and 1% salidroside Rhodiola rosea L. extract in mice. Phytother. Res. 2007;21:37–43. doi: 10.1002/ptr.2013. PubMed DOI
Spasov A.A., Wikman G.K., Mandrikov V.B., Mironova I.A., Neumoin V.V. A double-blind, placebo-controlled pilot study of the stimulating and adaptogenic effect of Rhodiola rosea SHR-5 extract on the fatigue of students caused by stress during an examination period with a repeated low-dose regimen. Phytomedicine. 2000;7:85–89. doi: 10.1016/S0944-7113(00)80078-1. PubMed DOI
Cropley M., Banks A.P., Boyle J. The Effects of Rhodiola rosea L. Extract on Anxiety, Stress, Cognition and Other Mood Symptoms. Phytother. Res. 2015;29:1934–1939. doi: 10.1002/ptr.5486. PubMed DOI
Kelly G.S. Rhodiola rosea: A Possible Plant Adaptogen. Altern. Med. Rev. 2001;6:293–302. PubMed
Jagtap P.N., Mhetre O.S., Malavdkar P.R. A Review Article on Rhodiola rosea: An Adaptogen Having Multiple Benefits. Int. J. Pharmacogn. 2020;7:62–69. doi: 10.13040/IJPSR.0975-8232.IJP.7(3).62-69. DOI
Kucinskaite A., Briedis V., Savickas A. Experimental analysis of therapeutic properties of Rhodiola rosea L. and its possible application in medicine. Medicina. 2004;40:614–619. PubMed
Razgonova M., Zakharenko A., Pikula K., Kim E., Chernyshev V., Ercisli S., Cravotto G., Golokhvast K. Rapid mass spectrometric study of a supercritical CO2-extract from woody liana Schisandra chinensis by HPLC-SPD-ESI-MS/MS. Molecules. 2020;25:2689. doi: 10.3390/molecules25112689. PubMed DOI PMC
Saunders R.M.K. Monograph of Schisandra (Schisandraceae) Syst. Bot. Monogr. 2000;58:1–146. doi: 10.2307/25027879. DOI
Hancke J.L., Burgos R.A., Ahumada F. Schisandra chinensis (Turcz.) Baill. Fitoterapia. 1999;70:451–471. doi: 10.1016/S0367-326X(99)00102-1. DOI
Szopa A., Ekiert R., Ekiert H. Current knowledge of Schisandra chinensis (Turcz.) Baill. (Chinese magnolia vine) as a medicinal plant species: A review on the bioactive components, pharmacological properties, analytical and biotechnological studies. Phytochem. Rev. 2017;16:195–218. doi: 10.1007/s11101-016-9470-4. PubMed DOI PMC
Raj S.P., Solomon P.R., Thangaraj B. Biodiesel from Flowering Plants. Springer; Singapore: 2022. Schisandraceae; pp. 529–532. DOI
Qiu F., Liu H., Duan H., Chen P., Lu S.-J., Yang G.-Z., Lei X.-X. Isolation, Structural Elucidation of Three New Triterpenoids from the Stems and Leaves of Schisandra chinensis (Turcz) Baill. Molecules. 2018;23:1624. doi: 10.3390/molecules23071624. PubMed DOI PMC
Wang M., Wu Q.-L., Tadmor Y., Simon J.E., Sang S., Ho C.-T. Oriental Foods and Herbs. Volume 859. American Chemical Society; Washington, DC, USA: 2003. Schisandra chinensis: Chemistry and Analysis; pp. 234–246.
