Description of a new species of Tardigrada Hypsibius nivalis sp. nov. and new phylogenetic line in Hypsibiidae from snow ecosystem in Japan

. 2022 Sep 02 ; 12 (1) : 14995. [epub] 20220902

Jazyk angličtina Země Anglie, Velká Británie Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid36056052
Odkazy

PubMed 36056052
PubMed Central PMC9440035
DOI 10.1038/s41598-022-19183-8
PII: 10.1038/s41598-022-19183-8
Knihovny.cz E-zdroje

Snow ecosystems are an important component of polar and mountainous regions, influencing water regime, biogeochemical cycles and supporting snow specific taxa. Although snow is considered to be one of the most unique, and at the same time a disappearing habitat, knowledge of its taxonomic diversity is still limited. It is true especially for micrometazoans appearing in snow algae blooming areas. In this study, we used morphological and molecular approaches to identify two tardigrade species found in green snow patches of Mt. Gassan in Japan. By morphology, light (PCM) and scanning electron microscopy (SEM), and morphometry we described Hypsibius nivalis sp. nov. which differs from other similar species by granular, polygonal sculpture on the dorsal cuticle and by the presence of cuticular bars next to the internal claws. Additionally, phylogenetic multilocus (COI, 18S rRNA, 28S rRNA) analysis of the second taxon, Hypsibius sp. identified by morphology as convergens-pallidus group, showed its affinity to the Hypsibiidae family and it is placed as a sister clade to all species in the Hypsibiinae subfamily. Our study shows that microinvertebrates associated with snow are poorly known and the assumption that snow might be inhabited by snow-requiring tardigrade taxa cannot be ruled out. Furthermore, our study contributes to the understanding subfamily Hypsibiinae showing that on its own the morphology of specimens belonging to convergens-pallidus group is insufficient in establishing a true systematic position of specimens.

Zobrazit více v PubMed

Blahušiaková A, et al. Snow and climate trends and their impact on seasonal runoff and hydrological drought types in selected mountain catchments in Central Europe. Hydrol. Sci. J. 2020;65:2083–2096. doi: 10.1080/02626667.2020.1784900. DOI

Domine F. Should we not further study the impact of microbial activity on snow and polar atmospheric chemistry? Microorganisms. 2019;7:260. doi: 10.3390/microorganisms7080260. PubMed DOI PMC

Hoham, R. W., Laursen, A. E., Clive, S. O. & Duval, B. Snow algae and other microbes in several alpine areas in New England. in 50thEasternSnowConference. 165–173 (1993).

Ono M, Takeuchi N, Zawierucha K. Snow algae blooms are beneficial for microinvertebrates assemblages (Tardigrada and Rotifera) on seasonal snow patches in Japan. Sci. Rep. 2021;11:5973. doi: 10.1038/s41598-021-85462-5. PubMed DOI PMC

Yakimovich KM, Engstrom CB, Quarmby LM. Alpine snow algae microbiome diversity in the Coast Range of British Columbia. Front. Microbiol. 2020;11:1721. doi: 10.3389/fmicb.2020.01721. PubMed DOI PMC

Engstrom CB, Yakimovich KM, Quarmby LM. Variation in snow algae blooms in the Coast Range of British Columbia. Front. Microbiol. 2020;11:569. doi: 10.3389/fmicb.2020.00569. PubMed DOI PMC

Terashima M, Umezawa K, Mori S, Kojima H, Fukui M. Microbial community analysis of Colored Snow from an Alpine snowfield in Northern Japan reveals the prevalence of Betaproteobacteria with snow algae. Front. Microbiol. 2017;8:1481. doi: 10.3389/fmicb.2017.01481. PubMed DOI PMC

Fukushima H. Studies on Cryophytes in Japan. Yokohama Municipal Univ. 1963;43:1–146.

Hoham RW, Duval B. Microbial Ecology of Snow and Freshwater ice with Emphasis on Snow Algae. Cambridge University Press; 2001.

Dial RJ, Ganey GQ, Skiles SM. What color should glacier algae be? An ecological role for red carbon in the cryosphere. FEMS Microbiol. Ecol. 2018;94:007. doi: 10.1093/femsec/fiy007. PubMed DOI

Hotaling S, et al. Biological albedo reduction on ice sheets, glaciers, and snowfields. Earth Sci. Rev. 2021;220:103728. doi: 10.1016/j.earscirev.2021.103728. DOI

Lutz S, et al. The biogeography of red snow microbiomes and their role in melting Arctic glaciers. Nat. Commun. 2016;7:11968. doi: 10.1038/ncomms11968. PubMed DOI PMC

Takeuchi N, Dial R, Kohshima S, Segawa T, Uetake J. Spatial distribution and abundance of red snow algae on the Harding Icefield, Alaska derived from a satellite image. Geophys. Res. Lett. 2006;33:L21502. doi: 10.1029/2006GL027819. DOI

Nelson, D. R., Guidetti, R. & Rebecchi, L. Phylum Tardigrada. in ThorpandCovich’sFreshwaterInvertebrates. 347–380. 10.1016/B978-0-12-385026-3.00017-6 (Elsevier, 2015).

