Impact of Tumour Epstein-Barr Virus Status on Clinical Outcome in Patients with Classical Hodgkin Lymphoma (cHL): A Review of the Literature and Analysis of a Clinical Trial Cohort of Children with cHL

. 2022 Sep 01 ; 14 (17) : . [epub] 20220901

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid36077832

In this study, we have re-evaluated how EBV status influences clinical outcome. To accomplish this, we performed a literature review of all studies that have reported the effect of EBV status on patient outcome and also explored the effect of EBV positivity on outcome in a clinical trial of children with cHL from the UK. Our literature review revealed that almost all studies of older adults/elderly patients have reported an adverse effect of an EBV-positive status on outcome. In younger adults with cHL, EBV-positive status was either associated with a moderate beneficial effect or no effect, and the results in children and adolescents were conflicting. Our own analysis of a series of 166 children with cHL revealed no difference in overall survival between EBV-positive and EBV-negative groups (p = 0.942, log rank test). However, EBV-positive subjects had significantly longer event-free survival (p = 0.0026). Positive latent membrane protein 1 (LMP1) status was associated with a significantly lower risk of treatment failure in a Cox regression model (HR = 0.21, p = 0.005). In models that controlled for age, gender, and stage, EBV status had a similar effect size and statistical significance. This study highlights the age-related impact of EBV status on outcome in cHL patients and suggests different pathogenic effects of EBV at different stages of life.

Zobrazit více v PubMed

Küppers R., Rajewsky K., Zhao M., Simons G., Laumann R., Fischer R., Hansmann M.L. Hodgkin disease: Hodgkin and Reed-Sternberg cells picked from histological sections show clonal immunoglobulin gene rearrangements and appear to be derived from B cells at various stages of development. Proc. Natl. Acad. Sci. USA. 1994;91:10962–10966. doi: 10.1073/pnas.91.23.10962. PubMed DOI PMC

Kanzler H., Kuppers R., Hansmann M.L., Rajewsky K. Hodgkin and Reed-Sternberg cells in Hodgkin’s disease represent the outgrowth of a dominant tumor clone derived from (crippled) germinal center B cells. J. Exp. Med. 1996;184:1495–1505. doi: 10.1084/jem.184.4.1495. PubMed DOI PMC

Raab-Traub N., Flynn K. The structure of the termini of the Epstein-Barr virus as a marker of clonal cellular proliferation. Cell. 1986;47:883–889. doi: 10.1016/0092-8674(86)90803-2. PubMed DOI

Lardelli P., Garcia del Moral R. Clonal Epstein-Barr virus virus genome in Hodgkin’s and non-Hodgkin’s lymphoma. Blood. 1990;75:1589–1590. doi: 10.1182/blood.V75.7.1589.1589. PubMed DOI

Coates P.J., Slavin G., D’Ardenne A.J. Persistence of Epstein-Barr virus in Reed-Sternberg cells throughout the course of Hodgkin’s disease. J. Pathol. 1991;164:291–297. doi: 10.1002/path.1711640404. PubMed DOI

Grasser F.A., Murray P.G., Kremmer E., Klein K., Remberger K., Feiden W., Reynolds G., Niedobitek G., Young L.S., Mueller-Lantzsch N. Monoclonal antibodies directed against the Epstein-Barr virus-encoded nuclear antigen 1 (EBNA1): Immunohistologic detection of EBNA1 in the malignant cells of Hodgkin’s disease. Blood. 1994;84:3792–3798. doi: 10.1182/blood.V84.11.3792.bloodjournal84113792. PubMed DOI

Frappier L. Contributions of Epstein–Barr Nuclear Antigen 1 (EBNA1) to Cell Immortalization and Survival. Viruses. 2012;4:1537–1547. doi: 10.3390/v4091537. PubMed DOI PMC

Frappier L. EBNA1 and host factors in Epstein–Barr virus latent DNA replication. Curr. Opin. Virol. 2012;2:733–739. doi: 10.1016/j.coviro.2012.09.005. PubMed DOI

Frappier L. The Epstein-Barr Virus EBNA1 Protein. Scientifica. 2012;2012:438204. doi: 10.6064/2012/438204. PubMed DOI PMC

Tempera I., De Leo A., Kossenkov A.V., Cesaroni M., Song H., Dawany N., Showe L., Lu F., Wikramasinghe P., Lieberman P.M. Identification of MEF2B, EBF1, and IL6R as Direct Gene Targets of Epstein-Barr Virus (EBV) Nuclear Antigen 1 Critical for EBV-Infected B-Lymphocyte Survival. J. Virol. 2015;90:345–355. doi: 10.1128/JVI.02318-15. PubMed DOI PMC