Lu Y., Chen D.-F. Analysis of Schisandra chinensis and Schisandra sphenanthera. J. Chromatogr. A. 2009;1216:1980–1990. doi: 10.1016/j.chroma.2008.09.070. PubMed DOI
Panossian A., Wikman G. Pharmacology of Schisandra chinensis Bail.: An overview of Russian research and uses in medicine. J. Ethnopharmacol. 2008;118:183–212. doi: 10.1016/j.jep.2008.04.020. PubMed DOI
Liu X., Guo Y., Cai G., Gong J., Wang Y., Liu S. Chemical composition analysis of Schisandra chinensis fructus and its three processed products using UHPLC-Q-Orbitrap/MS-based metabolomics approach. Nat. Prod. Res. 2022;36:3464–3468. doi: 10.1080/14786419.2020.1858416. PubMed DOI
Song Y., Shan B., Zeng S., Zhang J., Jin C., Liao Z., Wang T., Zeng Q., He H., Wei F., et al. Raw and wine processed Schisandra chinensis attenuate anxiety like behavior via modulating gut microbiota and lipid metabolism pathway. J. Ethnopharmacol. 2021;266:113426. doi: 10.1016/j.jep.2020.113426. PubMed DOI
Chen X., Tang R., Liu T., Dai W., Liu Q., Gong G., Song S., Hu M., Huang L., Wang Z. Physicochemical properties, antioxidant activity and immunological effects in vitro of polysaccharides from Schisandra sphenanthera and Schisandra chinensis. Int. J. Biol. Macromol. 2019;131:744–751. doi: 10.1016/j.ijbiomac.2019.03.129. PubMed DOI
Yan T., Shang L., Wang M., Zhang C., Zhao X., Bi K., Jia Y. Lignans from Schisandra chinensis ameliorate cognition deficits and attenuate brain oxidative damage induced by D-galactose in rats. Metab. Brain Dis. 2016;31:653–661. doi: 10.1007/s11011-016-9804-3. PubMed DOI
Giridharan V.V., Thandavarayan R.A., Sato S., Ko K.M., Konishi T. Prevention of scopolamine-induced memory deficits by schisandrin B, an antioxidant lignan from Schisandra chinensis in mice. Free Radic. Res. 2011;45:950–958. doi: 10.3109/10715762.2011.571682. PubMed DOI
Sa F., Zhang L.Q., Chong C.M., Guo B.J., Li S., Zhang Z.J., Zheng Y., Hoi P.M., Lee S.M.Y. Discovery of novel anti-parkinsonian effect of schisantherin A in in vitro and in vivo. Neurosci. Lett. 2015;593:7–12. doi: 10.1016/j.neulet.2015.03.016. PubMed DOI
Zhang L.Q., Sa F., Chong C.M., Wang Y., Zhou Z.Y., Chang R.C.C., Chan S.W., Hoi P.M., Yuen Lee S.M. Schisantherin A protects against 6-OHDA-induced dopaminergic neuron damage in zebrafish and cytotoxicity in SH-SY5Y cells through the ROS/NO and AKT/GSK3β pathways. J. Ethnopharmacol. 2015;170:8–15. doi: 10.1016/j.jep.2015.04.040. PubMed DOI
Li N., Liu C., Jing S., Wang M., Wang H., Sun J., Wang C., Chen J., Li H. Compound Schisandra-Ginseng-Notoginseng-Lycium Extract Ameliorates Scopolamine-Induced Learning and Memory Disorders in Mice. Evid.-Based Complement. Altern. Med. 2017;2017:8632016. doi: 10.1155/2017/8632016. PubMed DOI PMC
Koncic M.Z., Tomczyk M. New insights into dietary supplements used in sport: Active substances, pharmacological and side effects. Curr. Drug Targets. 2013;14:1079–1092. doi: 10.2174/1389450111314090016. PubMed DOI
Abascal K., Yarnell E. Bacopa for the Brain: A Smart Addition to Western Medicine. Altern. Complement. Ther. 2011;17:21–25. doi: 10.1089/act.2011.17106. DOI
Kean J., Stough C. Natural Medicines. CRC Press; Boca Raton, FL, USA: 2019. Role of the Ayurvedic Medicinal Herb Bacopa monnieri in Child and Adolescent Populations; pp. 333–348. PubMed
Devendra P., Patel S.S., Birwal P., Basu S., Deshmukh G., Datir R. Brahmi (Bacopa monnieri) as functional food ingredient in food processing industry. J. Pharmacogn. Phytochem. 2018;7:189–194.