Kaczmarek Ł, Michalczyk Ł, Mcinnes SJ. Annotated zoogeography of non-marine Tardigrada. Part III: North America and Greenland. Zootaxa. 2016;4203:1. doi: 10.11646/zootaxa.4203.1.1. PubMed DOI

Zawierucha K, et al. A hole in the nematosphere: Tardigrades and rotifers dominate the cryoconite hole environment, whereas nematodes are missing. J. Zool. 2021;313:18–36. doi: 10.1111/jzo.12832. DOI

Degma, P., Bertolani, R. & Guidetti, R. ActualChecklistofTardigradaSpecies. 41th edn. (2009–2022).

Hengherr S, Worland MR, Reuner A, Brümmer F, Schill RO. Freeze tolerance, supercooling points and ice formation: Comparative studies on the subzero temperature survival of limno-terrestrial tardigrades. J. Exp. Biol. 2009;212:802–807. doi: 10.1242/jeb.025973. PubMed DOI

Wright JC. Cryptobiosis 300 years on from van Leuwenhoek: What have we learned about Tardigrades? Zool. Anzeiger J. Comp. Zool. 2001;240:563–582. doi: 10.1078/0044-5231-00068. DOI

Ono F, et al. Effect of high hydrostatic pressure on to life of the tiny animal tardigrade. J. Phys. Chem. Solids. 2008;69:2297–2300. doi: 10.1016/j.jpcs.2008.04.019. DOI

Horikawa DD, et al. Radiation tolerance in the tardigrade Milnesium tardigradum. Int. J. Radiat. Biol. 2006;82:843–848. doi: 10.1080/09553000600972956. PubMed DOI

May RM. Action différentielle des rayons x et ultraviolets sur le tardigrade Macrobiotus areolatus, a l’état actif et desséché. Bull. Biol. France Belgique. 1964;98:349–367.

Rozwalak P, et al. Cryoconite—From minerals and organic matter to bioengineered sediments on glacier’s surfaces. Sci. Total Environ. 2022;807:150874. doi: 10.1016/j.scitotenv.2021.150874. PubMed DOI

Takeuchi N, Kohshima S, Seko K. Structure, formation, and darkening process of albedo-reducing material (cryoconite) on a himalayan glacier: A granular algal mat growing on the glacier. Arct. Antarct. Alp. Res. 2001;33:115. doi: 10.1080/15230430.2001.12003413. DOI

Zawierucha K, et al. High mitochondrial diversity in a new water bear species (Tardigrada: Eutardigrada) from mountain glaciers in Central Asia, with the errection of a new genus Cryoconicus. Ann. Zool. 2018;68:179–201. doi: 10.3161/00034541ANZ2018.68.1.007. DOI

Cook J, Edwards A, Takeuchi N, Irvine-Fynn T. Cryoconite: The dark biological secret of the cryosphere. Prog. Phys. Geogr. Earth Environ. 2016;40:66–111. doi: 10.1177/0309133315616574. DOI

Takeuchi N, Khoshima S, Kumiko G-A, Roy MK. Cryoconite: The dark biological secret of the cryosphere. Mem. Natl Inst. Polar Res. Spec. Issue. 2001;54:495–505.

Dastych H. Redescription of glacier tardigrade Hypsibius janetscheki Ramazzotti, 1968 (Tardigrada) from the Nepal Himalayas. Entomol. Mitt. zool. Mus. Hamburg. 2004;14:181–194.

Dastych H. Cryobiotus roswithae gen. n., sp. n., a new genus and species of glacier-dwelling tardigrades from Northern Norway (Tardigrada, Panarthropoda) Entomologie heute. 2019;31:95–111.

Dastych H, Kraus H, Thaler H. Redescription and notes on the biology of the glacier tardigrade Hypsibius klebelsbergi Mihelcic, 1959 (Tardigrada), based on material from the Otztal Alps, Austria. Entomol. Mitt. zool. Mus. Hamburg. 2003;100:73–100.

