Functional and Quality Profile Evaluation of Butters, Spreadable Fats, and Shortenings Available from Czech Market
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
IGA/FT/2022/005
Tomas Bata University in Zlín
PubMed
36360051
PubMed Central
PMC9658663
DOI
10.3390/foods11213437
PII: foods11213437
Knihovny.cz E-zdroje
- Klíčová slova
- butters, differential scanning calorimetry, fluorescence spectrometry, free fatty acids, rheology, shortenings, spreadable fats, texture profile analysis,
- Publikační typ
- časopisecké články MeSH
The aim of this study was to assess the functional properties of butters, spreadable fats, and shortenings, collected from the Czech market, in correlation with their nutritional values declared by the producers. Various methods were applied to determine relevant parameters of the products. Using penetration tests, samples were characterized by specific textural attributes according to their composition and processing type, particularly for the presence of milk/vegetable fats. Using differential scanning calorimetry (DSC), thermal peaks corresponding to medium- and high-melting triacylglycerol fractions were detected in the ranges 15-16 °C and 31.5-34.5 °C, respectively. Rheological analysis revealed that the viscoelasticity of samples was related to frequency behavior of the fat structure, characterized by the dominance of elastic modulus (G') over viscous modulus (G″) up to the frequency of 10 Hz. This indicated good emulsion stability of the products in the region of linear viscoelasticity. For spreadable fats, the structure was resistant to phase separation in the whole frequency range under study (0.1-100 Hz). The results showed that the applied techniques can be successfully used to characterize the processing and compositional quality of butters and vegetable fats.
Zobrazit více v PubMed
Lopez C. Crystallization and Melting Properties of Milk Fat. 1st ed. Springer International Publishing; Cham, Switzerland: 2020. pp. 205–243. DOI
Lee Y.-Y., Tang T.-K., Phuah E.-T., Lai O.-M. Recent Advances in Edible Fats and Oils Technology: Processing, Health Implications, Economic and Environmental Impact. 1st ed. Springer; Singapore: 2022. p. 492. DOI
Lee J., Martini S. Modifying the physical properties of butter using high-intensity ultrasound. J. Dairy Sci. 2019;102:1918–1926. doi: 10.3168/jds.2018-15075. PubMed DOI
Panchal B., Truong T., Prakash S., Bansal N., Bhandari B. Influence of fat globule size, emulsifiers, and cream-aging on microstructure and physical properties of butter. Int. Dairy J. 2021;117:105003. doi: 10.1016/j.idairyj.2021.105003. DOI
Wiking L., De Graef V., Rasmussen M., Dewettinck K. Relations between crystallisation mechanisms and microstructure of milk fat. Int. Dairy J. 2009;19:424–430. doi: 10.1016/j.idairyj.2009.03.003. DOI
Bakry I.A., Ali A.H., Abdeen E.-S.M., Ghazal A.F., Wei W., Wang X. Comparative characterisation of fat fractions extracted from Egyptian and Chinese camel milk. Int. Dairy J. 2020;105:104691. doi: 10.1016/j.idairyj.2020.104691. DOI
Tomaszewska-Gras J. Rapid quantitative determination of butter adulteration with palm oil using the DSC technique. Food Control. 2016;60:629–635. doi: 10.1016/j.foodcont.2015.09.001. DOI
Azir M., Abbasiliasi S., Tengku Ibrahim T.A., Manaf Y.N.A., Sazili A.Q., Mustafa S. Detection of lard in cocoa butter-its fatty acid composition, triacylglycerol profiles, and thermal characteristics. Foods. 2017;6:98. doi: 10.3390/foods6110098. PubMed DOI PMC
Rachana C.R., Nath B.S. Crystallization of Milk Fat and its Importance in the Texture of Dairy Products: A Review. Indian J. Dairy Sci. 2008;61:408–422.
