• This record comes from PubMed

A Multigene Phylogeny of Native American Hawkweeds (Hieracium Subgen. Chionoracium, Cichorieae, Asteraceae): Origin, Speciation Patterns, and Migration Routes

. 2022 Sep 30 ; 11 (19) : . [epub] 20220930

Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic

Document type Journal Article

Grant support
206/05/0657, P506/10/1363, 17-14620S and 22-16651S Czech Science Foundation
Fe 512/1-1 Deutsche Forschungsgemeinschaft
AV0Z60050516, RVO 67985939 Czech Academy of Sciences

Native American hawkweeds are mainly mountainous species that are distributed all over the New World. They are severely understudied with respect to their origin, colonization of the vast distribution area, and species relationships. Here, we attempt to reconstruct the evolutionary history of the group by applying seven molecular markers (plastid, nuclear ribosomal and low-copy genes). Phylogenetic analyses revealed that Chionoracium is a subgenus of the mainly Eurasian genus Hieracium, which originated from eastern European hawkweeds about 1.58-2.24 million years ago. Plastid DNA suggested a single origin of all Chionoracium species. They colonized the New World via Beringia and formed several distinct lineages in North America. Via one Central American lineage, the group colonized South America and radiated into more than a hundred species within about 0.8 million years, long after the closure of the Isthmus of Panama and the most recent uplift of the Andes. Despite some incongruences shown by different markers, most of them revealed the same crown groups of closely related taxa, which were, however, largely in conflict with traditional sectional classifications. We provide a basic framework for further elucidation of speciation patterns. A thorough taxonomic revision of Hieracium subgen. Chionoracium is recommended.

See more in PubMed

Schuhwerk F. Some thoughts on the taxonomy of Hieracium. Ber. Bayer. Bot. Ges. 2002;72:193–198.

Torrey J., Gray A. A Flora of North America 2(3) Wiley and Putnam; New York, NY, USA: 1843.

Fries E. Epicrisis Generis Hieraciorum. Edquist & Berglund; Uppsala, Sweden: 1862.

Peter A.  Hieracium. In: Engler A., Prantl K., editors. Die Natürlichen Pflanzenfamilien 4(5) Wilhelm Engelmann; Leipzig, Germany: 1894. pp. 375–387.

Schultz C.H. Ueber die Hieracien Amerika’s. Bonplandia. 1861;9:172–175.

Arvet-Touvet C.J.-M. Spicilegium Rariorum vel Novorum Hieraciorum, Praecipue Americanorum et Europaeorum. Impr. et Lithographie Veuve Rigaudin; Grenoble, France: 1881.

Zahn K.H.  Hieracium Subgenus Stenotheca. In: Engler A., editor. Das Pflanzenreich IV.280 (Heft 79) Wilhelm Engelmann; Leipzig, Germany: 1922. pp. 1075–1142.

Babcock E.B., Stebbins G.L., Jr. The Genus Youngia. Carnegie Inst. of Washington Publ.; Washington, DC, USA: 1937. p. 484.

Jeffrey C. Notes on Compositae: I. The Cichorieae in east tropical Africa. Kew Bull. 1966;18:427–486. doi: 10.2307/4115797. DOI

Tutin T.G. Tolpis Adanson. In: Tutin T.G., Heywood V.H., Burges N.A., Moore D.M., Valentine D.H., Walters S.M., Webb D.A., editors. Flora Europaea 4. Cambridge University Press; Cambridge, UK: 1976. p. 306.

Blackmore S., Jarvis C.E. Palynology of the genus Tolpis Adanson (Compositae: Lactuceae) Pollen Spores. 1986;28:111–122.

Sleumer H. Die Hieracien Argentiniens unter Berücksichtigung der Nachbarländer. Bot. Jahrb. Syst. 1956;77:85–148.

Sell P.D. An introduction to the study of the British hieracia, 1. History and classification. Watsonia. 1987;16:365–371.

Chrtek J., Jr., Mráz P., Severa M. Chromosome numbers in selected species of Hieracium s.str. (Hieracium subgen. Hieracium) in the Western Carpathians. Preslia. 2004;76:119–139.