Dastych H, Hamburg U, Grindcl B, Museum Z. Hypsihius thaleri sp. nov., a New Species of a Glacier-Dwelling Tardigrade from the Himalayas, Nepal (Tardigrada) Entomol. Mitt. zool. Mus. Hamburg. 2004;100:169–183.

Dastych H, Dastych H. Notes on the integument of the glacier-dwelling tardigrade Hypsibius klebelsbergi Mihelcic, 1959 (Tardigrada) Entomol. Mitt. zool. Mus. Hamburg. 2005;102:11–20.

Zawierucha K, Buda J, Jaroměřská T, Janko K, Gąsiorek P. Integrative approach reveals new species of water bears (Pilatobius, Grevenius, and Acutuncus) from Arctic cryoconite holes, with the discovery of hidden lineages of Hypsibius. Zool. Anzeiger. 2020;25:141. doi: 10.1016/j.jcz.2020.09.004. DOI

Zawierucha K, et al. Water bears dominated cryoconite hole ecosystems: Densities, habitat preferences and physiological adaptations of Tardigrada on an alpine glacier. Aquat. Ecol. 2019 doi: 10.1007/s10452-019-09707-2. DOI

Hanzelová M, Vido J, Škvarenina J, Nalevanková P, Perháčová Z. Microorganisms in summer snow patches in selected high mountain ranges of Slovakia. Biologia. 2018;73:1177–1186. doi: 10.2478/s11756-018-0136-0. DOI

Doyère ML. Mémoire sur les Tardigrades. Ann. Sci. Nat. Paris. 1840;14:269–362.

Richters F. Tardigrada. Handbuch Zool. 1926;3:1–68.

Schuster RO, Nelson DR, Grigarick AA, Christenberry D. Systematic criteria of the Eutardigrada. Trans. Am. Microsc. Soc. 1980;99:284. doi: 10.2307/3226004. DOI

Pilato G. Evoluzione e nuova sistemazione degli Eutardigrada. Bollettino Zool. 1969;36:327–345. doi: 10.1080/11250006909436925. DOI

Ehrenberg, C. G. Fortgestze Beobachtungen über jetzt herreschende atmospärische mikroscopische etc. mit Nachtrag und Novarum specierum diagnosis. in BerichtüberdiezurBekanntmachunggeeignetenVerhandlungenderKöniglichenPreussischenAkademiederWissenschaftenzuBerlin. Vol. 13. 370–381 (1848).

Pilato G. The taxonomic value of the structures for the insertion of the stylet muscles in the Eutardigrada, and description of a new genus. Zootaxa. 2013;3721:365. doi: 10.11646/zootaxa.3721.4.4. PubMed DOI

Bartos E. Ergänzungen zur der Tardigradenfauna Böhmens. Acta Univ. Carolina-Biol. 1960;41:1–5.

Bartos E. Vier neue Hypsibiusarten aus der Tschecho-slowakei. Zool. Anz. 1935;110:257–260.

Ramazzoti G, Maucci W. The Phylum Tardigrade. Mem. Ist. Ital. Idrobiol. 1983;41:1–1012.

Sudzuki M. Lotic tardigrade from the Tama river with special reference to water saprobity. Mem. Ist. Ital. Idrobiol. 1975;1975:377–391.

Beasley CW. Altitudinal distribution of Tardigrada of New Mexico with the description of a new species. Am. Midl. Nat. 1988;120:436–440. doi: 10.2307/2426016. DOI

Iharos G. Tardigraden aus Mittelwestafrika. Opusc. Zool. (Budap.) 1969;9:115–120.

Ito M. Taxonomic study on the Eutardigrada from the northern Slope of Mt. Fuji, Central Japan, II. Family Hypsibiide. Proc. Jpn. Soc. Syst. Zool. 1995;53:18–39.

Binda MG, Pilato G. Hypsibius ragonesei, nuova specie di Eutardigrado di Sicilia. Animalia. 1985;12:245–248.

Nelson DR, McGlothlin KL. A new species of Hypsibius (phylum Tardigrada) from Roan Mountain, Tennessee, USA. Trans. Am. Microsc. Soc. 1993;112:140–144. doi: 10.2307/3226827. DOI

Bartos E. Studien über die Tardigraden des Karpathengebietes. Zool. Jahrb. Abt. Syst. 1941;5:435–472.

