• This record comes from PubMed

The human TRPA1 intrinsic cold and heat sensitivity involves separate channel structures beyond the N-ARD domain

. 2022 Oct 17 ; 13 (1) : 6113. [epub] 20221017

Language English Country Great Britain, England Media electronic

Document type Journal Article, Research Support, Non-U.S. Gov't

Links

PubMed 36253390
PubMed Central PMC9576766
DOI 10.1038/s41467-022-33876-8
PII: 10.1038/s41467-022-33876-8
Knihovny.cz E-resources

TRP channels sense temperatures ranging from noxious cold to noxious heat. Whether specialized TRP thermosensor modules exist and how they control channel pore gating is unknown. We studied purified human TRPA1 (hTRPA1) truncated proteins to gain insight into the temperature gating of hTRPA1. In patch-clamp bilayer recordings, ∆1-688 hTRPA1, without the N-terminal ankyrin repeat domain (N-ARD), was more sensitive to cold and heat, whereas ∆1-854 hTRPA1, also lacking the S1-S4 voltage sensing-like domain (VSLD), gained sensitivity to cold but lost its heat sensitivity. In hTRPA1 intrinsic tryptophan fluorescence studies, cold and heat evoked rearrangement of VSLD and the C-terminus domain distal to the transmembrane pore domain S5-S6 (CTD). In whole-cell electrophysiology experiments, replacement of the CTD located cysteines 1021 and 1025 with alanine modulated hTRPA1 cold responses. It is proposed that hTRPA1 CTD harbors cold and heat sensitive domains allosterically coupled to the S5-S6 pore region and the VSLD, respectively.

See more in PubMed

Castillo K, Diaz-Franulic I, Canan J, Gonzalez-Nilo F, Latorre R. Thermally activated TRP channels: molecular sensors for temperature detection. Phys. Biol. 2018;15:021001. PubMed

Garcia-Avila M, Islas LD. What is new about mild temperature sensing? A review of recent findings. Temperature (Austin) 2019;6:132–141. PubMed PMC

Voets T, et al. The principle of temperature-dependent gating in cold- and heat-sensitive TRP channels. Nature. 2004;430:748–754. PubMed

Dhaka A, Viswanath V, Patapoutian A. Trp ion channels and temperature sensation. Annu. Rev. Neurosci. 2006;29:135–161. PubMed

Baez D, Raddatz N, Ferreira G, Gonzalez C, Latorre R. Gating of thermally activated channels. Curr. Top. Membr. 2014;74:51–87. PubMed

Cao E, Cordero-Morales JF, Liu B, Qin F, Julius D. TRPV1 channels are intrinsically heat sensitive and negatively regulated by phosphoinositide lipids. Neuron. 2013;77:667–679. PubMed PMC

Moparthi L, et al. Human TRPA1 is intrinsically cold- and chemosensitive with and without its N-terminal ankyrin repeat domain. Proc. Natl Acad. Sci. USA. 2014;111:16901–16906. PubMed PMC

Survery S, et al. The N-terminal ankyrin repeat domain is not required for electrophile and heat activation of the purified mosquito TRPA1 receptor. J. Biol. Chem. 2016;291:26899–26912. PubMed PMC

Zakharian E, Cao C, Rohacs T. Gating of transient receptor potential melastatin 8 (TRPM8) channels activated by cold and chemical agonists in planar lipid bilayers. J. Neurosci. 2010;30:12526–12534. PubMed PMC

Nadezhdin KD, et al. Structural mechanism of heat-induced opening of a temperature-sensitive TRP channel. Nat. Struct. Mol. Biol. 2021;28:564–572. PubMed PMC

Moparthi L, et al. Human TRPA1 is a heat sensor displaying intrinsic U-shaped thermosensitivity. Sci. Rep. 2016;6:28763. PubMed PMC

Brauchi S, Orta G, Salazar M, Rosenmann E, Latorre R. A hot-sensing cold receptor: C-terminal domain determines thermosensation in transient receptor potential channels. J. Neurosci. 2006;26:4835–4840. PubMed PMC