Flavell J.R., Baumforth K.R., Wood V.H., Davies G.L., Wei W., Reynolds G.M., Morgan S., Boyce A., Kelly G.L., Young L.S., et al. Down-regulation of the TGF-beta target gene, PTPRK, by the Epstein-Barr virus encoded EBNA1 contributes to the growth and survival of Hodgkin lymphoma cells. Blood. 2008;111:292–301. doi: 10.1182/blood-2006-11-059881. PubMed DOI

Wood V.H., O’Neil J.D., Wei W., Stewart S.E., Dawson C.W., Young L.S. Epstein-Barr virus-encoded EBNA1 regulates cellular gene transcription and modulates the STAT1 and TGFbeta signaling pathways. Oncogene. 2007;26:4135–4147. doi: 10.1038/sj.onc.1210496. PubMed DOI

Deacon E.M., Pallesen G., Niedobitek G., Crocker J., Brooks L., Rickinson A.B., Young L.S. Epstein-Barr virus and Hodgkin’s disease: Transcriptional analysis of virus latency in the malignant cells. J. Exp. Med. 1993;177:339–349. doi: 10.1084/jem.177.2.339. PubMed DOI PMC

Murray P.G., Young L.S., Rowe M., Crocker J. Immunohistochemical demonstration of the Epstein-Barr virus-encoded latent membrane protein in paraffin sections of Hodgkin’s disease. J. Pathol. 1992;166:1–5. doi: 10.1002/path.1711660102. PubMed DOI

Niedobitek G., Kremmer E., Herbst H., Whitehead L., Dawson C.W., Niedobitek E., Von Ostau C., Rooney N., Grasser F.A., Young L.S. Immunohistochemical detection of the Epstein-Barr virus-encoded latent membrane protein 2A in Hodgkin’s disease and infectious mononucleosis. Blood. 1997;90:1664–1672. doi: 10.1182/blood.V90.4.1664. PubMed DOI

Lam N., Sugden B. CD40 and its viral mimic, LMP1: Similar means to different ends. Cell Signal. 2003;15:9–16. doi: 10.1016/S0898-6568(02)00083-9. PubMed DOI

Bargou R.C., Emmerich F., Krappmann D., Bommert K., Mapara M.Y., Arnold W., Royer H.D., Grinstein E., Greiner A., Scheidereit C., et al. Constitutive nuclear factor-kappaB-relA activation is required for proliferation and survival of Hodgkin’s disease tumor cells. J. Clin. Investig. 1997;100:2961–2969. doi: 10.1172/JCI119849. PubMed DOI PMC

Dutton A., Reynolds G.M., Dawson C.W., Young L.S., Murray P.G. Constitutive activation of phosphatidyl-inositide 3 kinase contributes to the survival of Hodgkin’s lymphoma cells through a mechanism involving Akt kinase and mTOR. J. Pathol. 2005;205:498–506. doi: 10.1002/path.1725. PubMed DOI

Heath E., Begue-Pastor N., Chaganti S., Croom-Carter D., Shannon-Lowe C., Kube D., Feederle R., Delecluse H.-J., Rickinson A.B., Bell A.I. Epstein-Barr Virus Infection of Naïve B Cells In Vitro Frequently Selects Clones with Mutated Immunoglobulin Genotypes: Implications for Virus Biology. PLoS Pathog. 2012;8:e1002697. doi: 10.1371/journal.ppat.1002697. PubMed DOI PMC

Holtick U., Vockerodt M., Pinkert D., Schoof N., Stürzenhofecker B., Kussebi N., Lauber K., Wesselborg S., Löffler D., Horn F., et al. STAT3 is essential for Hodgkin lymphoma cell proliferation and is a target of tyrphostin AG17 which confers sensitization for apoptosis. Leukemia. 2005;19:936–944. doi: 10.1038/sj.leu.2403750. PubMed DOI

Caldwell R.G., Wilson J.B., Anderson S.J., Longnecker R. Epstein-Barr Virus LMP2A Drives B Cell Development and Survival in the Absence of Normal B Cell Receptor Signals. Immunity. 1998;9:405–411. doi: 10.1016/S1074-7613(00)80623-8. PubMed DOI

Merchant M., Swart R., Katzman R.B., Ikeda M., Ikeda A., Longnecker R., Dykstra M.L., Pierce S.K. The Effects of the Epstein-Barr Virus Latent Membrane Protein 2a on B Cell Function. Int. Rev. Immunol. 2001;20:805–835. doi: 10.3109/08830180109045591. PubMed DOI

Chaganti S., Bell A., Pastor N.B., Milner A.E., Drayson M., Gordon J., Rickinson A.B. Epstein-Barr virus infection in vitro can rescue germinal center B cells with inactivated immunoglobulin genes. Blood. 2005;106:4249–4252. doi: 10.1182/blood-2005-06-2327. PubMed DOI