Hand M.L., Vít P., Krahulcová A., Johnson S.D., Oelkers K., Siddons H., Chrtek J., Jr., Fehrer J., Koltunow A.M.G. Evolution of apomixis loci in Pilosella and Hieracium (Asteraceae) inferred from the conservation of apomixis-linked markers in natural and experimental populations. Heredity. 2015;114:17–26. doi: 10.1038/hdy.2014.61. PubMed DOI PMC

Mráz P., Zdvořák P. Reproductive pathways in Hieracium s.s. (Asteraceae): Strict sexuality in diploids and apomixis in polyploids. Ann. Bot. 2019;123:391–403. doi: 10.1093/aob/mcy137. PubMed DOI PMC

Guppy G.A. Species relationships of Hieracium (Asteraceae) in British Columbia. Canad. J. Bot. 1978;56:3008–3019. doi: 10.1139/b78-365. DOI

Strother J.L.  Hieracium. In: Flora of North America Editorial Committee, editor. Flora of North America. North of Mexico 19. Oxford University Press; New York, NY, USA: 2006. pp. 278–294.

Bräutigam S., Greuter W. A new treatment of Pilosella for the Euro-Mediterranean flora [Notulae ad floram euro-mediterraneam pertinentes 24] Willdenowia. 2007;37:123–137. doi: 10.3372/wi.37.37106. DOI

Morgan-Richards M., Trewick S.A., Chapman H.M., Krahulcová A. Interspecific hybridization among Hieracium species in New Zealand: Evidence from flow cytometry. Heredity. 2004;93:34–42. doi: 10.1038/sj.hdy.6800476. PubMed DOI

Wilson L.M., Fehrer J., Bräutigam S., Grosskopf G. A new invasive hawkweed, Hieracium glomeratum (Lactuceae, Asteraceae), in the Pacific Northwest. Can. J. Bot. 2006;84:133–142. doi: 10.1139/b05-149. DOI

Krahulec F., Krahulcová A. Ploidy levels and reproductive behaviour in invasive Hieracium pilosella in Patagonia. NeoBiota. 2011;11:25–31. doi: 10.3897/neobiota.11.1349. DOI

Fehrer J., Krahulcová A., Krahulec F., Chrtek J., Jr., Rosenbaumová R., Bräutigam S. Evolutionary aspects in Hieracium subgenus Pilosella. In: Hörandl E., Grossniklaus U., van Dijk P., Sharbel T., editors. Apomixis: Evolution, Mechanisms and Perspectives (Regnum Vegetabile 147) Koeltz; Königstein, Germany: 2007. pp. 359–390.

Koltunow A.M.G., Johnson S.D., Rodrigues J.C.M., Okada T., Hu Y., Tsuchiya T., Wilson S., Fletcher P., Ito K., Suzuki G., et al. Sexual reproduction is the default mode in apomictic Hieracium subgenus Pilosella, in which two dominant loci function to enable apomixis. Plant J. 2011;66:890–902. doi: 10.1111/j.1365-313X.2011.04556.x. PubMed DOI

Fehrer J., Gemeinholzer B., Chrtek J., Jr., Bräutigam S. Incongruent plastid and nuclear DNA phylogenies reveal ancient intergeneric hybridization in Pilosella hawkweeds (Hieracium, Cichorieae, Asteraceae) Mol. Phylogen. Evol. 2007;42:347–361. doi: 10.1016/j.ympev.2006.07.004. PubMed DOI

Fehrer J., Krak K., Chrtek J., Jr. Intra-individual polymorphism in diploid and apomictic polyploid hawkweeds (Hieracium, Lactuceae, Asteraceae): Disentangling phylogenetic signal, reticulation, and noise. BMC Evol. Biol. 2009;9:239. doi: 10.1186/1471-2148-9-239. PubMed DOI PMC

Majeský Ľ., Krahulec F., Vašut R.J. How apomictic taxa are treated in current taxonomy: A review. Taxon. 2017;66:1017–1040. doi: 10.12705/665.3. DOI

Beaman J.H., De Jong D.C.D., Stoutamire W.P. Chromosome studies in the alpine and subalpine floras of Mexico and Guatemala. Amer. J. Bot. 1962;49:41–50. doi: 10.1002/j.1537-2197.1962.tb11744.x. DOI

Beaman J.H. Revision of Hieracium (Asteraceae) in Mexico and Central America. Syst. Bot. Monogr. 1990;29:1–77. doi: 10.2307/25027732. DOI

Schuhwerk F. Published Chromosome Counts in Hieracium. 1996. [(accessed on 5 June 2021)]. Available online: http://www.botanischestaatssammlung.de/projects/chrzlit.html.