Jabba S, et al. Directionality of temperature activation in mouse TRPA1 ion channel can be inverted by single-point mutations in ankyrin repeat six. Neuron. 2014;82:1017–1031. PubMed PMC

Clapham DE, Miller C. A thermodynamic framework for understanding temperature sensing by transient receptor potential (TRP) channels. Proc. Natl Acad. Sci. USA. 2011;108:19492–19497. PubMed PMC

Jara-Oseguera A, Islas LD. The role of allosteric coupling on thermal activation of thermo-TRP channels. Biophys. J. 2013;104:2160–2169. PubMed PMC

Diaz-Franulic I, Raddatz N, Castillo K, Gonzalez-Nilo FD, Latorre R. A folding reaction at the C-terminal domain drives temperature sensing in TRPM8 channels. Proc. Natl Acad. Sci. USA. 2020;117:20298–20304. PubMed PMC

Qin F. Demystifying thermal channels: driving a channel both forwards and backwards with a single gear? Biophys. J. 2013;104:2118–2120. PubMed PMC

Gao Y, Cao E, Julius D, Cheng Y. TRPV1 structures in nanodiscs reveal mechanisms of ligand and lipid action. Nature. 2016;534:347–351. PubMed PMC

Liu C, et al. A non-covalent ligand reveals biased agonism of the TRPA1 ion channel. Neuron. 2021;109:273–284 e274. PubMed PMC

Pumroy RA, et al. Molecular mechanism of TRPV2 channel modulation by cannabidiol. Elife. 2019;8:e48792. PubMed PMC

Zubcevic L, et al. Cryo-electron microscopy structure of the TRPV2 ion channel. Nat. Struct. Mol. Biol. 2016;23:180–186. PubMed PMC

Diver MM, Cheng Y, Julius D. Structural insights into TRPM8 inhibition and desensitization. Science. 2019;365:1434–1440. PubMed PMC

Kwon DH, et al. Heat-dependent opening of TRPV1 in the presence of capsaicin. Nat. Struct. Mol. Biol. 2021;28:554–563. PubMed PMC

Sinica V, et al. Human and mouse TRPA1 are heat and cold sensors differentially tuned by voltage. Cells. 2011;9:57. PubMed PMC

Takahashi N, et al. TRPA1 underlies a sensing mechanism for O2. Nat. Chem. Biol. 2011;7:701–711. PubMed

Fricke TC, et al. Oxidation of methionine residues activates the high-threshold heat-sensitive ion channel TRPV2. Proc. Natl Acad. Sci. USA. 2019;116:24359–24365. PubMed PMC

Moparthi L, et al. Electrophile-induced conformational switch of the human TRPA1 ion channel detected by mass spectrometry. Int. J. Mol. Sci. 2020;21:6667. PubMed PMC

Zhao J, Lin King JV, Paulsen CE, Cheng Y, Julius D. Irritant-evoked activation and calcium modulation of the TRPA1 receptor. Nature. 2020;585:141–145. PubMed PMC

Babes A, et al. Photosensitization in porphyrias and photodynamic therapy involves TRPA1 and TRPV1. J. Neurosci. 2016;36:5264–5278. PubMed PMC

Moparthi L, Moparthi SB, Wenger J, Zygmunt PM. Calcium activates purified human TRPA1 with and without its N-terminal ankyrin repeat domain in the absence of calmodulin. Cell Calcium. 2020;90:102228. PubMed

Moparthi L, Zygmunt PM. Human TRPA1 is an inherently mechanosensitive bilayer-gated ion channel. Cell Calcium. 2020;91:102255. PubMed

Sun X, Zakharian E. Regulation of the temperature-dependent activation of transient receptor potential vanilloid 1 (TRPV1) by phospholipids in planar lipid bilayers. J. Biol. Chem. 2015;290:4741–4747. PubMed PMC

Uchida K, et al. Stimulation-dependent gating of TRPM3 channel in planar lipid bilayers. FASEB J. 2016;30:1306–1316. PubMed PMC

Sawada Y, Hosokawa H, Hori A, Matsumura K, Kobayashi S. Cold sensitivity of recombinant TRPA1 channels. Brain Res. 2007;1160:39–46. PubMed