Bechtel D., Kurth J., Unkel C., Küppers R. Transformation of BCR-deficient germinal-center B cells by EBV supports a major role of the virus in the pathogenesis of Hodgkin and posttransplantation lymphomas. Blood. 2005;106:4345–4350. doi: 10.1182/blood-2005-06-2342. PubMed DOI

Mancao C., Altmann M., Jungnickel B., Hammerschmidt W. Rescue of “crippled” germinal center B cells from apoptosis by Epstein-Barr virus. Blood. 2005;106:4339–4344. doi: 10.1182/blood-2005-06-2341. PubMed DOI PMC

Levine P.H., Berard C.W., Carbone P.P., Waggoner D.E., Malan L. Elevated antibody titers to Epstein-Barr virus in Hodgkin’s disease. Cancer. 1971;7:416–421. doi: 10.1002/1097-0142(197102)27:2<416::AID-CNCR2820270227>3.0.CO;2-W. PubMed DOI

Mueller N., Evans A., Harris N.L., Comstock G.W., Jellum E., Magnus K., Orentreich N., Polk B.F., Vogelman J. Hodgkin’s disease and Epstein-Barr virus. Altered antibody pattern before diagnosis. N. Engl. J. Med. 1989;320:689–695. doi: 10.1056/NEJM198903163201103. PubMed DOI

Levin L.I., Chang E.T., Ambinder R.F., Lennette E.T., Rubertone M.V., Mann R.B., Borowitz M., Weir E.G., Abbondanzo S.L., Mueller N.E. Atypical prediagnosis Epstein-Barr virus serology restricted to EBV-positive Hodgkin lymphoma. Blood. 2012;120:3750–3755. doi: 10.1182/blood-2011-12-390823. PubMed DOI PMC

Connelly R.R., Christine B.W. A cohort study of cancer following infectious mononucleosis. Cancer Res. 1974;34:1172–1178. PubMed

Rosdahl N., Larsen S.O., Clemmesen J. Hodgkin’s Disease in Patients with Previous Infectious Mononucleosis: 30 Years’ Experience. BMJ. 1974;2:253–256. doi: 10.1136/bmj.2.5913.253. PubMed DOI PMC

Hjalgrim H., Ekström Smedby K., Rostgaard K., Molin D., Hamilton-Dutoit S., Chang E.T., Ralfkiaer E., Sundstrom C., Adami H.O., Glimelius B., et al. Infectious Mononucleosis, Childhood Social Environment, and Risk of Hodgkin Lymphoma. Cancer Res. 2007;67:2382–2388. doi: 10.1158/0008-5472.CAN-06-3566. PubMed DOI

Hjalgrim H., Munksgaard L., Melbye M. Epstein-Barr virus and Hodgkin’s lymphoma. Ugeskr. Laeger. 2002;164:5924–5927. PubMed

Reiman A., Powell J.E., Flavell K.J., Grundy R.G., Mann J.R., Parkes S., Redfern D., Young L.S., Murray P.G. Seasonal differences in the onset of the EBV-positive and -negative forms of paediatric Hodgkin’s lymphoma. Br. J. Cancer. 2003;89:1200–1201. doi: 10.1038/sj.bjc.6601277. PubMed DOI PMC

Young L., Yap L.-F., Murray P.G. Epstein–Barr virus: More than 50 years old and still providing surprises. Nat. Cancer. 2016;16:789–802. doi: 10.1038/nrc.2016.92. PubMed DOI

Kushekhar K., Berg A.V.D., Nolte I., Hepkema B., Visser L., Diepstra A. Genetic Associations in Classical Hodgkin Lymphoma: A Systematic Review and Insights into Susceptibility Mechanisms. Cancer Epidemiol. Biomarkers Prev. 2014;23:2737–2747. doi: 10.1158/1055-9965.EPI-14-0683. PubMed DOI

Hjalgrim H., Rostgaard K., Johnson P.C.D., Lake A., Shield L., Little A.-M., Ekstrom-Smedby K., Adami H.-O., Glimelius B., Hamilton-Dutoit S., et al. HLA-A alleles and infectious mononucleosis suggest a critical role for cytotoxic T-cell response in EBV-related Hodgkin lymphoma. Proc. Natl. Acad. Sci. USA. 2010;107:6400–6405. doi: 10.1073/pnas.0915054107. PubMed DOI PMC

Cozen W., Timofeeva M.N., Li D., Diepstra A., Hazelett D., Delahaye-Sourdeix M., Edlund C.K., Franke L., Rostgaard K., Berg D.J.V.D., et al. A meta-analysis of Hodgkin lymphoma reveals 19p13.3 TCF3 as a novel susceptibility locus. Nat. Commun. 2014;5:1–10. doi: 10.1038/ncomms4856. PubMed DOI PMC

