Natural Sympathomimetic Drugs: From Pharmacology to Toxicology

. 2022 Nov 30 ; 12 (12) : . [epub] 20221130

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články, přehledy, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid36551221

Grantová podpora
2020-1-CZ01-KA203-078218. European Union

Sympathomimetic agents are a group of chemical compounds that are able to activate the sympathetic nervous system either directly via adrenergic receptors or indirectly by increasing endogenous catecholamine levels or mimicking their intracellular signaling pathways. Compounds from this group, both used therapeutically or abused, comprise endogenous catecholamines (such as adrenaline and noradrenaline), synthetic amines (e.g., isoproterenol and dobutamine), trace amines (e.g., tyramine, tryptamine, histamine and octopamine), illicit drugs (e.g., ephedrine, cathinone, and cocaine), or even caffeine and synephrine. In addition to the effects triggered by stimulation of the sympathetic system, the discovery of trace amine associated receptors (TAARs) in humans brought new insights about their sympathomimetic pharmacology and toxicology. Although synthetic sympathomimetic agents are mostly seen as toxic, natural sympathomimetic agents are considered more complacently in the terms of safety in the vision of the lay public. Here, we aim to discuss the pharmacological and mainly toxicological aspects related to sympathomimetic natural agents, in particular of trace amines, compounds derived from plants like ephedra and khat, and finally cocaine. The main purpose of this review is to give a scientific and updated view of those agents and serve as a reminder on the safety issues of natural sympathomimetic agents most used in the community.

Zobrazit více v PubMed

Westfall T.C. Sympathomimetic Drugs and Adrenergic Receptor Antagonists. In: Squire L.R., editor. Encyclopedia of Neuroscience. Academic Press; Oxford, UK: 2009. pp. 685–695. DOI

Goldstein S., Richards J.R. Sympathomimetic Toxicity. [(accessed on 2 September 2021)]; Available online: https://www.ncbi.nlm.nih.gov/books/NBK430757/

Horowitz A.J., Smith T., Frey D., Denault D. Sympathomimetics. [(accessed on 2 September 2021)]; Available online: https://www.ncbi.nlm.nih.gov/books/NBK546597/

Costa V., Carvalho F., Bastos M., Carvalho R., Carvalho M., Remiao F. Adrenaline and Noradrenaline: Partners and Actors in the Same Play. In: Contreras C.M., editor. Neurochemistry. Intech Open Access Publisher; London, UK: 2012. pp. 1–14.

Costa V.M., Carvalho F., Bastos M.L., Carvalho R.A., Carvalho M., Remião F. Contribution of catecholamine reactive intermediates and oxidative stress to the pathologic features of heart diseases. Curr. Med. Chem. 2011;18:2272–2314. doi: 10.2174/092986711795656081. PubMed DOI

Williams R.H., Erickson T., Broussard L.A. Evaluating Sympathomimetic Intoxication in an Emergency Setting. Laboratory. Medicine. 2000;31:497–508. doi: 10.1309/wvx1-6fpv-e2lc-b6yg. DOI

Burchett S.A., Hicks T.P. The mysterious trace amines: Protean neuromodulators of synaptic transmission in mammalian brain. Prog. Neurobiol. 2006;79:223–246. doi: 10.1016/j.pneurobio.2006.07.003. PubMed DOI

Zucchi R., Chiellini G., Scanlan T.S., Grandy D.K. Trace amine-associated receptors and their ligands. Br. J. Pharmacol. 2006;149:967–978. doi: 10.1038/sj.bjp.0706948. PubMed DOI PMC

Andersen G., Marcinek P., Sulzinger N., Schieberle P., Krautwurst D. Food sources and biomolecular targets of tyramine. Nutr. Rev. 2019;77:107–115. doi: 10.1093/nutrit/nuy036. PubMed DOI

Gwilt K.B., Gonzalez D.P., Olliffe N., Oller H., Hoffing R., Puzan M., El Aidy S., Miller G.M. Actions of Trace Amines in the Brain-Gut-Microbiome Axis via Trace Amine-Associated Receptor-1 (TAAR1) Cell. Mol. Neurobiol. 2020;40:191–201. doi: 10.1007/s10571-019-00772-7. PubMed DOI PMC

