A Conceptual Framework to Integrate Biodiversity, Ecosystem Function, and Ecosystem Service Models
Status PubMed-not-MEDLINE Jazyk angličtina Země Velká Británie, Anglie Médium electronic-ecollection
Typ dokumentu časopisecké články, přehledy
PubMed
36506699
PubMed Central
PMC9718641
DOI
10.1093/biosci/biac074
PII: biac074
Knihovny.cz E-zdroje
- Klíčová slova
- biodiversity, biodiversity–ecosystem function relationships, ecosystem function, ecosystem services, modeling, sustainability, trait-based modeling,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Global biodiversity and ecosystem service models typically operate independently. Ecosystem service projections may therefore be overly optimistic because they do not always account for the role of biodiversity in maintaining ecological functions. We review models used in recent global model intercomparison projects and develop a novel model integration framework to more fully account for the role of biodiversity in ecosystem function, a key gap for linking biodiversity changes to ecosystem services. We propose two integration pathways. The first uses empirical data on biodiversity-ecosystem function relationships to bridge biodiversity and ecosystem function models and could currently be implemented globally for systems and taxa with sufficient data. We also propose a trait-based approach involving greater incorporation of biodiversity into ecosystem function models. Pursuing both approaches will provide greater insight into biodiversity and ecosystem services projections. Integrating biodiversity, ecosystem function, and ecosystem service modeling will enhance policy development to meet global sustainability goals.
Bangor University Gwynedd Wales United Kingdom
Instituto de Investigación de Recursos Biológicos Alexander von Humboldt Bogotá Colombia
Land and Water CSIRO Canberra Australian Capital Territory Australia
North Carolina State University Raleigh North Carolina United States
University of Minnesota Saint Paul Minnesota United States
University of Tasmania Hobart Tasmania Australia
University of Tokyo Meguro Tokyo Japan
US Geological Survey National Climate Adaptation Science Center in Reston Virginia United States
US Geological Survey North Central Climate Adaptation Science Center Boulder Colorado United States
Zobrazit více v PubMed
Andersen KH, et al. 2016. Characteristic sizes of life in the oceans, from bacteria to whales. Annual Review of Marine Science 8: 217–241. 10.1146/annurev-marine-122414-034144. PubMed DOI
Aubin I, Beaudet M, Messier C. 2000. Light extinction coefficients specific to the understory vegetation of the southern boreal forest, Quebec. Canadian Journal of Forest Research 30: 168–177. 10.1139/x99-185. DOI
Barry KE, et al. 2019. The future of complementarity: Disentangling causes from consequences. Trends in Ecology and Evolution 34: 167–180. 10.1016/j.tree.2018.10.013. PubMed DOI
Barry KE, et al. 2021. A graphical null model for scaling biodiversity–ecosystem functioning relationships. Journal of Ecology 109: 1549–1560. 10.1111/1365-2745.13578. DOI
Bartemucci P, Messier C, Canham CD. 2006. Overstory influences on light attenuation patterns and understory plant community diversity and composition in southern boreal forests of Quebec. Canadian Journal of Forest Research 36: 2065–2079. 10.1139/x06-088. DOI
Blanchard JL, Jennings S, Holmes R, Harle J, Merino G, Allen JI, Holt J, Dulvy NK, Barange M. 2012. Potential consequences of climate change for primary production and fish production in large marine ecosystems. Philosophical Transactions of the Royal Society B 367: 2979–2989. 10.1098/rstb.2012.0231. PubMed DOI PMC
Blanchard JL, Heneghan RF, Everett JD, Trebilco R, Richardson AJ. 2017. From bacteria to whales: Using functional size spectra to model marine ecosystems. Trends in Ecology and Evolution 32: 174–186. 10.1016/j.tree.2016.12.003. PubMed DOI
Blowes SA, et al. 2019. The geography of biodiversity change in marine and terrestrial assemblages. Science 366: 339–345. 10.1126/science.aaw1620. PubMed DOI
Brose U, et al. 2006. Consumer-resource body-size relationships in natural food webs. Ecology 87: 2411–2417. 10.1890/0012-9658(2006)87[2411:CBRINF]2.0.CO;2. PubMed DOI
Brown JH, Gillooly JF, Allen AP, Savage VM, West GB. 2004. Toward a metabolic theory of ecology. Ecology 85: 1771–1789. 10.1890/03-9000. DOI
Caspersen JP, Pacala SW. 2001. Successional diversity and forest ecosystem function. Ecological Research 16: 895–903. 10.1046/j.1440-1703.2001.00455.x. DOI
Christensen V, Walters CJ. 2004. Ecopath with Ecosim: Methods, capabilities, and limitations. Ecological Modelling 172: 109–139. 10.1016/j.ecolmodel.2003.09.003. DOI
Convention on Biological Diversity . 2021. First Draft of the Post-2020 Global Biodiversity Framework. United Nations Environment Program. Report no. CBD/WG2020/3/3.