Niens M., Jarrett R., Hepkema B., Nolte I.M., Diepstra A., Platteel M., Kouprie N., Delury C.P., Gallagher A., Visser L., et al. HLA-A*02 is associated with a reduced risk and HLA-A*01 with an increased risk of developing EBV+ Hodgkin lymphoma. Blood. 2007;110:3310–3315. doi: 10.1182/blood-2007-05-086934. PubMed DOI

Niens M., van den Berg A., Diepstra A., Nolte I.M., van der Steege G., Gallagher A., Taylor G.M., Jarrett R.F., Poppema S., te Meerman G.J. The human leukocyte antigen class I region is associated with EBV-positive Hodgkin’s lymphoma: HLA-A and HLA complex group 9 are putative candidate genes. Cancer Epidemiol. Biomark. Prev. 2006;15:2280–2284. doi: 10.1158/1055-9965.EPI-06-0476. PubMed DOI

Glaser S.L., Clarke C.A., Chang E.T., Yang J., Gomez S.L., Keegan T.H. Hodgkin lymphoma incidence in California Hispanics: Influence of nativity and tumor Epstein-Barr virus. Cancer Causes Control. 2014;25:709–725. doi: 10.1007/s10552-014-0374-6. PubMed DOI PMC

Glaser S.L. Hodgkin’s disease in black populations: A review of the epidemiologic literature. Semin. Oncol. 1990;17:643–659. PubMed

Flavell K.J., Biddulph J.P., Powell J.E., Parkes S.E., Redfern D., Weinreb M., Nelson P., Mann J.R., Young L.S., Murray P.G. South Asian ethnicity and material deprivation increase the risk of Epstein-Barr virus infection in childhood Hodgkin’s disease. Br. J. Cancer. 2001;85:350–356. doi: 10.1054/bjoc.2001.1872. PubMed DOI PMC

Glaser S.L., Jarrett R.F. The epidemiology of Hodgkin’s disease. Baillieres Clin. Haematol. 1996;9:401–416. doi: 10.1016/S0950-3536(96)80018-7. PubMed DOI

Jarrett R.F. Viruses and Hodgkin’s lymphoma. Ann. Oncol. 2002;13((Suppl. S1)):23–29. doi: 10.1093/annonc/13.S1.23. PubMed DOI

Shankar A., Visaduraki M., Hayward J., Morland B., McCarthy K., Hewitt M. Clinical outcome in children and adolescents with Hodgkin lymphoma after treatment with chemotherapy alone—The results of the United Kingdom HD3 national cohort trial. Eur. J. Cancer. 2012;48:108–113. doi: 10.1016/j.ejca.2011.05.029. PubMed DOI

Keegan T.H., Glaser S.L., Clarke C.A., Gulley M.L., Craig F.E., DiGiuseppe J.A., Dorfman R.F., Mann R.B., Ambinder R.F. Epstein-Barr virus as a marker of survival after Hodgkin’s lymphoma: A population-based study. J. Clin. Oncol. 2005;23:7604–7613. doi: 10.1200/JCO.2005.02.6310. PubMed DOI

Jarrett R., Stark G.L., White J., Angus B., Alexander F.E., Krajewski A.S., Freeland J., Taylor G.M., Taylor P.R.A., The Scotland and Newcastle Epidemiology of Hodgkin Disease Study Group Impact of tumor Epstein-Barr virus status on presenting features and outcome in age-defined subgroups of patients with classic Hodgkin lymphoma: A population-based study. Blood. 2005;106:2444–2451. doi: 10.1182/blood-2004-09-3759. PubMed DOI

Clarke C.A., Glaser S.L., Dorfman R.F., Mann R., DiGiuseppe J.A., Prehn A.W., Ambinder R.F. Epstein-Barr virus and survival after Hodgkin disease in a population-based series of women. Cancer. 2001;91:1579–1587. doi: 10.1002/1097-0142(20010415)91:8<1579::AID-CNCR1169>3.0.CO;2-L. PubMed DOI

Stark G.L., Wood K.M., Jack F., Angus B., Proctor S.J., Taylor P.R., Northern Region Lymphoma Group Hodgkin’s disease in the elderly: A population-based study. Br. J. Haematol. 2002;119:432–440. doi: 10.1046/j.1365-2141.2002.03815.x. PubMed DOI

Diepstra A., van Imhoff G.W., Schaapveld M., Karim-Kos H., Berg A.V.D., Vellenga E., Poppema S. Latent Epstein-Barr Virus Infection of Tumor Cells in Classical Hodgkin’s Lymphoma Predicts Adverse Outcome in Older Adult Patients. J. Clin. Oncol. 2009;27:3815–3821. doi: 10.1200/JCO.2008.20.5138. PubMed DOI