Roeder T. Chapter 1—Trace Amines: An Overview. In: Farooqui T., Farooqui A.A., editors. Trace Amines and Neurological Disorders. Academic Press; San Diego, CA, USA: 2016. pp. 3–9. DOI

Broadley K.J. The vascular effects of trace amines and amphetamines. Pharmacol. Ther. 2010;125:363–375. doi: 10.1016/j.pharmthera.2009.11.005. PubMed DOI

Gainetdinov R.R., Hoener M.C., Berry M.D. Trace Amines and Their Receptors. Pharmacol. Rev. 2018;70:549–620. doi: 10.1124/pr.117.015305. PubMed DOI

Ruiz-Capillas C., Herrero A.M. Impact of Biogenic Amines on Food Quality and Safety. Foods. 2019;8:62. doi: 10.3390/foods8020062. PubMed DOI PMC

Ten B.B., Damink C., Joosten H.M.L.J., Huis in ’t Veld J.H.J. Occurrence and formation of biologically active amines in foods. Int. J. Food Microbiol. 1990;11:73–84. doi: 10.1016/0168-1605(90)90040-c. PubMed DOI

Doeun D., Davaatseren M., Chung M.S. Biogenic amines in foods. Food Sci. Biotechnol. 2017;26:1463–1474. doi: 10.1007/s10068-017-0239-3. PubMed DOI PMC

Stratton J.E., Hutkins R.W., Taylor S.L. Biogenic Amines in Cheese and other Fermented Foods: A Review. J. Food Prot. 1991;54:460–470. doi: 10.4315/0362-028X-54.6.460. PubMed DOI

Marcobal A., de las Rivas B., Landete J.M., Tabera L., Muñoz R. Tyramine and Phenylethylamine Biosynthesis by Food Bacteria. Crit. Rev. Food Sci. Nutr. 2012;52:448–467. doi: 10.1080/10408398.2010.500545. PubMed DOI

Gardini F., Özogul Y., Suzzi G., Tabanelli G., Özogul F. Technological Factors Affecting Biogenic Amine Content in Foods: A Review. Front. Microbiol. 2016;7:1218. doi: 10.3389/fmicb.2016.01218. PubMed DOI PMC

Ferreira I.M., Pinho O. Biogenic amines in Portuguese traditional foods and wines. J. Food Prot. 2006;69:2293–2303. doi: 10.4315/0362-028X-69.9.2293. PubMed DOI

Majcherczyk J., Surówka K. Effects of onion or caraway on the formation of biogenic amines during sauerkraut fermentation and refrigerated storage. Food Chem. 2019;298:125083. doi: 10.1016/j.foodchem.2019.125083. PubMed DOI

Parente E., Martuscelli M., Gardini F., Grieco S., Crudele M.A., Suzzi G. Evolution of microbial populations and biogenic amine production in dry sausages produced in Southern Italy. J. Appl. Microbiol. 2001;90:882–891. doi: 10.1046/j.1365-2672.2001.01322.x. PubMed DOI

Mayr C.M., Schieberle P. Development of stable isotope dilution assays for the simultaneous quantitation of biogenic amines and polyamines in foods by LC-MS/MS. J. Agric. Food Chem. 2012;60:3026–3032. doi: 10.1021/jf204900v. PubMed DOI

Durlu-Özkaya F., Ayhan K., Vural N. Biogenic amines produced by Enterobacteriaceae isolated from meat products. Meat Sci. 2001;58:163–166. doi: 10.1016/S0309-1740(00)00144-3. PubMed DOI

Restuccia D., Spizzirri U.G., Parisi O.I., Cirillo G., Picci N. Brewing effect on levels of biogenic amines in different coffee samples as determined by LC-UV. Food Chem. 2015;175:143–150. doi: 10.1016/j.foodchem.2014.11.134. PubMed DOI

Martuscelli M., Arfelli G., Manetta A.C., Suzzi G. Biogenic amines content as a measure of the quality of wines of Abruzzo (Italy) Food Chem. 2013;140:590–597. doi: 10.1016/j.foodchem.2013.01.008. PubMed DOI

Zazzu C., Addis M., Caredda M., Scintu M.F., Piredda G., Sanna G. Biogenic Amines in Traditional Fiore Sardo PDO Sheep Cheese: Assessment, Validation and Application of an RP-HPLC-DAD-UV Method. Separations. 2019;6:11. doi: 10.3390/separations6010011. DOI