Abe W. A new species of the genus Hypsibius (Tardigrada: Parachela: Hypsibiidae) from Sakhalin Island, Far East Russia. Zool. Sci. 2004;21:957–962. doi: 10.2108/zsj.21.957. PubMed DOI

Gąsiorek P, Stec D, Morek W, Michalczyk Ł. An integrative redescription of Hypsibius dujardini (Doyère, 1840), the nominal taxon for Hypsibioidea (Tardigrada: Eutardigrada) Zootaxa. 2018;4415:45. doi: 10.11646/zootaxa.4415.1.2. PubMed DOI

Dabert M, Dastych H, Hohberg K, Dabert J. Phylogenetic position of the enigmatic clawless eutardigrade genus Apodibius Dastych, 1983 (Tardigrada), based on 18S and 28S rRNA sequence data from its type species A. confusus. Mol. Phylogenet. Evolut. 2014;70:70–75. doi: 10.1016/j.ympev.2013.09.012. PubMed DOI

Tumanov DV, Avdeeva GS. Integrative description of Hypsibius repentinus sp. nov. (Eutardigrada: Hypsibiidae) from Sweden. Zoosyst. Rossica. 2021;30:101–115. doi: 10.31610/zsr/2021.30.1.101. DOI

Pilato G, et al. Geonemy, ecology, reproductive biology and morphology of the tardigrade Hypsibius zetlandicus (Eutardigrada: Hypsibiidae) with erection of Borealibius gen. n. Polar Biol. 2006;29:595–603. doi: 10.1007/s00300-005-0094-1. DOI

Fukuhara H, et al. Spring red snow phenomenon ‘Akashibo’ in the Ozegahara mire, Central Japan, with special reference to the distribution of invertebrates in red snow. SIL Proc. 2002;1922–2010(28):1645–1652.

Villella J, et al. Tardigrades in the forest canopy: Associations with red tree vole nests in Southwest Oregon. Northwest Sci. 2020;94:24. doi: 10.3955/046.094.0102. DOI

Young AR, Miller JED, Villella J, Carey G, Miller WR. Epiphyte type and sampling height impact mesofauna communities in Douglas-fir trees. PeerJ. 2018;6:e5699. doi: 10.7717/peerj.5699. PubMed DOI PMC

Hågvar S, et al. Ecosystem birth near melting glaciers: A review on the pioneer role of ground-dwelling Arthropods. Insects. 2020;11:644. doi: 10.3390/insects11090644. PubMed DOI PMC

Degma, P. Field and laboratory methods. in WaterBears:TheBiologyofTardigrades (ed. Schill, R. O.). Vol. 2. 349–369 (Springer, 2018).

Sugiura K, Minato H, Matsumoto M, Suzuki AC. Milnesium (Tardigrada: Apochela) in Japan: The first confirmed record of Milnesium tardigradum s.s. and description of Milnesium pacificum sp. nov. Zool. Sci. 2020;37:1. doi: 10.2108/zs190154. PubMed DOI

Stec D, et al. Estimating optimal sample size for tardigrade morphometry. Zool. J. Linn. Soc. 2016;178:776–784. doi: 10.1111/zoj.12404. DOI

Pilato G. Analisi di nuovi caratteri nello studio degli Eutardigradi. Animalia. 1981;8:51–57.

Kaczmarek Ł, Cytan J, Zawierucha K, Diduszko D, Michalczyk Ł. Tardigrades from Peru (South America), with descriptions of three new species of Parachela. Zootaxa. 2014;3790:357. doi: 10.11646/zootaxa.3790.2.5. PubMed DOI

Beasley CW, Kaczmarek Ł, Michalczyk Ł. Doryphoribius mexicanus, a new species of Tardigrada (Eutardigrada: Hypsibiidae) from Mexico (North America) Proc. Biol. Soc. Wash. 2008;121:34–40. doi: 10.2988/07-30.1. DOI

Bertolani R, et al. Phylogeny of Eutardigrada: New molecular data and their morphological support lead to the identification of new evolutionary lineages. Mol. Phylogenet. Evol. 2014;76:110–126. doi: 10.1016/j.ympev.2014.03.006. PubMed DOI

Michalczyk Ł, Kaczmarek Ł. The Tardigrada Register: A comprehensive online data repository for tardigrade taxonomy. J. Limnol. 2013;72:e22. doi: 10.4081/jlimnol.2013.s1.e22. DOI

Dabert M, Witalinski W, Kazmierski A, Olszanowski Z, Dabert J. Molecular phylogeny of acariform mites (Acari, Arachnida): Strong conflict between phylogenetic signal and long-branch attraction artifacts. Mol. Phylogenet. Evol. 2010;56:222–241. doi: 10.1016/j.ympev.2009.12.020. PubMed DOI

Dabert, J., Ehrnsberger, R. & Dabert, M. Glaucalgestytonissp.n.(Analgoidea,Xolalgidae)fromtheBarnOwlTytoalba(Strigiformes,Tytonidae):CompilingMorphologywithDNABarcodeDataforTaxonDescriptionsinMites(Acari). Vol. 12 (2008).