Urtubey E. Hieracium reitzianum (Asteraceae, Cichorieae), a new species from Brazil. Novon. 2019;27:140–143. doi: 10.3417/2019396. DOI

Nägeli C., Peter N. Die Hieracien Mittel-Europas. Monographische Bearbeitung der Piloselloiden Mit Besonderer Berücksichtigung der Mitteleuropäischen Sippen. R. Oldenburg; München, Germany: 1885.

Gaskin J.F., Wilson L.M. Phylogenetic relationships among native and naturalized Hieracium (Asteraceae) in Canada and the United States based on plastid DNA sequences. Syst. Bot. 2007;32:478–485. doi: 10.1600/036364407781179752. DOI

Krak K., Álvarez I., Caklová P., Costa A., Chrtek J., Fehrer J. Development of novel low-copy nuclear markers for Hieraciinae (Asteraceae) and their perspective for other tribes. Amer. J. Bot. 2012;99:e74–e77. doi: 10.3732/ajb.1100416. PubMed DOI

Malme G.O.A.N. Hieracia brasiliensia. Herbarii Regnelliani. Ark. Bot. 1931;23:1–10.

Hind D.J.N. An Annotated Preliminary Checklist of the Compositae of Bolivia (Version 2) 2011. [(accessed on 18 August 2022)]. Available online: https://www.kew.org/sites/default/files/2019-01/Bolivian%20compositae%20checklist.pdf.

Ariza Espinar L., Cerana M.M. Asteraceae: Subfamilia Cichorioidea. Tribus Lactuceae: Genero Hieracium. In: Zuloaga F.O., Anton A., editors. Flora Argentina. Volume 7. Estudio Sigma; Buenos Aires, Argentina: 2015. pp. 15–42.

Long E.O., Dawid I.B. Repeated genes in eukaryotes. Annu. Rev. Biochem. 1980;49:727–764. doi: 10.1146/annurev.bi.49.070180.003455. PubMed DOI

Arnheim N. Concerted evolution of multigene families. In: Nei M., Koehn R.K., editors. Evolution of Genes and Proteins. Sinauer; Sunderland, MA, USA: 1983. pp. 38–61.

Álvarez I., Wendel J.F. Ribosomal ITS sequences and plant phylogenetic inference. Mol. Phylogen. Evol. 2003;29:417–434. doi: 10.1016/S1055-7903(03)00208-2. PubMed DOI

Sang T. Utility of low-copy nuclear gene sequences in plant phylogenetics. Crit. Rev. Biochem. Mol. Biol. 2002;37:121–147. doi: 10.1080/10409230290771474. PubMed DOI

Nieto Feliner G., Rosselló J.A. Better the devil you know? Guidelines for insightful utilization of nrDNA ITS in species-level evolutionary studies in plants. Mol. Phylogen. Evol. 2007;44:911–919. doi: 10.1016/j.ympev.2007.01.013. PubMed DOI

Fehrer J., Slavíková R., Paštová L., Josefiová J., Mráz P., Chrtek J., Bertrand Y.J.K. Molecular evolution and organization of ribosomal DNA in the hawkweed tribe Hieraciinae (Cichorieae, Asteraceae) Front. Plant Sci. 2021;12:647375. doi: 10.3389/fpls.2021.647375. PubMed DOI PMC

Krak K., Caklová P., Chrtek J., Fehrer J. Reconstruction of phylogenetic relationships in a highly reticulate group with deep coalescence and recent speciation (Hieracium, Asteraceae) Heredity. 2013;110:138–151. doi: 10.1038/hdy.2012.100. PubMed DOI PMC

Ferreira M.Z., Zahradníček J., Kadlecová J., Menezes de Sequeira M., Chrtek J., Jr., Fehrer J. Tracing the evolutionary history of the little-known Mediterranean-Macaronesian genus Andryala (Asteraceae) by multigene sequencing. Taxon. 2015;62:535–551. doi: 10.12705/643.10. DOI