Bartkiene E., Krungleviciute V., Juodeikiene G., Vidmantiene D., Maknickiene Z. Solid state fermentation with lactic acid bacteria to improve the nutritional quality of lupin and soya bean. J. Sci. Food Agric. 2015;95:1336–1342. doi: 10.1002/jsfa.6827. PubMed DOI

Valsamaki K., Michaelidou A., Polychroniadou A. Biogenic amine production in Feta cheese. Food Chem. 2000;71:259–266. doi: 10.1016/S0308-8146(00)00168-0. DOI

Lindemann L., Meyer C.A., Jeanneau K., Bradaia A., Ozmen L., Bluethmann H., Bettler B., Wettstein J.G., Borroni E., Moreau J.L., et al. Trace amine-associated receptor 1 modulates dopaminergic activity. J. Pharmacol. Exp. Ther. 2008;324:948–956. doi: 10.1124/jpet.107.132647. PubMed DOI

Khan M.Z., Nawaz W. The emerging roles of human trace amines and human trace amine-associated receptors (hTAARs) in central nervous system. Biomed. Pharmacother. 2016;83:439–449. doi: 10.1016/j.biopha.2016.07.002. PubMed DOI

Narang D., Tomlinson S., Holt A., Mousseau D.D., Baker G.B. Trace Amines and Their Relevance to Psychiatry and Neurology: A Brief Overview. Bull. Clin. Psychopharmacol. 2011;21:73–79. doi: 10.5350/KPB-BCP201121113. DOI

Borowsky B., Adham N., Jones K.A., Raddatz R., Artymyshyn R., Ogozalek K.L., Durkin M.M., Lakhlani P.P., Bonini J.A., Pathirana S., et al. Trace amines: Identification of a family of mammalian G protein-coupled receptors. Proc. Natl. Acad. Sci. USA. 2001;98:8966–8971. doi: 10.1073/pnas.151105198. PubMed DOI PMC

Bunzow J.R., Sonders M.S., Arttamangkul S., Harrison L.M., Zhang G., Quigley D.I., Darland T., Suchland K.L., Pasumamula S., Kennedy J.L., et al. Amphetamine, 3,4-Methylenedioxymethamphetamine, Lysergic Acid Diethylamide, and Metabolites of the Catecholamine Neurotransmitters Are Agonists of a Rat Trace Amine Receptor. Mol. Pharmacol. 2001;60:1181–1188. doi: 10.1124/mol.60.6.1181. PubMed DOI

Kleinau G., Pratzka J., Nürnberg D., Grüters A., Führer-Sakel D., Krude H., Köhrle J., Schöneberg T., Biebermann H. Differential modulation of Beta-adrenergic receptor signaling by trace amine-associated receptor 1 agonists. PLoS ONE. 2011;6:e27073. doi: 10.1371/journal.pone.0027073. PubMed DOI PMC

Frascarelli S., Ghelardoni S., Chiellini G., Vargiu R., Ronca-Testoni S., Scanlan T.S., Grandy D.K., Zucchi R. Cardiac effects of trace amines: Pharmacological characterization of trace amine-associated receptors. Eur. J. Pharmacol. 2008;587:231–236. doi: 10.1016/j.ejphar.2008.03.055. PubMed DOI

Liu J., Wu R., Li J.X. TAAR1 and Psychostimulant Addiction. Cell. Mol. Neurobiol. 2020;40:229–238. doi: 10.1007/s10571-020-00792-8. PubMed DOI PMC

Pei Y., Asif-Malik A., Canales J.J. Trace Amines and the Trace Amine-Associated Receptor 1: Pharmacology, Neurochemistry, and Clinical Implications. Front. Neurosci. 2016;10:148. doi: 10.3389/fnins.2016.00148. PubMed DOI PMC

Babusyte A., Kotthoff M., Fiedler J., Krautwurst D. Biogenic amines activate blood leukocytes via trace amine-associated receptors TAAR1 and TAAR2. J. Leukoc. Biol. 2013;93:387–394. doi: 10.1189/jlb.0912433. PubMed DOI