Srivastava A., Srivastava P., Pandey A., Khanna V.K., Pant A.B. Chapter 24—Phytomedicine: A Potential Alternative Medicine in Controlling Neurological Disorders. In: Ahmad Khan M.S., Ahmad I., Chattopadhyay D., editors. New Look to Phytomedicine. Academic Press; Cambridge, MA, USA: 2019. pp. 625–655. DOI
Binita B.C., Ashok M.D., Yogesh T.J. Bacopa monnieri (L.) Pennell: A rapid, efficient and cost effective micropropagation. Plant Tissue Cult Biotechnol. 2005;15:167–175.
Akbar S. Handbook of 200 Medicinal Plants: A Comprehensive Review of Their Traditional Medical Uses and Scientific Justifications. Springer International Publishing; Cham, Switzerland: 2020. Bacopa monnieri (L.) Wettst. (Plantaginaceae) pp. 401–412. DOI
Deolankar S.C., Najar M.A., Ramesh P., Kanichery A., Kudva A.K., Raghu S.V., Prasad T.S.K. Discovery of Molecular Networks of Neuroprotection Conferred by Brahmi Extract in Aβ42-Induced Toxicity Model of Drosophila melanogaster Using a Quantitative Proteomic Approach. Mol. Neurobiol. 2023;60:303–316. doi: 10.1007/s12035-022-03066-0. PubMed DOI
Bhandari P., Kumar N., Singh B., Kaur I. Dammarane triterpenoid saponins from Bacopa monnieri. Can. J. Chem. 2009;87:1230–1234. doi: 10.1139/V09-111. DOI
Phrompittayarat W., Wittaya-Areekul S., Jetiyanon K., Putalun W., Tanaka H., Ingkaninan K. Determination of saponin glycosides in Bacopa monnieri by reversed phase high performance liquid chromatography. Thai Pharmaceut. Health Sci. J. 2007;2:26–32.
Chadha M.L. Indigenous vegetables of India with potentials for improving livelihood. Acta Hortic. 2009;806:579–586. doi: 10.17660/ActaHortic.2009.806.72. DOI
Amaravathi T., Geetha P.S., Murugan M., Selvam S., Kanchana S. Traditional value added products from Indian penny wort (Centella asiatica) and water hyssop (Bacopa monnieri) to alleviate ADHD. J. Pharm. Innov. 2020;9:432–441.
Russo A., Borrelli F., Campisi A., Acquaviva R., Raciti G., Vanella A. Nitric oxide-related toxicity in cultured astrocytes: Effect of Bacopa monniera. Life Sci. 2003;73:1517–1526. doi: 10.1016/S0024-3205(03)00476-4. PubMed DOI
Brimson J.M., Prasanth M.I., Plaingam W., Tencomnao T. Bacopa monnieri (L.) wettst. Extract protects against glutamate toxicity and increases the longevity of Caenorhabditis elegans. J. Tradit. Complement. Med. 2020;10:460–470. doi: 10.1016/j.jtcme.2019.10.001. PubMed DOI PMC
Dhanasekaran M., Tharakan B., Holcomb L.A., Hitt A.R., Young K.A., Manyam B.V. Neuroprotective mechanisms of ayurvedic antidementia botanical Bacopa monniera. Phytother. Res. 2007;21:965–969. doi: 10.1002/ptr.2195. PubMed DOI
Singh M., Murthy V., Ramassamy C. Modulation of Hydrogen Peroxide and Acrolein-Induced Oxidative Stress, Mitochondrial Dysfunctions and Redox Regulated Pathways by the Bacopa monniera Extract: Potential Implication in Alzheimer’s Disease. J. Alzheimer’s Dis. 2010;21:229–247. doi: 10.3233/JAD-2010-091729. PubMed DOI