Mráz P., Filipaş L., Bărbos M.I., Kadlecová J., Paštová L., Belyayev A., Fehrer J. An unexpected new diploid Hieracium from Europe: Integrative taxonomic approach with a phylogeny of diploid Hieracium taxa. Taxon. 2019;68:1258–1277. doi: 10.1002/tax.12149. DOI

Chrtek J., Mráz P., Belyayev A., Paštová L., Mrázová V., Caklová P., Josefiová J., Zagorski D., Hartmann M., Jandová M., et al. Evolutionary history and genetic diversity of apomictic allopolyploids in Hieracium s.str.: Morphological versus genomic features. Amer. J. Bot. 2020;107:66–90. doi: 10.1002/ajb2.1413. PubMed DOI

Chrtek J., Jr., Zahradníček J., Krak K., Fehrer J. Genome size in Hieracium subgenus Hieracium (Asteraceae) is strongly correlated with major phylogenetic groups. Ann. Bot. 2009;104:161–178. doi: 10.1093/aob/mcp107. PubMed DOI PMC

Appels R., Honeycutt R.L. rDNA evolution over a billion years. In: Dutta S.K., editor. DNA Systematics: Plants II Plant DNA. CRC Press; Boca Raton, FL, USA: 1986. pp. 81–125.

Standley P.C., Steyermark J.A. Studies of Central American plants–IV. Field Mus. Nat. Hist. Bot. Ser. 1944;23:31–109.

Olmstead R.G., Palmer J.D. Chloroplast DNA systematics: A review of methods and data analysis. Amer. J. Bot. 1994;81:1205–1224. doi: 10.1002/j.1537-2197.1994.tb15615.x. DOI

Cronn R.C., Zhao X., Paterson A.H., Wendel J.F. Polymorphism and concerted evolution in a tandemly repeated gene family: 5S ribosomal DNA in diploid and allopolyploid cottons. J. Mol. Evol. 1996;42:685–705. doi: 10.1007/BF02338802. PubMed DOI

Kaplan Z., Jarolímová V., Fehrer J. Revision of chromosome numbers of Potamogetonaceae: A new basis for taxonomic and evolutionary implications. Preslia. 2013;85:421–482.

Mahelka V., Kopecký D., Baum B.R. Contrasting patterns of evolution of 45S and 5S rDNA families uncover new aspects in the genome constitution of the agronomically important grass Thinopyrum intermedium (Triticeae) Mol. Biol. Evol. 2013;30:2065–2086. doi: 10.1093/molbev/mst106. PubMed DOI

Whittemore A.T., Schaal B.A. Interspecific gene flow in sympatric oaks. Proc. Natl. Acad. Sci. USA. 1991;88:2540–2544. doi: 10.1073/pnas.88.6.2540. PubMed DOI PMC

Acosta M.C., Premoli A.C. Evidence of chloroplast capture in South American Nothofagus (subgenus Nothofagus, Nothofagaceae) Mol. Phylogen. Evol. 2010;54:235–242. doi: 10.1016/j.ympev.2009.08.008. PubMed DOI

Zhao T., Wang G., Ma Q., Liang K., Yang Z. Multilocus data reveal deep phylogenetic relationships and intercontinental biogeography of the Eurasian-North American genus Corylus (Betulaceae) Mol. Phylogen. Evol. 2020;142:106658. doi: 10.1016/j.ympev.2019.106658. PubMed DOI

Small R.L., Cronn R.C., Wendel J.F. Use of nuclear genes for phylogeny reconstruction in plants. Aust. Syst. Bot. 2004;17:145–170. doi: 10.1071/SB03015. DOI

Smith S.A., Donoghue M.J. Rates of molecular evolution are linked to life history in flowering plants. Science. 2008;322:86–89. doi: 10.1126/science.1163197. PubMed DOI

Lanfear R., Ho S.Y.W., Davies T.J., Moles A.T., Aarssen L., Swenson N.G., Warman L., Zanne A.E., Allen A.P. Taller plants have lower rates of molecular evolution. Nat. Commun. 2013;4:1879. doi: 10.1038/ncomms2836. PubMed DOI

Tremetsberger K., Gemeinholzer B., Zetzsche H., Blackmore S., Kilian N., Talavera S. Divergence time estimation in Cichorieae (Asteraceae) using a fossil-calibrated relaxed molecular clock. Org. Divers. Evol. 2013;13:1–13. doi: 10.1007/s13127-012-0094-2. DOI