Christian S.L., Berry M.D. Trace Amine-Associated Receptors as Novel Therapeutic Targets for Immunomodulatory Disorders. Front. Pharmacol. 2018;9:680. doi: 10.3389/fphar.2018.00680. PubMed DOI PMC

Vitale S., Strisciuglio C., Pisapia L., Miele E., Barba P., Vitale A., Cenni S., Bassi V., Maglio M., Del Pozzo G., et al. Cytokine production profile in intestinal mucosa of paediatric inflammatory bowel disease. PLoS ONE. 2017;12:e0182313. doi: 10.1371/journal.pone.0182313. PubMed DOI PMC

Latapy C., Beaulieu J.M. β-Arrestins in the central nervous system. Prog. Mol. Biol. Transl. Sci. 2013;118:267–295. doi: 10.1016/b978-0-12-394440-5.00011-5. PubMed DOI

Espinoza S., Masri B., Salahpour A., Gainetdinov R.R. BRET approaches to characterize dopamine and TAAR1 receptor pharmacology and signaling. Methods Mol. Biol. 2013;964:107–122. doi: 10.1007/978-1-62703-251-3_8. PubMed DOI

Kano H., Toyama Y., Imai S., Iwahashi Y., Mase Y., Yokogawa M., Osawa M., Shimada I. Structural mechanism underlying G protein family-specific regulation of G protein-gated inwardly rectifying potassium channel. Nat. Commun. 2019;10:2008. doi: 10.1038/s41467-019-10038-x. PubMed DOI PMC

Xie Z., Miller G.M. Trace Amine-Associated Receptor 1 Is a Modulator of the Dopamine Transporter. J. Pharmacol. Exp. Ther. 2007;321:128. doi: 10.1124/jpet.106.117382. PubMed DOI

Xie Z., Westmoreland S.V., Bahn M.E., Chen G.-L., Yang H., Vallender E.J., Yao W.-D., Madras B.K., Miller G.M. Rhesus Monkey Trace Amine-Associated Receptor 1 Signaling: Enhancement by Monoamine Transporters and Attenuation by the D2 Autoreceptor in Vitro. J. Pharmacol. Exp. Ther. 2007;321:116. doi: 10.1124/jpet.106.116863. PubMed DOI

Grandy D.K. Trace amine-associated receptor 1-Family archetype or iconoclast? Pharmacol. Ther. 2007;116:355–390. doi: 10.1016/j.pharmthera.2007.06.007. PubMed DOI PMC

Herbert A.A., Kidd E.J., Broadley K.J. Dietary trace amine-dependent vasoconstriction in porcine coronary artery. Br. J. Pharmacol. 2008;155:525–534. doi: 10.1038/bjp.2008.286. PubMed DOI PMC

Koh A.H.W., Chess-Williams R., Lohning A.E. Differential mechanisms of action of the trace amines octopamine, synephrine and tyramine on the porcine coronary and mesenteric artery. Sci. Rep. 2019;9:10925. doi: 10.1038/s41598-019-46627-5. PubMed DOI PMC

Broadley K.J., Akhtar Anwar M., Herbert A.A., Fehler M., Jones E.M., Davies W.E., Kidd E.J., Ford W.R. Effects of dietary amines on the gut and its vasculature. Br. J. Nutr. 2009;101:1645–1652. doi: 10.1017/S0007114508123431. PubMed DOI

Collins J.D., Noerrung B., Budka H., Andreoletti O., Buncic S., Griffin J., Hald T., Havelaar A., Hope J., Klein G., et al. Scientific Opinion on risk based control of biogenic amine formation in fermented foods. EFSA J. 2011;9:2393. doi: 10.2903/j.efsa.2011.2393. DOI

Linares D.M., del Rio B., Redruello B., Ladero V., Martin M.C., Fernandez M., Ruas-Madiedo P., Alvarez M.A. Comparative analysis of the in vitro cytotoxicity of the dietary biogenic amines tyramine and histamine. Food Chem. 2016;197:658–663. doi: 10.1016/j.foodchem.2015.11.013. PubMed DOI

Del Rio B., Redruello B., Linares D.M., Ladero V., Fernandez M., Martin M.C., Ruas-Madiedo P., Alvarez M.A. The dietary biogenic amines tyramine and histamine show synergistic toxicity towards intestinal cells in culture. Food Chem. 2017;218:249–255. doi: 10.1016/j.foodchem.2016.09.046. PubMed DOI