Holcomb L.A., Dhanasekaran M., Hitt A.R., Young K.A., Riggs M., Manyam B.V. Bacopa monniera extract reduces amyloid levels in PSAPP mice. J. Alzheimer’s Dis. 2006;9:243–251. doi: 10.3233/JAD-2006-9303. PubMed DOI
Le X.T., Pham H.T.N., Do P.T., Fujiwara H., Tanaka K., Li F., Van Nguyen T., Nguyen K.M., Matsumoto K. Bacopa monnieri Ameliorates Memory Deficits in Olfactory Bulbectomized Mice: Possible Involvement of Glutamatergic and Cholinergic Systems. Neurochem. Res. 2013;38:2201–2215. doi: 10.1007/s11064-013-1129-6. PubMed DOI
Uabundit N., Wattanathorn J., Mucimapura S., Ingkaninan K. Cognitive enhancement and neuroprotective effects of Bacopa monnieri in Alzheimer’s disease model. J. Ethnopharmacol. 2010;127:26–31. doi: 10.1016/j.jep.2009.09.056. PubMed DOI
Singh H., Dhawan B. Neuropsychopharmacological effects of the Ayurvedic nootropic Bacopa monniera Linn. (Brahmi) Indian J. Pharmacol. 1997;29:359.
Kamkaew N., Norman Scholfield C., Ingkaninan K., Taepavarapruk N., Chootip K. Bacopa monnieri Increases Cerebral Blood Flow in Rat Independent of Blood Pressure. Phytother. Res. 2013;27:135–138. doi: 10.1002/ptr.4685. PubMed DOI
Roodenrys S., Booth D., Bulzomi S., Phipps A., Micallef C., Smoker J. Chronic Effects of Brahmi (Bacopa monnieri) on Human Memory. Neuropsychopharmacology. 2002;27:279–281. doi: 10.1016/S0893-133X(01)00419-5. PubMed DOI
Dimpfel W., Schombert L., Biller A. Psychophysiological Effects of Sideritis and Bacopa Extract and Three Combinations Thereof—A Quantitative EEG Study in Subjects Suffering from Mild Cognitive Impairment (MCI) Adv. Alzheimer’s Dis. 2016;5:1–22. doi: 10.4236/aad.2016.51001. DOI
McPhee G.M., Downey L.A., Wesnes K.A., Stough C. The Neurocognitive Effects of Bacopa monnieri and Cognitive Training on Markers of Brain Microstructure in Healthy Older Adults. Front. Aging Neurosci. 2021;13:638109. doi: 10.3389/fnagi.2021.638109. PubMed DOI PMC
Gohil K.J., Patel J.A. A review on Bacopa monniera: Current research and future prospects. Int. J. Green Pharm. 2010;4:1–9. doi: 10.4103/0973-8258.62156. DOI
Chaudhari K.S., Tiwari N.R., Tiwari R.R., Sharma R.S. Neurocognitive Effect of Nootropic Drug Brahmi (Bacopa monnieri) in Alzheimer’s Disease. Ann. Neurosci. 2017;24:111–122. doi: 10.1159/000475900. PubMed DOI PMC
Kean J.D., Downey L.A., Stough C. A systematic review of the Ayurvedic medicinal herb Bacopa monnieri in child and adolescent populations. Complement. Ther. Med. 2016;29:56–62. doi: 10.1016/j.ctim.2016.09.002. PubMed DOI
Joshua Allan J., Damodaran A., Deshmukhda N.S., Goudar K.S., Amit A. Safety evaluation of a standardized phytochemical composition extracted from Bacopa monnieri in Sprague–Dawley rats. Food Chem. Toxicol. 2007;45:1928–1937. doi: 10.1016/j.fct.2007.04.010. PubMed DOI