Declerck A., Nelis V., Danthine S., Dewettinck K., Van der Meeren P. Characterisation of fat crystal polymorphism in cocoa butter by time-domain NMR and DSC deconvolution. Foods. 2021;10:520. doi: 10.3390/foods10030520. PubMed DOI PMC
Sloffer E.M., Gaur S., Engeseth N.J., Andrade J.E. Development and physico-chemical characterization of a Shea butter-containing lipid nutrition supplement for Sub-Saharan Africa. Foods. 2017;6:97. doi: 10.3390/foods6110097. PubMed DOI PMC
Sert D., Mercan E., Kara Ü. Butter production from ozone-treated cream: Effects on characteristics of physicochemical, microbiological, thermal and oxidative stability. LWT. 2020;131:109722. doi: 10.1016/j.lwt.2020.109722. DOI
Lee J., Martini S. Effect of cream aging temperature and agitation on butter properties. J. Dairy Sci. 2018;101:7724–7735. doi: 10.3168/jds.2018-14725. PubMed DOI
Bourne M.C. Chapter 4—Principles of Objective Texture Measurement. In: Bourne M.C., editor. Food Texture and Viscosity: Concept and Measurement. 2nd ed. Academic Press; London, UK: 2002. pp. 107–188. DOI
Lapčíková B., Lapčík L., Valenta T., Majar P., Ondroušková K. Impact of particle size on wheat dough and bread characteristics. Food Chem. 2019;297:124938. doi: 10.1016/j.foodchem.2019.06.005. PubMed DOI
McKenna B.M., Lyng J.G. Chapter 6—Introduction to food rheology and its measurement. In: McKenna B.M., editor. Texture in Food. 1st ed. Volume 1. Woodhead Publishing Ltd.; Cambridge, UK: 2003. pp. 130–160. DOI
Ten Grotenhuis E., Van Aken G.A., Van Malssen K.F., Schenk H. Polymorphism of milk fat studied by differential scanning calorimetry and real-time X-ray powder diffraction. J. Am. Oil Chem. Soc. 1999;76:1031–1039. doi: 10.1007/s11746-999-0201-5. DOI
Shi Y., Smith C.M., Hartel R.W. Compositional Effects on Milk Fat Crystallization. J. Dairy Sci. 2001;84:2392–2401. doi: 10.3168/jds.S0022-0302(01)74688-7. PubMed DOI
Walstra P., Wouters J.T.M., Geurts T.J. Dairy Science and Technology. 2nd ed. CRC Press; Boca Raton, FL, USA: 2005. p. 808. DOI
Cant P.A.E., Palfreyman K.R., Boston G.D., MacGibbon A.K.H. Milkfat Products. Dairy Research Institute; Palmerston North, Manawatu-Wanganui, New Zealand: 2017.
Fadzillah N.A., Rohman A., Salleh R.A., Amin I., Shuhaimi M., Farahwahida M.Y., Rashidi O., Aizat J.M., Khatib A. Authentication of butter from lard adulteration using high-resolution of nuclear magnetic resonance spectroscopy and high-performance liquid chromatography. Int. J. Food Prop. 2017;20:2147–2156. doi: 10.1080/10942912.2016.1233428. DOI
Espert M., Wiking L., Salvador A., Sanz T. Reduced-fat spreads based on anhydrous milk fat and cellulose ethers. Food Hydrocoll. 2020;99:105330. doi: 10.1016/j.foodhyd.2019.105330. DOI
Karakus M.S., Akgul F.Y., Korkmaz A., Atasoy A.F. Evaluation of fatty acids, free fatty acids and textural properties of butter and sadeyag (anhydrous butter fat) produced from ovine and bovine cream and yoghurt. Int. Dairy J. 2022;126:105229. doi: 10.1016/j.idairyj.2021.105229. DOI
Shahidi-Noghabi M., Naji-Tabasi S., Mozhdeh Sarraf M. Effect of emulsifier on rheological, textural and microstructure properties of walnut butter. J. Food Meas. Charact. 2019;13:785–792. doi: 10.1007/s11694-018-9991-1. DOI
Rush J.W.E., Jantzi P.S., Dupak K., Idziak S.H.J., Marangoni A.G. Acute metabolic responses to butter, margarine, and a monoglyceride gel-structured spread. Food Res. Int. 2009;42:1034–1039. doi: 10.1016/j.foodres.2009.04.013. DOI
Dalmazzone C., Noïk C., Clausse D. Application of DSC for emulsified system characterization. Oil Gas Sci. Technol. 2009;64:543–555. doi: 10.2516/ogst:2008041. DOI
Gonzalez-Gutierrez J., Scanlon M.G. Chapter 5—Rheology and Mechanical Properties of Fats. In: Marangoni A.G., editor. Structure-Function Analysis of Edible Fats. 2nd ed. AOCS Press; Urbana, IL, USA: 2018. pp. 119–168. DOI
Moriya Y., Hasome Y., Kawai K. Effect of solid fat content on the viscoelasticity of margarine and impact on the rheological properties of cookie dough and fracture property of cookie at various temperature and water activity conditions. J. Food Meas. Charact. 2020;14:2939–2946. doi: 10.1007/s11694-020-00538-6. DOI
Dimitrova T.L., Eftimov T., Kabadzhov V.G., Panayotov P.T., Boyanova P.B. Scattering and fluorescence spectra of cow milk. Bulg. Chem. Commun. 2014;46:39–43.