Victor L., Marina C.-E., Maria F., Miguel A.A. Toxicological Effects of Dietary Biogenic Amines. Curr. Nutr. Food Sci. 2010;6:145–156. doi: 10.2174/157340110791233256. DOI

Ngo A.S., Ho R.Y., Olson K.R. Phenelzine-induced myocardial injury: A case report. J. Med. Toxicol. 2010;6:431–434. doi: 10.1007/s13181-010-0101-y. PubMed DOI PMC

Costa M.R., Glória M.B.A. Migraine and Diet. In: Caballero B., editor. Encyclopedia of Food Sciences and Nutrition. 2nd ed. Academic Press; Oxford, UK: 2003. pp. 3940–3947. DOI

Gillman P.K. Monoamine Oxidase Inhibitors: A Review Concerning Dietary Tyramine and Drug Interactions. PsychoTrop. Comment. 2016;16:1–90.

Watson D.G., Midgley J.M., Chen R.N., Huang W., Bain G.M., McDonald N.M., Reid J.L., McGhee C.N. Analysis of biogenic amines and their metabolites in biological tissues and fluids by gas chromatography-negative ion chemical ionization mass spectrometry (GC-NICIMS) J. Pharm. Biomed. Anal. 1990;8:899–904. doi: 10.1016/0731-7085(90)80139-G. PubMed DOI

Rossato L.G., de Pinho P.G., Silva R., Carmo H., Carvalho F., Bastos M.e.L., Costa V.M., Remião F. Development and validation of a GC/IT-MS method for simultaneous quantitation of para and meta-synephrine in biological samples. J. Pharm. Biomed. Anal. 2010;52:721–726. doi: 10.1016/j.jpba.2010.02.022. PubMed DOI

Rossato L.G., Costa V.M., Limberger R.P., Bastos M.e.L., Remião F. Synephrine: From trace concentrations to massive consumption in weight-loss. Food Chem. Toxicol. 2011;49:8–16. doi: 10.1016/j.fct.2010.11.007. PubMed DOI

Stohs S.J., Badmaev V. A Review of Natural Stimulant and Non-stimulant Thermogenic Agents. Phytother. Res. 2016;30:732–740. doi: 10.1002/ptr.5583. PubMed DOI PMC

Stohs S.J., Shara M., Ray S.D. p-Synephrine, ephedrine, p-octopamine and m-synephrine: Comparative mechanistic, physiological and pharmacological properties. Phytother. Res. 2020;34:1838–1846. doi: 10.1002/ptr.6649. PubMed DOI PMC

Fugh-Berman A., Myers A. Citrus aurantium, an ingredient of dietary supplements marketed for weight loss: Current status of clinical and basic research. Exp. Biol. Med. 2004;229:698–704. doi: 10.1177/153537020422900802. PubMed DOI

Dragull K., Breksa A.P., Cain B. Synephrine content of juice from Satsuma mandarins (Citrus unshiu Marcovitch) J. Agric. Food Chem. 2008;56:8874–8878. doi: 10.1021/jf801225n. PubMed DOI

Tang Q., Zhang R., Zhou J., Zhao K., Lu Y., Zheng Y., Wu C., Chen F., Mu D., Ding Z., et al. The levels of bioactive ingredients in Citrus aurantium L. at different harvest periods and antioxidant effects on H. J. Sci. Food Agric. 2021;101:1479–1490. doi: 10.1002/jsfa.10761. PubMed DOI

Avula B., Upparapalli S.K., Navarrete A., Khan I.A. Simultaneous quantification of adrenergic amines and flavonoids in C. aurantium, various Citrus species, and dietary supplements by liquid chromatography. J. AOAC Int. 2005;88:1593–1606. doi: 10.1093/jaoac/88.6.1593. PubMed DOI

Hibino T., Yuzurihara M., Kase Y., Takeda A. Synephrine, a component of Evodiae Fructus, constricts isolated rat aorta via adrenergic and serotonergic receptors. J. Pharmacol. Sci. 2009;111:73–81. doi: 10.1254/jphs.09077FP. PubMed DOI