Crawford MS, et al. 2021. The function-dominance correlation drives the direction and strength of biodiversity–ecosystem functioning relationships. Ecology Letters 24: 1762–1775. 10.1111/ele.13776. PubMed DOI
Díaz S, Purvis A, Cornelissen JHC, Mace GM, Donoghue MJ, Ewers RM, Jordano P, Pearse WD. 2013. Functional traits, the phylogeny of function, and ecosystem service vulnerability. Ecology and Evolution 3: 2958–2975. 10.1002/ece3.601. PubMed DOI PMC
Díaz S, et al. . 2019. Summary for Policymakers of the Global Assessment Report on Biodiversity and Ecosystem Services of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services. Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services.
Duarte MM, Moral RdeA, Guillemot J, Zuim CIF, Potvin C, Bonat WH, Stape JL, Brancalion PHS. 2021. High tree diversity enhances light interception in tropical forests. Journal of Ecology 109: 2597–2611. 10.1111/1365-2745.13669. DOI
Essington T, Beaudreau A, Wiedenmann J. 2006. Fishing through marine food webs. Proceedings of the National Academy of Sciences 103:3171–3175. 10.1073/pnas.0510964103. PubMed DOI PMC
Ferrier S., Ninan KN, Leadley P, Alkemade R. 2016. The Methodological Assessment Report on Scenarios and Models of Biodiversity and Ecosystem Services. Intergovernmental Platform on Biodiversity and Ecosystem Services.
Fisher RA, et al. 2018. Vegetation demographics in Earth system models: A review of progress and priorities. Global Change Biology 24: 35–54. 10.1111/gcb.13910. PubMed DOI
Forestier R, Blanchard JL, Nash KL, Fulton EA, Johnson C, Audzijonyte A. 2020. Interacting forces of predation and fishing affect species’ maturation size. Ecology and Evolution 10: 14033–14051. 10.1002/ece3.6995. PubMed DOI PMC
Fulton EA, Blanchard JL, Melbourne-Thomas J, Plagányi ÉE, Tulloch VJD. 2019. Where the ecological gaps remain, a modelers’ perspective. Frontiers in Ecology and Evolution 7: 424. 10.3389/fevo.2019.00424. DOI
Fulton EA, Gorton R. 2014. Adaptive Futures for SE Australian Fisheries and Aquaculture: Climate Adaptation Simulations: Quantitative Testing of Fisheries Management Arrangements under Climate Change Using Atlantis. CSIRO Climate Adaptation Flagship.
Gonzalez A, et al. 2020. Scaling-up biodiversity-ecosystem functioning research. Ecology Letters 23: 757–776. 10.1111/ele.13456. PubMed DOI PMC
Grimm V, Ayllón D, Railsback S. 2017. Next-generation individual-based models integrate biodiversity and ecosystems: Yes we can, and yes we must. Ecosystems 20: 229–236. 10.1007/s10021-016-0071-2. DOI
Harfoot MBJ, Newbold T, Tittensor DP, Emmott S, Hutton J, Lyutsarev V, Smith MJ, Scharlemann JPW, Purves DW. 2014. Emergent global patterns of ecosystem structure and function from a mechanistic general ecosystem model. PLOS Biology 12: e1001841. 10.1371/journal.pbio.1001841. PubMed DOI PMC
Hector A, Bell T, Hautier Y, Isbell F, Kéry M, Reich PB, van Ruijven J, Schmid B. 2011. BUGS in the analysis of biodiversity experiments: Species richness and composition are of similar importance for grassland productivity. PLOS ONE 6: e17434. PubMed PMC
Hooper DU, et al. 2005. Ecological monographs. Ecological Monographs 75: 3–35. 10.1890/04-0922. DOI
Isbell F, Losure DA, Yurkonis KA, Wilsey BJ. 2008. Diversity–productivity relationships in two ecologically realistic rarity–extinction scenarios. Oikos 117: 996–1005. 10.1111/j.0030-1299.2008.16692.x. DOI