Karashima Y, et al. TRPA1 acts as a cold sensor in vitro and in vivo. Proc. Natl Acad. Sci. USA. 2009;106:1273–1278. PubMed PMC

Hui K, Liu B, Qin F. Capsaicin activation of the pain receptor, VR1: multiple open states from both partial and full binding. Biophys. J. 2003;84:2957–2968. PubMed PMC

Liu B, Hui K, Qin F. Thermodynamics of heat activation of single capsaicin ion channels VR1. Biophys. J. 2003;85:2988–3006. PubMed PMC

Gorokhov VV, et al. Temperature dependence of tryptophan fluorescence lifetime as an indicator of its microenvironment dynamics. Dokl. Biochem. Biophys. 2021;498:170–176. PubMed

Lange M, et al. Direct zinc finger protein persulfidation by H2 S is facilitated by Zn(2) Angew. Chem. Int. Ed. Engl. 2019;58:7997–8001. PubMed

Vivian JT, Callis PR. Mechanisms of tryptophan fluorescence shifts in proteins. Biophys. J. 2001;80:2093–2109. PubMed PMC

Yang S, et al. A paradigm of thermal adaptation in penguins and elephants by tuning cold activation in TRPM8. Proc. Natl Acad. Sci. USA. 2020;117:8633–8638. PubMed PMC

Hoffmann T, et al. TRPA1 and TRPV1 are differentially involved in heat nociception of mice. Eur. J. Pain. 2013;17:1472–1482. PubMed

Bandell M, et al. Noxious cold ion channel TRPA1 is activated by pungent compounds and bradykinin. Neuron. 2004;41:849–857. PubMed

Bautista DM, et al. TRPA1 mediates the inflammatory actions of environmental irritants and proalgesic agents. Cell. 2006;124:1269–1282. PubMed

Koltzenburg M, Lundberg LE, Torebjork HE. Dynamic and static components of mechanical hyperalgesia in human hairy skin. Pain. 1992;51:207–219. PubMed

Merrill AW, Cuellar JM, Judd JH, Carstens MI, Carstens E. Effects of TRPA1 agonists mustard oil and cinnamaldehyde on lumbar spinal wide-dynamic range neuronal responses to innocuous and noxious cutaneous stimuli in rats. J. Neurophysiol. 2008;99:415–425. PubMed

Namer B, Seifert F, Handwerker HO, Maihofner C. TRPA1 and TRPM8 activation in humans: effects of cinnamaldehyde and menthol. Neuroreport. 2005;16:955–959. PubMed

Sinica V, Vlachova V. Transient receptor potential ankyrin 1 channel: an evolutionarily tuned thermosensor. Physiol. Res. 2021;70:363–381. PubMed PMC

Vandewauw I, et al. A TRP channel trio mediates acute noxious heat sensing. Nature. 2018;555:662–666. PubMed

Yarmolinsky DA, et al. Coding and plasticity in the mammalian thermosensory system. Neuron. 2016;92:1079–1092. PubMed PMC

Kremeyer B, et al. A gain-of-function mutation in TRPA1 causes familial episodic pain syndrome. Neuron. 2010;66:671–680. PubMed PMC

Talavera K, et al. Mammalian transient receptor potential TRPA1 channels: from structure to disease. Physiol. Rev. 2020;100:725–803. PubMed

Zygmunt PM, Högestätt ED. Trpa1. Handb. Exp. Pharm. 2014;222:583–630. PubMed

del Camino D, et al. TRPA1 contributes to cold hypersensitivity. J. Neurosci. 2010;30:15165–15174. PubMed PMC

Gupta R, et al. Structural basis of TRPA1 inhibition by HC-030031 utilizing species-specific differences. Sci. Rep. 2016;6:37460. PubMed PMC

Story GM, et al. ANKTM1, a TRP-like channel expressed in nociceptive neurons, is activated by cold temperatures. Cell. 2003;112:819–829. PubMed

Vriens J, et al. TRPM3 is a nociceptor channel involved in the detection of noxious heat. Neuron. 2011;70:482–494. PubMed

Berrout J, et al. TRPA1-FGFR2 binding event is a regulatory oncogenic driver modulated by miRNA-142-3p. Nat. Commun. 2017;8:947. PubMed PMC