Arbo M.D., Larentis E.R., Linck V.M., Aboy A.L., Pimentel A.L., Henriques A.T., Dallegrave E., Garcia S.C., Leal M.B., Limberger R.P. Concentrations of p-synephrine in fruits and leaves of Citrus species (Rutaceae) and the acute toxicity testing of Citrus aurantium extract and p-synephrine. Food Chem. Toxicol. 2008;46:2770–2775. doi: 10.1016/j.fct.2008.04.037. PubMed DOI

Pellati F., Benvenuti S., Melegari M., Firenzuoli F. Determination of adrenergic agonists from extracts and herbal products of Citrus aurantium L. var. amara by LC. J. Pharm. Biomed. Anal. 2002;29:1113–1119. doi: 10.1016/S0731-7085(02)00153-X. PubMed DOI

Pellati F., Benvenuti S., Melegari M. High-performance liquid chromatography methods for the analysis of adrenergic amines and flavanones in Citrus aurantium L. var. amara. Phytochem. Anal. 2004;15:220–225. doi: 10.1002/pca.771. PubMed DOI

Allison D.B., Cutter G., Poehlman E.T., Moore D.R., Barnes S. Exactly which synephrine alkaloids does Citrus aurantium (bitter orange) contain? Int. J. Obes. 2005;29:443–446. doi: 10.1038/sj.ijo.0802879. PubMed DOI

Nelson B.C., Putzbach K., Sharpless K.E., Sander L.C. Mass spectrometric determination of the predominant adrenergic protoalkaloids in bitter orange (Citrus aurantium) J. Agric. Food Chem. 2007;55:9769–9775. doi: 10.1021/jf072030s. PubMed DOI

Andrade A., Schmitt G., Rossato L.G., Russowsky D., Limberger R.P. Gas Chromatographic Method for Analysis of p-Synephrine in Citrus aurantium L. Products. Chromatographia. 2009;69:225–229. doi: 10.1365/s10337-009-0991-5. DOI

Ma G., Bavadekar S.A., Schaneberg B.T., Khan I.A., Feller D.R. Effects of synephrine and beta-phenethylamine on human alpha-adrenoceptor subtypes. Planta Med. 2010;76:981–986. doi: 10.1055/s-0029-1240884. PubMed DOI

Penzak S.R., Jann M.W., Cold J.A., Hon Y.Y., Desai H.D., Gurley B.J. Seville (sour) orange juice: Synephrine content and cardiovascular effects in normotensive adults. J. Clin. Pharmacol. 2001;41:1059–1063. doi: 10.1177/00912700122012652. PubMed DOI

Bent S., Padula A., Neuhaus J. Safety and efficacy of Citrus aurantium for weight loss. Am. J. Cardiol. 2004;94:1359–1361. doi: 10.1016/j.amjcard.2004.07.137. PubMed DOI

Pellati F., Benvenuti S., Melegari M. Enantioselective LC analysis of synephrine in natural products on a protein-based chiral stationary phase. J. Pharm. Biomed. Anal. 2005;37:839–849. doi: 10.1016/j.jpba.2004.09.008. PubMed DOI

Mercolini L., Mandrioli R., Trerè T., Bugamelli F., Ferranti A., Raggi M.A. Fast CE analysis of adrenergic amines in different parts of Citrus aurantium fruit and dietary supplements. J. Sep. Sci. 2010;33:2520–2527. doi: 10.1002/jssc.201000221. PubMed DOI

Zheng G., Chao Y., Liu M., Yang Y., Zhang D., Wang K., Tao Y., Zhang J., Li Y., Wei M. Evaluation of dynamic changes in the bioactive components in Citri Reticulatae Pericarpium (Citrus reticulata ‘Chachi’) under different harvesting and drying conditions. J. Sci. Food Agric. 2021;101:3280–3289. doi: 10.1002/jsfa.10957. PubMed DOI

Tette P.A., Guidi L.R., Bastos E.M., Fernandes C., Gloria M.B. Synephrine—A potential biomarker for orange honey authenticity. Food Chem. 2017;229:527–533. doi: 10.1016/j.foodchem.2017.02.108. PubMed DOI

D’Andrea G., Terrazzino S., Fortin D., Farruggio A., Rinaldi L., Leon A. HPLC electrochemical detection of trace amines in human plasma and platelets and expression of mRNA transcripts of trace amine receptors in circulating leukocytes. Neurosci. Lett. 2003;346:89–92. doi: 10.1016/S0304-3940(03)00573-1. PubMed DOI