Wang C., Zou S.-P., Chen D.-G., Wang J.-S., Zheng Y.-B., Chen X.-R., Yang Y. Latent Epstein–Barr virus infection status and prognosis in patients with newly diagnosed Hodgkin lymphoma in Southeast China: A single-center retrospective study. Hematology. 2021;26:675–683. doi: 10.1080/16078454.2021.1971864. PubMed DOI

Proctor S.J., Rueffer J.U., Angus B., Breuer K., Flechtner H., Jarrett R., Levis A., Taylor P., Tirelli U. Hodgkin’s disease in the elderly: Current status and future directions. Ann. Oncol. 2002;13:133–137. doi: 10.1093/annonc/13.S1.133. PubMed DOI

Koh Y.W., Yoon D.H., Suh C., Huh J. Impact of the Epstein–Barr virus positivity on Hodgkin’s lymphoma in a large cohort from a single institute in Korea. Ann. Hematol. 2012;91:1403–1412. doi: 10.1007/s00277-012-1464-8. PubMed DOI

Kwon J.M., Park Y.H., Kang J.H., Kim K., Ko Y.H., Ryoo B.Y., Lee S.S., Lee S.I., Koo H.H., Kim W.S. The effect of Epstein–Barr virus status on clinical outcome in Hodgkin’s lymphoma. Ann. Hematol. 2006;85:463–468. doi: 10.1007/s00277-006-0081-9. PubMed DOI

Glavina-Durdov M., Jakic-Razumovic J., Capkun V., Murray P. Assessment of the prognostic impact of the Epstein–Barr virus-encoded latent membrane protein-1 expression in Hodgkin’s disease. Br. J. Cancer. 2001;84:1227–1234. doi: 10.1054/bjoc.2001.1774. PubMed DOI PMC

Murray P.G., Billingham L.J., Hassan H.T., Flavell J.R., Nelson P.N., Scott K., Reynolds G., Constandinou C.M., Kerr D.J., Devey E.C., et al. Effect of Epstein-Barr virus infection on response to chemotherapy and survival in Hodgkin’s disease. Blood. 1999;94:442–447. doi: 10.1182/blood.V94.2.442.414a46_442_447. PubMed DOI

Flavell K.J., Billingham L.J., Biddulph J.P., Gray L., Flavell J.R., Constandinou C.M., Young L.S., Murray P.G. The effect of Epstein–Barr virus status on outcome in age- andsex-defined subgroups of patients with advanced Hodgkin’s disease. Ann. Oncol. 2003;14:282–290. doi: 10.1093/annonc/mdg065. PubMed DOI

Engel M., Essop M.F., Close P., Hartley P., Pallesen G., Sinclair-Smith C. Improved prognosis of Epstein-Barr virus associated childhood Hodgkin’s lymphoma: Study of 47 South African cases. J. Clin. Pathol. 2000;53:182–186. doi: 10.1136/jcp.53.3.182. PubMed DOI PMC

Barros M.H.M., Scheliga A., De Matteo E., Minnicelli C., Soares F.A., Zalcberg I.R., Hassan R. Cell cycle characteristics and Epstein–Barr virus are differentially associated with aggressive and non-aggressive subsets of Hodgkin lymphoma in pediatric patients. Leuk. Lymphoma. 2010;51:1513–1526. doi: 10.3109/10428194.2010.489243. PubMed DOI

Dinand V., Dawar R., Arya L.S., Unni R., Mohanty B., Singh R. Hodgkin’s lymphoma in Indian children: Prevalence and significance of Epstein-Barr virus detection in Hodgkin’s and Reed-Sternberg cells. Eur. J. Cancer. 2007;43:161–168. doi: 10.1016/j.ejca.2006.08.036. PubMed DOI

Aktas S., Kargı A., Olgun N., Diniz G., Erbay A., Vergin C., Kargi A. Prognostic Significance of Cell Proliferation and Apoptosis-Regulating Proteins in Epstein-Barr Virus Positive and Negative Pediatric Hodgkin Lymphoma. Lymphat. Res. Biol. 2007;5:175–182. doi: 10.1089/lrb.2007.5305. PubMed DOI

Chabay P., Lara J., Lorenzetti M., Cambra P., Haab G.A., Aversa L., De Matteo E., Preciado M. Epstein Barr virus in relation to apoptosis markers and patients’ outcome in pediatric B-cell Non-Hodgkin lymphoma. Cancer Lett. 2011;307:221–226. doi: 10.1016/j.canlet.2011.04.006. PubMed DOI

Claviez A., Tiemann M., Luüders H., Krams M., Parwaresch R., Schellong G., Dorffel W. Impact of latent Epstein-Barr virus infection on outcome in children and adolescents with Hodgkin’s lymphoma. J. Clin. Oncol. 2005;23:4048–4056. doi: 10.1200/JCO.2005.01.701. PubMed DOI