Barba-Montoya J., dos Reis M., Schneider H., Donoghue P.C.J., Yang Z. Constraining uncertainty in the timescale of angiosperm evolution and the veracity of a Cretaceous Terrestrial Revolution. New Phytol. 2018;218:819–834. doi: 10.1111/nph.15011. PubMed DOI PMC

Yang Z., Rannala B. Bayesian estimation of species divergence times under a molecular clock using multiple fossil calibrations with soft bounds. Mol. Biol. Evol. 2006;23:212–226. doi: 10.1093/molbev/msj024. PubMed DOI

Carruthers T., Muñoz-Rodríguez P., Wood J.R.I., Scotland R.W. The temporal dynamics of evolutionary diversification in Ipomoea. Mol. Phylogen. Evol. 2020;146:106768. doi: 10.1016/j.ympev.2020.106768. PubMed DOI

Coates A.G., Obando J.A. The geologic evolution of the Central American isthmus. In: Jackson J.B.C., Budd A.F., Coates A.G., editors. Evolution and Environment in Tropical America. University of Chicago Press; Chicago, IL, USA: 1996. pp. 21–56.

Gregory-Wodzicki K.M. Uplift history of the Central and Northern Andes: A review. GSA Bull. 2000;112:1091–1105. doi: 10.1130/0016-7606(2000)112<1091:UHOTCA>2.0.CO;2. DOI

Bershaw J., Garzione C.N., Higgins P., MacFadden B.J., Anaya F., Alvarenga H. Spatial-temporal changes in Andean plateau climate and elevation from stable isotopes of mammal teeth. Earth Planet. Sci. Lett. 2010;289:530–538. doi: 10.1016/j.epsl.2009.11.047. DOI

Richardson J.E., Pennington R.T., Pennington T.D., Hollingsworth P.M. Rapid diversification of a species-rich genus of neotropical rain forest trees. Science. 2001;293:2242–2245. doi: 10.1126/science.1061421. PubMed DOI

Hughes C.E., Pennington R.T., Antonelli A. Neotropical plant evolution: Assembling the big picture. Bot. J. Linn. Soc. 2013;171:1–18. doi: 10.1111/boj.12006. DOI

Colston T.J., Grazziotin F.G., Shepard D.B., Vitt L.J., Colli G.R., Henderson R.W., Hedges S.B., Bonatto S., Zaher H., Noonan B.P., et al. Molecular systematics and historical biogeography of tree boas (Corallus spp.) Mol. Phylogen. Evol. 2013;66:953–959. doi: 10.1016/j.ympev.2012.11.027. PubMed DOI

Ceccarelli F.S., Ojanguren-Affilastro A.A., Ramírez M.J., Ochoa J.A., Mattoni C.I., Prendini L. Andean uplift drives diversification of the bothriurid scorpion genus Brachistosternus. J. Biogeogr. 2016;43:1942–1954. doi: 10.1111/jbi.12760. PubMed DOI

Jabaily R.S., Sytsma K.J. Historical biogeography and life history evolution of Andean Puya (Bromeliaceae) Bot. J. Linn. Soc. 2012;171:201–224. doi: 10.1111/j.1095-8339.2012.01307.x. DOI

Drew B.T., Sytsma K.J. Phylogenetics, biogeography and evolution of dioecy in South American Lepechinia (Lamaiaceae) Bot. J. Linn. Soc. 2012;171:171–190. doi: 10.1111/j.1095-8339.2012.01325.x. DOI

Milne R.I. Phylogeny and biogeography of Rhododendron subsection Pontica, a group with a tertiary relict distribution. Mol. Phylogen. Evol. 2004;33:389–401. doi: 10.1016/j.ympev.2004.06.009. PubMed DOI

Denk T., Grímsson F., Zetter R. Episodic migration of oaks to Iceland: Evidence for a North Atlantic “land bridge” in the latest Miocene. Amer. J. Bot. 2010;97:276–287. doi: 10.3732/ajb.0900195. PubMed DOI

Marincovich L., Jr., Gladenkov A.Y. New evidence for the age of Bering Strait. Quat. Sci. Rev. 2001;20:329–335. doi: 10.1016/S0277-3791(00)00113-X. DOI

Abbott R.J., Smith L.C., Milne R.I., Crawford R.M.M., Wolff K., Balfour J. Molecular analysis of plant migration and refugia inthe Arctic. Science. 2000;289:1343–1346. doi: 10.1126/science.289.5483.1343. PubMed DOI

Ickert-Bond S.M., Murray D.F., DeChaine E. Contrasting patterns of plant distribution in Beringia. Alsk. Park Sci. 2009;8:26–32.