Ibrahim K.E., Couch M.W., Williams C.M., Budd M.B., Yost R.A., Midgley J.M. Quantitative measurement of octopamines and synephrines in urine using capillary column gas chromatography negative ion chemical ionization mass spectrometry. Anal. Chem. 1984;56:1695–1699. doi: 10.1021/ac00273a037. PubMed DOI

Rang H.P., Dale M.M., Ritter J.M., Flower R.J., Henderson G. Rang & Dale: Farmacologia. 7th ed. Elsevier; Rio de Janeiro, Brazil: 2011.

Hayat K. Citrus: Molecular Phylogeny, Antioxidant Properties and Medicinal Uses. Volume 1 Nova Science Publishers; New York, NY, USA: 2014.

Kim K.W., Kim H.D., Jung J.S., Woo R.S., Kim H.S., Suh H.W., Kim Y.H., Song D.K. Characterization of antidepressant-like effects of p-synephrine stereoisomers. Naunyn-Schmiedeb. Arch. Pharmacol. 2001;364:21–26. doi: 10.1007/s002100100416. PubMed DOI

Song D.K., Suh H.W., Jung J.S., Wie M.B., Son K.H., Kim Y.H. Antidepressant-like effects of p-synephrine in mouse models of immobility tests. Neurosci. Lett. 1996;214:107–110. doi: 10.1016/0304-3940(96)12895-0. PubMed DOI

Miller G.M. The emerging role of trace amine-associated receptor 1 in the functional regulation of monoamine transporters and dopaminergic activity. J. Neurochem. 2011;116:164–176. doi: 10.1111/j.1471-4159.2010.07109.x. PubMed DOI PMC

D’Andrea G., D’Arrigo A., Carbonare M.D., Leon A. Pathogenesis of migraine: Role of neuromodulators. Headache. 2012;52:1155–1163. doi: 10.1111/j.1526-4610.2012.02168.x. PubMed DOI

Koncz D., Tóth B., Bahar M.A., Roza O., Csupor D. The Safety and Efficacy of Citrus aurantium (Bitter Orange) Extracts and p-Synephrine: A Systematic Review and Meta-Analysis. Nutrients. 2022;14:4019. doi: 10.3390/nu14194019. PubMed DOI PMC

Pawar R.S., Grundel E. Overview of regulation of dietary supplements in the USA and issues of adulteration with phenethylamines (PEAs) Drug Test. Anal. 2017;9:500–517. doi: 10.1002/dta.1980. PubMed DOI

Müller L.S., Moreira A.P.L., Muratt D.T., Viana C., de Carvalho L.M. An Ultra-High Performance Liquid Chromatography-Electrospray Tandem Mass Spectrometric Method for Screening and Simultaneous Determination of Anorexic, Anxiolytic, Antidepressant, Diuretic, Laxative and Stimulant Drugs in Dietary Supplements Marketed for Weight Loss. J. Chromatogr. Sci. 2019;57:528–540. doi: 10.1093/chromsci/bmz025. PubMed DOI

Rossato L.G., Costa V.M., de Pinho P.G., Carvalho F., de Lourdes Bastos M., Remião F. Structural isomerization of synephrine influences its uptake and ensuing glutathione depletion in rat-isolated cardiomyocytes. Arch. Toxicol. 2011;85:929–939. doi: 10.1007/s00204-010-0630-9. PubMed DOI

Ribeiro D.L., Machado A.R.T., da Silva Machado C., Santos P.W.D.S., Aissa A.F., Barcelos G.R.M., Antunes L.M.G. Analysis of the cytotoxic, genotoxic, mutagenic, and pro-oxidant effect of synephrine, a component of thermogenic supplements, in human hepatic cells in vitro. Toxicology. 2019;422:25–34. doi: 10.1016/j.tox.2019.04.010. PubMed DOI

Arbo M.D., Schmitt G.C., Limberger M.F., Charão M.F., Moro A.M., Ribeiro G.L., Dallegrave E., Garcia S.C., Leal M.B., Limberger R.P. Subchronic toxicity of Citrus aurantium L. (Rutaceae) extract and p-synephrine in mice. Regul. Toxicol. Pharmacol. 2009;54:114–117. doi: 10.1016/j.yrtph.2009.03.001. PubMed DOI