Koh Y.W., Han J.H., Yoon D.H., Suh C., Huh J. Epstein-Barr virus positivity is associated with angiogenesis in, and poorer survival of, patients receiving standard treatment for classical Hodgkin’s lymphoma. Hematol. Oncol. 2018;36:182–188. doi: 10.1002/hon.2468. PubMed DOI

Enblad G., Sandvej K., Sundstrom C., Pallesen G., Glimelius B. Epstein-Barr virus distribution in Hodgkin’s disease in an unselected Swedish population. Acta Oncol. 1999;38:425–429. doi: 10.1080/028418699431942. PubMed DOI

Herling M., Rassidakis G.Z., Medeiros L.J., Vassilakopoulos T.P., Kliche K.O., Nadali G., Viviani S., Bonfante V., Giardini R., Chilosi M., et al. Expression of Epstein-Barr virus latent membrane protein-1 in Hodgkin and Reed-Sternberg cells of classical Hodgkin’s lymphoma: Associations with presenting features, serum interleukin 10 levels, and clinical outcome. Clin. Cancer Res. 2003;9:2114–2120. PubMed

Axdorph U., Porwit-MacDonald A., Sjöberg J., Grimfors G., Ekman M., Wang W., Biberfeld P., Björkholm M. Epstein–Barr virus expression in Hodgkin’s disease in relation to patient characteristics, serum factors and blood lymphocyte function. Br. J. Cancer. 1999;81:1182–1187. doi: 10.1038/sj.bjc.6690827. PubMed DOI PMC

Enblad G., Sandvej K., Lennette E., Sundstrom C., Klein G., Glimelius B., Pallesen G. Lack of correlation between EBV serology and presence of EBV in the Hodgkin and Reed-Sternberg cells of patients with Hodgkin’s disease. Int. J. Cancer. 1997;72:394–397. doi: 10.1002/(SICI)1097-0215(19970729)72:3<394::AID-IJC3>3.0.CO;2-K. PubMed DOI

Keresztes K., Miltenyi Z., Bessenyei B., Beck Z., Szollosi Z., Nemes Z., Olah E., Illes A. Association between the Epstein-Barr Virus and Hodgkin’s Lymphoma in the North-Eastern Part of Hungary: Effects on Therapy and Survival. Acta Haematol. 2006;116:101–107. doi: 10.1159/000093639. PubMed DOI

Krugmann J., Tzankov A., Gschwendtner A., Fischhofer M., Greil R., Fend F., Dirnhofer S. Longer Failure-Free Survival Interval of Epstein-Barr Virus–Associated Classical Hodgkin’s Lymphoma: A Single-Institution Study. Mod. Pathol. 2003;16:566–573. doi: 10.1097/01.MP.0000071843.09960.BF. PubMed DOI

Naresh K.N., Johnson J., Srinivas V., Soman C.S., Saikia T., Advani S.H., Badwe R.A., Dinshaw K.A., Muckaden M., Magrath I., et al. Epstein—Barr virus association in classical Hodgkin’s disease provides survival advantage to patients and correlates with higher expression of proliferation markers in Reed—Sternberg cells. Ann. Oncol. 2000;11:91–96. doi: 10.1023/A:1008337100424. PubMed DOI

Morente M.M., Piris M.A., Abraira V., Acevedo A., Aguilera B., Bellas C., Fraga M., Garcia-Del-Moral R., Gomez-Marcos F., Menarguez J., et al. Adverse clinical outcome in Hodgkin’s disease is associated with loss of retinoblastoma protein expression, high Ki67 proliferation index, and absence of Epstein-Barr virus-latent membrane protein 1 expression. Blood. 1997;90:2429–2436. PubMed

Montalban C., Abraira V., Morente M., Acevedo A., Aguilera B., Bellas C., Fraga M., Del Moral R.G., Menarguez J., Oliva H., et al. Epstein-Barr virus-latent membrane protein 1 expression has a favorable influence in the outcome of patients with Hodgkin’s Disease treated with chemotherapy. Leuk. Lymphoma. 2000;39:563–572. doi: 10.3109/10428190009113386. PubMed DOI

Trimèche M., Bonnet C., Korbi S., Boniver J., Leval L.D. Association between Epstein-Barr virus and Hodgkin’s lymphoma in Belgium: A pathological and virological study. Leuk. Lymphoma. 2007;48:1323–1331. doi: 10.1080/10428190701411177. PubMed DOI

Quijano S., Saavedra C., Fiorentino S., Orozco O., Bravo M.M. Epstein-Barr virus presence in Colombian Hodgkin lymphoma cases and its relation to treatment response. Biomedica. 2004;24:163–173. doi: 10.7705/biomedica.v24i2.1262. PubMed DOI