Stec D, Zawierucha K, Michalczyk Ł. An integrative description of Ramazzottius subanomalus (Biserov, 1985 (Tardigrada) from Poland. Zootaxa. 2017;4300:403. doi: 10.11646/zootaxa.4300.3.4. DOI

Mironov SV, Dabert J, Dabert M. A new feather mite species of the genus Proctophyllodes Robin, 1877 (Astigmata: Proctophyllodidae) from the long-tailed tit Aegithalos caudatus (Passeriformes: Aegithalidae)—Morphological description with DNA barcode data. Zootaxa. 2012;3253:54. doi: 10.11646/zootaxa.3253.1.2. DOI

Richters, F. Beiträge zur Kenntnis der Fauna der Umgebung von Frankfurt a. M. in BerichtderSenckenbergischenNaturforschendengesellschaftinFrankfurtamMain. 21–44 (1900).

Stec D, Vecchi M, Calhim S, Michalczyk Ł. New multilocus phylogeny reorganises the family Macrobiotidae (Eutardigrada) and unveils complex morphological evolution of the Macrobiotus hufelandi group. Mol. Phylogenet. Evol. 2021;160:106987. doi: 10.1016/j.ympev.2020.106987. PubMed DOI

Stec D, Vecchi M, Maciejowski W, Michalczyk Ł. Resolving the systematics of Richtersiidae by multilocus phylogeny and an integrative redescription of the nominal species for the genus Crenubiotus (Tardigrada) Sci. Rep. 2020;10:19418. doi: 10.1038/s41598-020-75962-1. PubMed DOI PMC

Stec D, Vončina K, Møbjerg Kristensen R, Michalczyk Ł. The Macrobiotus ariekammensis species complex provides evidence for parallel evolution of claw elongation in macrobiotid tardigrades. Zool. J. Linn. Soc. 2022 doi: 10.1093/zoolinnean/zlab101. DOI

Stec D, Morek W. Reaching the monophyly: Re-evaluation of the enigmatic species Tenuibiotus hyperonyx (Maucci, 1983) and the genus Tenuibiotus (Eutardigrada) Animals. 2022;12:404. doi: 10.3390/ani12030404. PubMed DOI PMC

Katoh K. MAFFT: A novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Res. 2002;30:3059–3066. doi: 10.1093/nar/gkf436. PubMed DOI PMC

Katoh K, Toh H. Recent developments in the MAFFT multiple sequence alignment program. Brief. Bioinform. 2008;9:286–298. doi: 10.1093/bib/bbn013. PubMed DOI

Kumar S, Stecher G, Tamura K. MEGA7: Molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol. Biol. Evolut. 2016;33:1870–1874. doi: 10.1093/molbev/msw054. PubMed DOI PMC

Vaidya G, Lohman DJ, Meier R. SequenceMatrix: Concatenation software for the fast assembly of multi-gene datasets with character set and codon information. Cladistics. 2011;27:171–180. doi: 10.1111/j.1096-0031.2010.00329.x. PubMed DOI

Lanfear R, Frandsen PB, Wright AM, Senfeld T, Calcott B. PartitionFinder 2: New methods for selecting partitioned models of evolution for molecular and morphological phylogenetic analyses. Mol. Biol. Evol. 2016 doi: 10.1093/molbev/msw260. PubMed DOI

Lanfear R, Calcott B, Ho SYW, Guindon S. PartitionFinder: Combined selection of partitioning schemes and substitution models for phylogenetic analyses. Mol. Biol. Evol. 2012;29:1695–1701. doi: 10.1093/molbev/mss020. PubMed DOI

Ronquist F, Huelsenbeck JP. MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics. 2003;19:1572–1574. doi: 10.1093/bioinformatics/btg180. PubMed DOI

Rambaut A, Drummond AJ, Xie D, Baele G, Suchard MA. Posterior summarization in Bayesian phylogenetics using tracer 1.7. Syst. Biol. 2018;67:901–904. doi: 10.1093/sysbio/syy032. PubMed DOI PMC

Puillandre N, Brouillet S, Achaz G. ASAP: Assemble species by automatic partitioning. Mol. Ecol. Resour. 2021;21:609–620. doi: 10.1111/1755-0998.13281. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...