Les D.H., Crawford D.J., Kimball R.T., Moody M.L., Landolt E. Biogeography of discontinuously distributed hydrophytes: A molecular appraisal of intercontinental disjunctions. Int. J. Plant Sci. 2003;164:917–932. doi: 10.1086/378650. DOI

Blattner F.R. Multiple intercontinental dispersals shaped the distribution area of Hordeum (Poaceae) New Phytol. 2006;169:603–614. doi: 10.1111/j.1469-8137.2005.01610.x. PubMed DOI

Villaverde T., Escudero M., Martín-Bravo S., Jiménez-Mejías P., Sanmartín I., Vargas P., Luceño M. Bipolar distributions in vascular plants: A review. Amer. J. Bot. 2017;104:1680–1694. doi: 10.3732/ajb.1700159. PubMed DOI

Fehrer J., Iida S., Kaplan Z. Cryptic species of pondweeds (Potamogetonaceae) at an intercontinental scale revealed by molecular phylogenetic analyses. Taxon. 2022;71:531–551. doi: 10.1002/tax.12686. DOI

Kirby J.S., Stattersfield A.J., Butchart S.H.M., Evans M.I., Grimmett R.F.A., Jones V.R., O’Sullivan J., Tucker G.M., Newton I. Key conservation issues for migratory land- and waterbird species on the world’s major flyways. Bird Conserv. Int. 2008;18:S49–S73. doi: 10.1017/S0959270908000439. DOI

Stern D.L. The genetic causes of convergent evolution. Nat. Rev. Genet. 2013;14:751–764. doi: 10.1038/nrg3483. PubMed DOI

Guppy G.A. Ph.D. Thesis. The University of British Columbia; Vancouver, BC, Canada: 1975. The Systematics of Indigenous Species of Hieracium (Asteraceae) in British Columbia. DOI

Bennett M.D., Leitch I.J., Hanson L. DNA amounts in two samples of angiosperm weeds. Ann. Bot. 1998;82:121–134. doi: 10.1006/anbo.1998.0785. DOI

Knight C.A., Molinari N.A., Petrov D.A. The large genome constraint hypothesis: Evolution, ecology and phenotype. Ann. Bot. 2005;95:177–190. doi: 10.1093/aob/mci011. PubMed DOI PMC

Mráz P. Mentor effects in the genus Hieracium s.str. (Compositae, Lactuceae) Folia Geobot. 2003;38:345–350. doi: 10.1007/BF02803204. DOI

Lysák M.A., Doležel J. Estimation of nuclear DNA content in Sesleria (Poaceae) Caryologia. 1998;51:123–132. doi: 10.1080/00087114.1998.10589127. DOI

Otto F. DAPI staining of fixed cells for high-resolution flow cytometry of nuclear DNA. In: Crissman H.A., Darzynkiewicz Z., editors. Methods in Cell Biology: Flow Cytometry. Academic Press; San Diego, CA, USA: 1990. pp. 105–110. PubMed

Štorchová H., Hrdličková R., Chrtek J., Jr., Tetera M., Fitze D., Fehrer J. An improved method of DNA isolation from plants collected in the field and conserved in saturated NaCl/CTAB solution. Taxon. 2000;49:79–84. doi: 10.2307/1223934. DOI

Zagorski D., Hartmann M., Bertrand Y.J.K., Paštová L., Slavíková R., Josefiová J., Fehrer J. Characterization and dynamics of repeatomes in closely related species of Hieracium (Asteraceae) and their synthetic and apomictic hybrids. Front. Plant Sci. 2020;11:591053. doi: 10.3389/fpls.2020.591053. PubMed DOI PMC

Hall T.A. BioEdit, a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucl. Acids Symp. Ser. 1999;41:95–98. doi: 10.14601/Phytopathol_Mediterr-14998u1.29. DOI

Borchsenius F. FastGap 1.2. Department of Biosciences, Aarhus University, Denmark. 2009. [(accessed on 17 August 2022)]. Available online: http://www.aubot.dk/FastGap_home.htm.