Myriam B.D., Sonia Z., Hanene S., Teheni L., Mounir T. Prognostic significance of Epstein–Barr virus (EBV) infection in Hodgkin lymphoma patients. J. Infect. Chemother. 2017;23:121–130. doi: 10.1016/j.jiac.2016.09.004. PubMed DOI

Santisteban-Espejo A., Perez-Requena J., Atienza-Cuevas L., Moran-Sanchez J., Fernandez-Valle M.D.C., Bernal-Florindo I., Romero-Garcia R., Garcia-Rojo M. Prognostic Role of the Expression of Latent-Membrane Protein 1 of Epstein–Barr Virus in Classical Hodgkin Lymphoma. Viruses. 2021;13:2523. doi: 10.3390/v13122523. PubMed DOI PMC

Elsayed A.A., Asano N., Ohshima K., Izutsu K., Kinoshita T., Nakamura S. Prognostic significance of CD 20 expression and E pstein-B arr virus (EBV) association in classical H odgkin lymphoma in J apan: A clinicopathologic study. Pathol. Int. 2014;64:336–345. doi: 10.1111/pin.12175. PubMed DOI

Souza E.M., Baiocchi O.C., Zanichelli M.A., Alves A.C., Assis M.G., Eiras D.P., Dobo C., Oliveira J.S. Impact of Epstein–Barr virus in the clinical evolution of patients with classical Hodgkin’s lymphoma in Brazil. Hematol. Oncol. 2010;28:137–141. doi: 10.1002/hon.933. PubMed DOI

Cheriyalinkal Parambil B., Narula G., Dhamne C., Roy Moulik N., Shet T., Shridhar E., Gujral S., Shah S., Laskar S., Khanna N., et al. Assessment of tumor Epstein-Barr Virus status and its impact on outcomes in intermediate and high-risk childhood classic Hodgkin Lymphoma treated at a tertiary cancer center in India. Leuk. Lymphoma. 2020;61:3217–3225. doi: 10.1080/10428194.2020.1800005. PubMed DOI

Vestlev P.M., Pallesen G., Sandvej K., Hamilton-Duroit S.J., Bendtzen S.M. Prognosis of Hodgkin’s disease in not influenced by epstein-barry virus latent membrane protein. Int. J. Cancer. 1992;50:670–671. doi: 10.1002/ijc.2910500432. PubMed DOI

Armstrong A., Lennard A., Alexander F., Angus B., Proctor S., Onions D., Jarrett R. Prognostic significance of Epstein-Barr virus association in Hodgkin’s disease. Eur. J. Cancer. 1994;30:1045–1046. doi: 10.1016/0959-8049(94)90157-0. PubMed DOI

Levy A., Diomin V., Gopas J., Ariad S., Sacks M., Benharroch D. Hodgkin’s lymphoma in the Bedouin of southern Israel: Epidemiological and clinical features. Isr. Med. Assoc. J. 2000;2:501–503. PubMed

Vassallo J., Metze K., Traina F.A., de Souza C., Lorand-Metze I. The prognostic relevance of apoptosis-related proteins in classical Hodgkin’s lymphomas. Leuk. Lymphoma. 2003;44:483–488. doi: 10.1080/1042819021000037958. PubMed DOI

Lee E.K., Kim S.Y., Noh K.-W., Joo E.H., Zhao B., Kieff E., Kang M.-S. Small molecule inhibition of Epstein–Barr virus nuclear antigen-1 DNA binding activity interferes with replication and persistence of the viral genome. Antivir. Res. 2014;104:73–83. doi: 10.1016/j.antiviral.2014.01.018. PubMed DOI PMC

Eichenauer D.A., Aleman B.M.P., André M., Federico M., Hutchings M., Illidge T., Engert A., Ladetto M., ESMO Guidelines Committee Hodgkin lymphoma: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann. Oncol. 2018;29:iv19–iv29. doi: 10.1093/annonc/mdy080. PubMed DOI

Kaseb H., Babiker H.M. StatPearls. StatPearls Publishing; Treasure Island, FL, USA: 2022. Hodgkin Lymphoma.