Isbell F, Tilman D, Polasky S, Loreau M. 2015. The biodiversity-dependent ecosystem service debt. Ecology Letters 18: 119–134. 10.1111/ele.12393. PubMed DOI
Isbell F, et al. 2017. Linking the influence and dependence of people on biodiversity across scales. Nature 546: 65–72. 10.1038/nature22899. PubMed DOI PMC
Jochum M, et al. 2020. The results of biodiversity–ecosystem functioning experiments are realistic. Nature Ecology and Evolution 4: 1485–1494. PubMed
Kim H, et al. 2018. A protocol for an intercomparison of biodiversity and ecosystem services models using harmonized land-use and climate scenarios. Geoscientific Model Development 11: 4537–4562. 10.5194/gmd-11-4537-2018. DOI
Kovacs K, Polasky S, Nelson E, Keeler BL, Pennington D, Plantinga AJ, Taff SJ. 2013. Evaluating the return in ecosystem services from investment in public land acquisitions. PLOS ONE 8: e62202. 10.1371/journal.pone.0062202. PubMed DOI PMC
Leclère D, et al. 2020. Bending the curve of terrestrial biodiversity needs an integrated strategy. Nature 585: 551–556. 10.1038/s41586-020-2705-y. PubMed DOI
Liang J, et al. 2016. Positive biodiversity-productivity relationship predominant in global forests. Science 354: aaf8957. 10.1126/science.aaf8957. PubMed DOI
Loreau M, Mouquet N, Gonzalez A. 2003. Biodiversity as spatial insurance in heterogeneous landscapes. Proceedings of the National Academy of Sciences 100: 12765–12770. PubMed PMC
Manning P, et al. 2019. Transferring biodiversity-ecosystem function research to the management of “real-world” ecosystems. Pages 323–356 in Eisenhauer N, Bohan DA, Dumbrell AJ, eds. Advances in Ecological Research, vol. 61. Elsevier. 10.1016/bs.aecr.2019.06.009. DOI
Mokany K, et al. 2016. Integrating modelling of biodiversity composition and ecosystem function. Oikos 125: 10–19. 10.1111/oik.02792. DOI
Mori AS, Isbell F, Fujii S, Makoto K, Matsuoka S, Osono T. 2016. Low multifunctional redundancy of soil fungal diversity at multiple scales. Ecology Letters 19: 249–259. 10.1111/ele.12560. PubMed DOI
Mori AS, Dee LE, Gonzalez A, Ohashi H, Cowles J, Wright AJ, Loreau M, Hautier Y, Newbold T, Reich PB, Matsui T, Takeuchi W, Okada K, Seidl R, Isbell F. 2021. Biodiversity–productivity relationships are key to nature-based climate solutions. Nature Climate Change 11: 543–550. 10.1038/s41558-021-01062-1. DOI
Natural Capital Project . 2022.Carbon storage and sequestration. InVEST Documentation. Natural Capital Project. http://releases.naturalcapitalproject.org/invest-userguide/latest/carbonstorage.html.
Norberg J, Swaney DP, Dushoff J, Lin J, Casagrandi R, Levin SA. 2001. Phenotypic diversity and ecosystem functioning in changing environments: A theoretical framework. Proceedings of the National Academy of Sciences 98: 11376–11381. 10.1073/pnas.171315998. PubMed DOI PMC
O'Connor MI, et al. 2017. A general biodiversity–function relationship is mediated by trophic level. Oikos 126: 18–31. 10.1111/oik.03652. DOI
O'Connor MI, Bernhardt JR, Stark K, Usinowicz J, Whalen MA. 2022. Experimental evidence for how biodiversity affects ecosystem functioning. Pages 97–118 in Loreau M, Hector A, Isbell F, eds. Ecological and Societal Consequences of Biodiversity Loss. Wiley.
