Role of 5-HT2 receptors family in the allergy-induced increased aorta contractile responses to 5-HT

. 2023 Mar 08 ; 72 (1) : 111-116. [epub] 20221222

Jazyk angličtina Země Česko Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid36545875

Asthma poses an increased risk for cardiovascular disorders, suggesting that allergy, which is an underlying process in asthma, causes atypical functioning of organs other than lungs. In a previous study in a guinea pig asthma model, we concluded that allergic sensitization increased aorta contractile responses to 5-HT. To further characterize these responses, here we explored the role of the 5-HT2 receptors family. We found that TCB-2 (5-HT2A agonist) and WAY161503 (5-HT2C agonist) induced aorta contractions resembling those elicited by 5-HT but less intense (~43 % and ~25 %, respectively). In these experiments, aortas from sensitized guinea pigs showed increased contractions to TCB-2, but not to WAY161503. In turn, MDL 100907 (5-HT2A antagonist) and RS-102221 (5-HT2C antagonist) caused a notably and a mild reduction of the 5-HT-induced contractions, respectively, with no differences seen between sensitized and non-sensitized tissues. BW723C86 (5-HT2B agonist) did not induce contractile responses and RS-127445 (5-HT2B antagonist) did not modify the contractile responses to 5-HT. In non-sensitized aortas, the pattern of protein expression of receptors was 5HT2B>5-HT2A=5-HT2C, which did not change in sensitized animals. In conclusion, we found that allergic sensitization increased the aorta contractile responses to 5-HT, partly mediated by enhanced responses of 5-HT2A receptors, which was unrelated to changes in the expression of these receptors.

Zobrazit více v PubMed

Ying S, Humbert M, Meng Q, Pfister R, Menz G, Gould HJ, Kay AB, Durham SR. Local expression of epsilon germline gene transcripts and RNA for the epsilon heavy chain of IgE in the bronchial mucosa in atopic and nonatopic asthma. J Allergy Clin Immunol. 2001;107:686–692. doi: 10.1067/mai.2001.114339. PubMed DOI

Su X, Ren Y, Li M, Zhao X, Kong L, Kang J. Prevalence of comorbidities in asthma and nonasthma patients: A meta-analysis. Medicine (Baltimore) 2016;95:e3459. doi: 10.1097/MD.0000000000003459. PubMed DOI PMC

Tattersall MC, Guo M, Korcarz CE, Gepner AD, Kaufman JD, Liu KJ, Barr RG, Donohue KM, McClelland RL, Delaney JA, Stein JH. Asthma predicts cardiovascular disease events: the multi-ethnic study of atherosclerosis. Arterioscler Thromb Vasc Biol. 2015;35:1520–1525. doi: 10.1161/ATVBAHA.115.305452. PubMed DOI PMC

Lechin F, van der Dijs B, Orozco B, Jara H, Rada I, Lechin ME, Lechin AE. The serotonin uptake-enhancing drug tianeptine suppresses asthmatic symptoms in children: a double-blind, crossover, placebo-controlled study. J Clin Pharmacol. 1998;38:918–925. doi: 10.1002/j.1552-4604.1998.tb04387.x. PubMed DOI

Rieder M, Gauchel N, Bode C, Duerschmied D. Serotonin: a platelet hormone modulating cardiovascular disease. J Thromb Thrombolysis. 2021;52:42–47. doi: 10.1007/s11239-020-02331-0. PubMed DOI PMC

Campos-Bedolla P, De-La-Cruz-Negrete R, Vargas MH, Torrejón-González E, Mejía-Mendoza D, Islas-Hernández A, Segura-Medina P, Córdoba-Rodríguez G, Orozco-Suárez S, Arreola-Ramírez JL. Allergic sensitization increases contractile responses to 5-HT in guinea pig aorta. Physiol Res. 2020;69:191–197. doi: 10.33549/physiolres.934128. PubMed DOI PMC

National Institutes of Health; National Research Council (US) Committee for the Update of the Guide for the Care and Use of Laboratory Animals, editor. Guide for the Care and Use of Laboratory Animals. 8th ed. Washington DC: National Academies Press; 2011.

Ishida T, Kawashima S, Hirata K, Yokoyama M. Nitric oxide is produced via 5-HT1B and 5-HT2B receptor activation in human coronary artery endothelial cells. Kobe J Med Sci. 1998;44:51–63. PubMed

Ishida T, Hirata K, Sakoda T, Kawashima S, Akita H, Yokoyama M. Identification of mRNA for 5-HT1 and 5-HT2 receptor subtypes in human coronary arteries. Cardiovasc Res. 1999;41:267–274. doi: 10.1016/S0008-6363(98)00162-X. PubMed DOI

Ullmer C, Schmuck K, Kalkman HO, Lübbert H. Expression of serotonin receptor mRNAs in blood vessels. FEBS Lett. 1995;370:215–221. doi: 10.1016/0014-5793(95)00828-W. PubMed DOI

Tanaka N, Nakamura E, Ohkura M, Kuwabara M, Yamashita A, Onitsuka T, Yamamoto R. Both 5-hydroxytryptamine 5-HT2A and 5-HT1B receptors are involved in the vasoconstrictor response to 5-HT in the human isolated internal thoracic artery. Clin Exp Pharmacol Physiol. 2008;35:836–840. doi: 10.1111/j.1440-1681.2008.04933.x. PubMed DOI

Machida T, Iizuka K, Hirafuji M. 5-hydroxytryptamine and its receptors in systemic vascular walls. Biol Pharm Bull. 2013;36:1416–1419. doi: 10.1248/bpb.b13-00344. PubMed DOI

Watts SW, Fink GD. 5-HT2B-receptor antagonist LY-272015 is antihypertensive in DOCA-salt-hypertensive rats. Am J Physiol. 1999;276:H944–H952. doi: 10.1152/ajpheart.1999.276.3.H944. PubMed DOI

Woehler A, Ponimaskin EG. G protein-mediated signaling: same receptor, multiple effectors. Curr Mol Pharmacol. 2009;2:237–248. doi: 10.2174/1874467210902030237. PubMed DOI

Barnes NM, Ahern GP, Becamel C, Bockaert J, Camilleri M, Chaumont-Dubel S, Hoyer D. International Union of Basic and Clinical Pharmacology. CX. Classification of receptors for 5-hydroxytryptamine; Pharmacology and function. Pharmacol Rev. 2021;73:310–520. doi: 10.1124/pr.118.015552. PubMed DOI PMC

Page C, Pitchford S. Platelets and allergic inflammation. Clin Exp Allergy. 2014;44:901–913. doi: 10.1111/cea.12322. PubMed DOI

Vanhoutte PM, Shepherd JT. Muscarinic and beta-adrenergic prejunctional modulation of adrenergic neurotransmission in the blood vessel wall. Gen Pharmacol. 1983;14:35–37. doi: 10.1016/0306-3623(83)90059-9. PubMed DOI

Laurent S, Boutouyrie P. The structural factor of hypertension: large and small artery alterations. Circ Res. 2015;116:1007–1021. doi: 10.1161/CIRCRESAHA.116.303596. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...