Cui X., Snapper C.M. Epstein Barr Virus: Development of Vaccines and Immune Cell Therapy for EBV-Associated Diseases. Front. Immunol. 2021;12:734471. doi: 10.3389/fimmu.2021.734471. PubMed DOI PMC

Toner K., Bollard C.M. EBV+ lymphoproliferative diseases: Opportunities for leveraging EBV as a therapeutic target. Blood. 2022;139:983–994. doi: 10.1182/blood.2020005466. PubMed DOI PMC

Heslop H.E., Sharma S., Rooney C.M. Adoptive T-Cell Therapy for Epstein-Barr Virus–Related Lymphomas. J. Clin. Oncol. 2021;39:514–524. doi: 10.1200/JCO.20.01709. PubMed DOI PMC

Wu R., Sattarzadeh A., Rutgers B., Diepstra A., Berg A.V.D., Visser L. The microenvironment of classical Hodgkin lymphoma: Heterogeneity by Epstein–Barr virus presence and location within the tumor. Blood Cancer, J. 2016;6:e417. doi: 10.1038/bcj.2016.26. PubMed DOI PMC

Barros M.H.M., Vera-Lozada G., Soares F.A., Niedobitek G., Hassan R. Tumor microenvironment composition in pediatric classical Hodgkin lymphoma is modulated by age and Epstein-Barr virus infection. Int. J. Cancer. 2011;131:1142–1152. doi: 10.1002/ijc.27314. PubMed DOI

Jimenez O., Barros M.H., De Matteo E., Lombardi M.G., Preciado M.V., Niedobitek G., Chabay P. M1-like macrophage polarization prevails in young children with classic Hodgkin Lymphoma from Argentina. Sci. Rep. 2019;9:1–6. doi: 10.1038/s41598-019-49015-1. PubMed DOI PMC

Jimenez O., Colli S., Lombardi M.G., Preciado M.V., De Matteo E., Chabay P. Epstein–Barr virus recruits PDL1-positive cells at the microenvironment in pediatric Hodgkin lymphoma. Cancer Immunol. Immunother. 2020;70:1519–1526. doi: 10.1007/s00262-020-02787-2. PubMed DOI PMC

Satoh T., Wada R., Yajima N., Imaizumi T., Yagihashi S. Tumor Microenvironment and RIG-I Signaling Molecules in Epstein Barr Virus-Positive and -Negative Classical Hodgkin Lymphoma of the Elderly. J. Clin. Exp. Hematop. 2014;54:75–84. doi: 10.3960/jslrt.54.75. PubMed DOI

Assis M.C.G., Campos A.H.F.M., de Oliveira J.S.R., Soares F.A., Silva J.M.K., Silva P.B., Penna A.D., Souza E.M., Baiocchi O.C.G. Increased expression of CD4+CD25+FOXP3+ regulatory T cells correlates with Epstein–Barr virus and has no impact on survival in patients with classical Hodgkin lymphoma in Brazil. Med. Oncol. 2012;29:3614–3619. doi: 10.1007/s12032-012-0299-4. PubMed DOI

Ozturk V., Yikilmaz A.S., Kilicarslan A., Bakanay S.M., Akinci S., Dilek I. The Triple Positivity for EBV, PD-1, and PD-L1 Identifies a Very High Risk Classical Hodgkin Lymphoma. Clin. Lymphoma Myeloma Leuk. 2020;20:e375–e381. doi: 10.1016/j.clml.2019.11.021. PubMed DOI

Sueur C., Lupo J., Mas P., Morand P., Boyer V. Difference in cytokine production and cell cycle progression induced by Epstein-Barr virus Lmp1 deletion variants in Kmh2, a Hodgkin lymphoma cell line. Virol. J. 2014;11:94. doi: 10.1186/1743-422X-11-94. PubMed DOI PMC

IIncrocci R., McAloon J., Montesano M., Bardahl J., Vagvala S., Stone A., Swanson-Mungerson M. Epstein-Barr virus LMP2A utilizes Syk and PI3K to activate NF-kappaB in B-cell lymphomas to increase MIP-1alpha production. J. Med. Virol. 2019;91:845–855. doi: 10.1002/jmv.25381. PubMed DOI

Baumforth K.R., Birgersdotter A., Reynolds G.M., Wei W., Kapatai G., Flavell J.R., Kalk E., Piper K., Lee S., Machado L., et al. Expression of the Epstein-Barr virus-encoded Epstein-Barr virus nuclear antigen 1 in Hodgkin’s lymphoma cells mediates Up-regulation of CCL20 and the migration of regulatory T cells. Am. J. Pathol. 2008;173:195–204. doi: 10.2353/ajpath.2008.070845. PubMed DOI PMC

Kis L.L., Salamon D., Persson E.K., Nagy N., Scheeren F.A., Spits H., Klein G., Klein E. IL-21 imposes a type II EBV gene expression on type III and type I B cells by the repression of C- and activation of LMP-1-promoter. Proc. Natl. Acad. Sci. USA. 2009;107:872–877. doi: 10.1073/pnas.0912920107. PubMed DOI PMC

Kis L.L., Takahara M., Nagy N., Klein G., Klein E. Cytokine mediated induction of the major Epstein–Barr virus (EBV)-encoded transforming protein, LMP-1. Immunol. Lett. 2006;104:83–88. doi: 10.1016/j.imlet.2005.11.003. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...