Pacala SW, Canham CD, Saponara J, Silander JA, Kobe RK, Ribbens E. 1996. Forest models defined by field measurements: Estimation, error analysis and dynamics. Ecological Monographs 66: 1–43. 10.2307/2963479. DOI
Pasari JR, Levi T, Zavaleta ES, Tilman D. 2013. Several scales of biodiversity affect ecosystem multifunctionality. Proceedings of the National Academy of Sciences 110: 10219–10222. 10.1073/pnas.1220333110. PubMed DOI PMC
Pauly D, Christensen V, Dalsgaard J, Froese R, Torres F. 1998. Fishing down marine food webs. Science 279: 860–863. 10.1126/science.279.5352.860. PubMed DOI
Pereira HM, et al. 2010. Scenarios for global biodiversity in the 21st century. Science 330: 1496–1501. 10.1126/science.1196624. PubMed DOI
Pretzsch H. 2014. Canopy space filling and tree crown morphology in mixed-species stands compared with monocultures. Forest Ecology and Management 327: 251–264. 10.1016/j.foreco.2014.04.027. DOI
Purves DW, Lichstein JW, Strigul N, Pacala SW. 2008. Predicting and understanding forest dynamics using a simple tractable model. Proceedings of the National Academy of Sciences 105: 17018–17022. PubMed PMC
Reich PB, Tilman D, Naeem S, Ellsworth DS, Knops J, Craine J, Wedin D, Trost J. 2004. Species and functional group diversity independently influence biomass accumulation and its response to CO2 and N. Proceedings of the National Academy of Sciences 101: 10101–10106. PubMed PMC
Reich PB, Tilman D, Isbell F, Mueller K, Hobbie SE, Flynn DFB, Eisenhauer N. 2012. Impacts of biodiversity loss escalate through time as redundancy fades. Science 336: 589–592. 10.1126/science.1217909. PubMed DOI
Roman J, Estes JA, Morissette L, Smith C, Costa D, McCarthy J, Nation JB, Nicol S, Pershing A, Smetacek V. 2014. Whales as marine ecosystem engineers. Frontiers in Ecology and the Environment 12: 377–385. 10.1890/130220. DOI
Rosa IMD, et al. 2017. Multiscale scenarios for nature futures. Nature Ecology and Evolution 1: 1416–1419. 10.1038/s41559-017-0273-9. PubMed DOI
Rosa IMD, et al. 2020. Challenges in producing policy-relevant global scenarios of biodiversity and ecosystem services. Global Ecology and Conservation 22: e00886. 10.1016/j.gecco.2019.e00886. DOI
Rosenzweig ML. 1999. Heeding the warning in biodiversity's basic law. Science 284: 276–277.
Scheiter S, Langan L, Higgins SI. 2013. Next-generation dynamic global vegetation models: Learning from community ecology. New Phytologist 198: 957–969. 10.1111/nph.12210. PubMed DOI
Shin Y-J, et al. 2019. Plausible futures of nature, its contributions to people and their good quality of life. Pages 1–264 in Zenodo. Zenodo.org. 10.5281/zenodo.5018970. DOI
Sitch S, et al. 2003. Evaluation of ecosystem dynamics, plant geography and terrestrial carbon cycling in the LPJ dynamic global vegetation model. Global Change Biology 9: 161–185. 10.1046/j.1365-2486.2003.00569.x. DOI
Smith MD, Knapp AK. 2003. Dominant species maintain ecosystem function with non-random species loss. Ecology Letters 6: 509–517. 10.1046/j.1461-0248.2003.00454.x. DOI
Spehn EM, et al. 2002. The role of legumes as a component of biodiversity in a cross-European study of grassland biomass nitrogen. Oikos 98: 205–218. 10.1034/j.1600-0706.2002.980203.x. DOI
Suding KN, Lavorel S, Chapin FS, Cornelissen JHC, Díaz S, Garnier E, Goldberg D, Hooper DU, Jackson ST, Navas M-L. 2008. Scaling environmental change through the community-level: A trait-based response-and-effect framework for plants. Global Change Biology 14: 1125–1140. 10.1111/j.1365-2486.2008.01557.x. DOI
Tilman D, Isbell F, Cowles JM. 2014. Biodiversity and ecosystem functioning. Annual Review of Ecology, Annual Review of Ecology, Evolution, and Systematics 45: 471–493. 10.1146/annurev-ecolsys-120213-091917. DOI
United Nations . 2015. Transforming Our World: The 2030 Agenda for Sustainable Development. United Nations.
van der Plas F. 2019. Biodiversity and ecosystem functioning in naturally assembled communities. Biological Reviews 94: 1220–1245. 10.1111/brv.12499. PubMed DOI
Weng E, Malyshev S, Lichstein JW, Farrior CE, Dybzinski R, Zhang T, Shevliakova E, Pacala SW. 2015. Scaling from individual trees to forests in an Earth system modeling framework using a mathematically tractable model of height-structured competition. Biogeosciences 12: 2655–2694. 10.5194/bg-12-2655-2015. DOI
Weng E, Dybzinski R, Farrior CE, Pacala SW. 2019. Competition alters predicted forest carbon cycle responses to nitrogen availability and elevated CO2: Simulations using an explicitly competitive, game-theoretic vegetation demographic model. Biogeosciences 16: 4577–4599. 10.5194/bg-16-4577-2019. DOI
Williams LJ, Butler EE, Cavender-Bares J, Stefanski A, Rice KE, Messier C, Paquette A, Reich PB. 2021. Enhanced light interception and light use efficiency explain overyielding in young tree communities. Ecology Letters 24: 996–1006. 10.1111/ele.13717. PubMed DOI
Yachi S, Loreau M. 1999. Biodiversity and ecosystem productivity in a fluctuating environment: The insurance hypothesis. Proceedings of the National Academy of Sciences 96: 1463–1468. 10.1073/pnas.96.4.1463. PubMed DOI PMC