Nilius B, Prenen J, Owsianik G. Irritating channels: the case of TRPA1. J. Physiol. 2011;589:1543–1549. PubMed PMC

Lindsey H, Petersen NO, Chan SI. Physicochemical characterization of 1,2-diphytanoyl-sn-glycero-3-phosphocholine in model membrane systems. Biochim. Biophys. Acta. 1979;555:147–167. PubMed

Billen B, et al. Different ligands of the TRPV3 cation channel cause distinct conformational changes as revealed by intrinsic tryptophan fluorescence quenching. J. Biol. Chem. 2015;290:12964–12974. PubMed PMC

Lu X, et al. The acquisition of cold sensitivity during TRPM8 ion channel evolution. Proc. Natl Acad. Sci. USA. 2022;119:e2201349119. PubMed PMC

Bahia PK, et al. The exceptionally high reactivity of Cys 621 is critical for electrophilic activation of the sensory nerve ion channel TRPA1. J. Gen. Physiol. 2016;147:451–465. PubMed PMC

Suo Y, et al. Structural Insights into Electrophile Irritant Sensing by the Human TRPA1 Channel. Neuron. 2020;105:882–894.e5. PubMed PMC

Blair NT, et al. Naturally produced defensive alkenal compounds activate TRPA1. Chem. Senses. 2016;41:281–292. PubMed PMC

Ibarra Y, Blair NT. Benzoquinone reveals a cysteine-dependent desensitization mechanism of TRPA1. Mol. Pharm. 2013;83:1120–1132. PubMed PMC

Chen J, et al. Species differences and molecular determinant of TRPA1 cold sensitivity. Nat. Commun. 2013;4:2501. PubMed PMC

Macikova L, et al. Putative interaction site for membrane phospholipids controls activation of TRPA1 channel at physiological membrane potentials. FEBS J. 2019;286:3664–3683. PubMed

Startek JB, et al. Mouse TRPA1 function and membrane localization are modulated by direct interactions with cholesterol. Elife. 2019;8:e46084. PubMed PMC

Wang H, Schupp M, Zurborg S, Heppenstall PA. Residues in the pore region of Drosophila transient receptor potential A1 dictate sensitivity to thermal stimuli. J. Physiol. 2013;591:185–201. PubMed PMC

Kang K, et al. Modulation of TRPA1 thermal sensitivity enables sensory discrimination in Drosophila. Nature. 2012;481:76–80. PubMed PMC

Chuang HH, Lin S. Oxidative challenges sensitize the capsaicin receptor by covalent cysteine modification. Proc. Natl Acad. Sci. USA. 2009;106:20097–20102. PubMed PMC

Kashio M, et al. Redox signal-mediated sensitization of transient receptor potential melastatin 2 (TRPM2) to temperature affects macrophage functions. Proc. Natl Acad. Sci. USA. 2012;109:6745–6750. PubMed PMC

Susankova K, Tousova K, Vyklicky L, Teisinger J, Vlachova V. Reducing and oxidizing agents sensitize heat-activated vanilloid receptor (TRPV1) current. Mol. Pharm. 2006;70:383–394. PubMed

Miles AJ, Ramalli SG, Wallace BA. DichroWeb, a website for calculating protein secondary structure from circular dichroism spectroscopic data. Protein Sci. 2022;31:37–46. PubMed PMC

Voets T. Quantifying and modeling the temperature-dependent gating of TRP channels. Rev. Physiol. Biochem. Pharm. 2012;162:91–119. PubMed

Latorre, R., Vargas, G., Orta, G. & Brauchi, S. Voltage and Temperature Gating of ThermoTRP Channels. In TRP Ion Channel Function in Sensory Transduction and Cellular Signaling Cascades (Eds. Liedtke, W. B. & Heller, S.) Ch. 21 (CRC Press/Taylor & Francis, Boca Raton (FL), 2007). PubMed

Dittert I, et al. Improved superfusion technique for rapid cooling or heating of cultured cells under patch-clamp conditions. J. Neurosci. Methods. 2006;151:178–185. PubMed

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...