Sikorska E., Górecki T., Khmelinskii I.V., Sikorski M., Kozioł J. Classification of edible oils using synchronous scanning fluorescence spectroscopy. Food Chem. 2005;89:217–225. doi: 10.1016/j.foodchem.2004.02.028. DOI
Ahmad N., Saleem M. Studying heating effects on desi ghee obtained from buffalo milk using fluorescence spectroscopy. PLoS ONE. 2018;13:e0197340. doi: 10.1371/journal.pone.0197340. PubMed DOI PMC
Croce A.C., Ferrigno A., Berardo C., Bottiroli G., Vairetti M., Di Pasqua L.G. Spectrofluorometric analysis of autofluorescing components of crude serum from a rat liver model of ischemia and reperfusion. Molecules. 2020;25:1327. doi: 10.3390/molecules25061327. PubMed DOI PMC
Rønholt S., Madsen A.S., Kirkensgaard J.J.K., Mortensen K., Knudsen J.C. Polymorphism, microstructure and rheology of butter. Effects of cream heat treatment. Food Chem. 2012;135:1730–1739. doi: 10.1016/j.foodchem.2012.05.087. PubMed DOI
Bobe G., Hammond E.G., Freeman A.E., Lindberg G.L., Beitz D.C. Texture of butter from cows with different milk fatty acid compositions. J. Dairy Sci. 2003;86:3122–3127. doi: 10.3168/jds.S0022-0302(03)73913-7. PubMed DOI
Ramaswamy N., Baer R.J., Schingoethe D.J., Hippen A.R., Kasperson K.M., Whitlock L.A. Composition and flavor of milk and butter from cows fed fish oil, extruded soybeans, or their combination. J. Dairy Sci. 2001;84:2144–2151. doi: 10.3168/jds.S0022-0302(01)74659-0. PubMed DOI
Subroto E., Indiarto R.T., Marta H., Wulan A.S. Physicochemical and sensorial properties of recombined butter produced from milk fat and fish oil blend. Biosci. Res. 2018;15:3720–3727.
McSweeney P.L.H., Fox P.F., O’Mahony J.A. Advanced Dairy Chemistry. 4th ed. Volume 2. Springer; Cham, Switzerland: 2020. p. 489. DOI
Mannion D.T., Furey A., Kilcawley K.N. Free fatty acids quantification in dairy products. Int. J. Dairy Technol. 2016;69:1–12. doi: 10.1111/1471-0307.12301. DOI
Catala A. Fatty Acids. IntechOpen Ltd.; London, UK: 2017. p. 248. DOI
McDaniel M.R., Sather L.A., Lindsay R.C. Influence of free fatty acids on sweet cream butter flavor. J. Food Sci. 1969;34:251–254. doi: 10.1111/j.1365-2621.1969.tb10334.x. DOI
Pădureţ S. The Quantification of Fatty Acids, Color, and Textural Properties of Locally Produced Bakery Margarine. Appl. Sci. 2022;12:1731. doi: 10.3390/app12031731. DOI
Bauman D.E., Barbano D.M., Dwyer D.A., Griinari J.M. Technical Note: Production of Butter with Enhanced Conjugated Linoleic Acid for Use in Biomedical Studies with Animal Models 1, 2. J. Dairy Sci. 2000;83:2422–2425. doi: 10.3168/jds.S0022-0302(00)75131-9. PubMed DOI
Cunha C.R., Grimaldi R., Alcântara M.R., Viotto W.H. Effect of the type of fat on rheology, functional properties and sensory acceptance of spreadable cheese analogue. Int. J. Dairy Technol. 2013;66:54–62. doi: 10.1111/j.1471-0307.2012.00876.x. DOI
Melo E., Michels F., Arakaki D., Lima N., Gonçalves D., Cavalheiro L., Oliveira L., Caires A., Hiane P., Nascimento V. First study on the oxidative stability and elemental analysis of Babassu (Attalea speciosa) edible oil produced in Brazil using a domestic extraction machine. Molecules. 2019;24:4235. doi: 10.3390/molecules24234235. PubMed DOI PMC
Mallia S., Piccinali P., Rehberger B., Badertscher R., Escher F., Schlichtherle-Cerny H. Determination of storage stability of butter enriched with unsaturated fatty acids/conjugated linoleic acids (UFA/CLA) using instrumental and sensory methods. Int. Dairy J. 2008;18:983–993. doi: 10.1016/j.idairyj.2008.05.007. DOI
Veberg A., Olsen E., Nilsen A.N., Wold J.P. Front-face fluorescence measurement of photosensitizers and lipid oxidation products during the photooxidation of butter. J. Dairy Sci. 2007;90:2189–2199. doi: 10.3168/jds.2006-405. PubMed DOI
Wold J.P., Bro R., Veberg A., Lundby F., Nilsen A.N., Moan J. Active photosensitizers in butter detected by fluorescence spectroscopy and multivariate curve resolution. J. Agric. Food Chem. 2006;54:10197–10204. doi: 10.1021/jf0621166. PubMed DOI