Simmons M.P., Ochoterena H. Gaps as characters in sequence-based phylogenetic analyses. Syst. Biol. 2000;49:369–381. doi: 10.1093/sysbio/49.2.369. PubMed DOI

Ronquist F., Huelsenbeck J.P. MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics. 2003;19:1572–1574. doi: 10.1093/bioinformatics/btg180. PubMed DOI

Swofford D.L. PAUP*. Phylogenetic Analysis Using Parsimony (*and Other Methods), Version 4. Sinauer; Sunderland MA, USA: 2002.

Nguyen L.-T., Schmidt H.A., von Haeseler A., Minh B.Q. IQ-TREE: A fast and effective stochastic algorithm for estimating maximum likelihood phylogenies. Mol. Biol. Evol. 2015;32:268–274. doi: 10.1093/molbev/msu300. PubMed DOI PMC

Posada D., Crandall K.A. Modeltest: Testing the model of DNA substitution. Bioinformatics. 1998;14:817–818. doi: 10.1093/bioinformatics/14.9.817. PubMed DOI

Kalyaanamoorthy S., Minh B.Q., Wong T.K.F., von Haeseler A., Jermiin L.S. ModelFinder: Fast model selection for accurate phylogenetic estimates. Nat. Methods. 2017;14:587–589. doi: 10.1038/nmeth.4285. PubMed DOI PMC

Kilian N., Sennikov A., Wang Z.-H., Gemeinholzer B., Zhang J.-W. Sub-Paratethyan origin and Middle to Late Miocene principal diversification of the Lactucinae (Compositae: Cichorieae) inferred from molecular phylogenetics, divergence-dating and biogeographic analysis. Taxon. 2017;66:675–703. doi: 10.12705/663.9. DOI

Barba-Montoya J., dos Reis M., Yang Z. Comparison of different strategies for using fossil calibrations to generate the time prior in Bayesian molecular clock dating. Mol. Phylogen. Evol. 2017;114:386–400. doi: 10.1016/j.ympev.2017.07.005. PubMed DOI PMC

Bouckaert R., Heled J., Kühnert D., Vaughan T., Wu C.-H., Xie D., Suchard M.A., Rambaut A., Drummond A.J. Beast 2: A software platform for bayesian evolutionary analysis. PLoS Comput. Biol. 2014;10:e1003537. doi: 10.1371/journal.pcbi.1003537. PubMed DOI PMC

Bouckaert R., Vaughan T.G., Barido-Sottani J., Duchêne S., Fourment M., Gavryushkina A., Heled J., Jones G., Kühnert D., De Maio N., et al. BEAST 2.5: An advanced software platform for Bayesian evolutionary analysis. PLoS Comput. Biol. 2019;15:e1006650. doi: 10.1371/journal.pcbi.1006650. PubMed DOI PMC

Douglas J., Zhang R., Bouckaert R. Adaptive dating and fast proposals: Revisiting the phylogenetic relaxed clock model. PLoS Comput. Biol. 2021;17:e1008322. doi: 10.1371/journal.pcbi.1008322. PubMed DOI PMC

Bouckaert R., Drummond J.J. bModelTest: Bayesian phylogenetic site model averaging and model comparison. BMC Evol. Biol. 2017;17:42. doi: 10.1186/s12862-017-0890-6. PubMed DOI PMC

Rambaut A., Drummond A.J., Xie D., Baele G., Suchard M.A. Posterior summarisation in Bayesian phylogenetics using Tracer 1.7. Syst. Biol. 2018;67:901–904. doi: 10.1093/sysbio/syy032. PubMed DOI PMC

Russel P.M., Brewer B.J., Klaere S., Bouckaert R.R. Model selection and parameter inference in phylogenetics using nested sampling. Syst. Biol. 2018;68:219–233. doi: 10.1093/sysbio/syy050. PubMed DOI

Kass R.E., Raftery A.E. Bayes factors. J. Am. Stat. Assoc. 1995;90:773–795. doi: 10.1080/01621459.1995.10476572. DOI

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...