Suntar I., Khan H., Patel S., Celano R., Rastrelli L. An Overview on Citrus aurantium L.: Its Functions as Food Ingredient and Therapeutic Agent. Oxid. Med. Cell. Longev. 2018;2018:7864269. doi: 10.1155/2018/7864269. PubMed DOI PMC

Koh A.H.W., Chess-Williams R., Lohning A.E. Renal artery responses to trace amines: Multiple and differential mechanisms of action. Life Sci. 2021;277:119532. doi: 10.1016/j.lfs.2021.119532. PubMed DOI

NHPD Guidelines for the Use of Synephrine in Natural Health Products. Canada. 2010. [(accessed on 19 July 2020)]. Available online: https://www.canada.ca/en/health-canada/services/drugs-health-products/natural-non-prescription/legislation-guidelines/guidance-documents/notice-use-synephrine.html.

Sawler S. Synephrine, Octopamine and Caffeine Health Risk Assessment (HRA) Report, Canada. 2011. [(accessed on 18 July 2020)]. Available online: https://www.semanticscholar.org/paper/Synephrine-%2C-Octopamine-and-Caffeine-Health-Risk-(-Sawler/7c15c4a3ef32394284da0d29f412ba4b51b13bf6.

ANSES French Agency for Food, Environmental and Occupational Health & Safety. Opinion of the French Agency for Food, Environmental and Occupational Health & Safety on the Risks Associated with the Presence in Food Supplements of P-Synephrine or Ingredients Obtained from Citrus spp. Fruits Containing This Substance France. 2014. [(accessed on 18 July 2020)]. Available online: https://www.anses.fr/en/content/opinion-french-agency-food-environmental-and-occupational-health-safety-risks-associated-1.

Nykamp D.L., Fackih M.N., Compton A.L. Possible association of acute lateral-wall myocardial infarction and bitter orange supplement. Ann. Pharmacother. 2004;38:812–816. doi: 10.1345/aph.1D473. PubMed DOI

Bouchard N.C., Howland M.A., Greller H.A., Hoffman R.S., Nelson L.S. Ischemic stroke associated with use of an ephedra-free dietary supplement containing synephrine. Mayo Clin. Proc. 2005;80:541–545. doi: 10.4065/80.4.541. PubMed DOI

Gange C.A., Madias C., Felix-Getzik E.M., Weintraub A.R., Estes N.A. Variant angina associated with bitter orange in a dietary supplement. Mayo Clin. Proc. 2006;81:545–548. doi: 10.4065/81.4.545. PubMed DOI

Burke J., Seda G., Allen D., Knee T.S. A case of severe exercise-induced rhabdomyolysis associated with a weight-loss dietary supplement. Mil. Med. 2007;172:656–658. doi: 10.7205/MILMED.172.6.656. PubMed DOI

Holmes R.O., Tavee J. Vasospasm and stroke attributable to ephedra-free xenadrine: Case report. Mil. Med. 2008;173:708–710. doi: 10.7205/MILMED.173.7.708. PubMed DOI

Stephensen T.A., Sarlay R. Ventricular fibrillation associated with use of synephrine containing dietary supplement. Mil. Med. 2009;174:1313–1319. doi: 10.7205/MILMED-D-01-5009. PubMed DOI

Thomas J.E., Munir J.A., McIntyre P.Z., Ferguson M.A. STEMI in a 24-year-old man after use of a synephrine-containing dietary supplement: A case report and review of the literature. Tex. Heart Inst. J. 2009;36:586–590. PubMed PMC

Retamero C., Rivera T., Murphy K. “Ephedra-free” diet pill-induced psychosis. Psychosomatics. 2011;52:579–582. doi: 10.1016/j.psym.2011.06.003. PubMed DOI

Chung H., Kwon S.W., Kim T.H., Yoon J.H., Ma D.W., Park Y.M., Hong B.K. Synephrine-containing dietary supplement precipitating apical ballooning syndrome in a young female. Korean J. Intern. Med. 2013;28:356–360. doi: 10.3904/kjim.2013.28.3.356. PubMed DOI PMC

Doctorian T., Do B. Ascending aortic dissection in a young patient using a synephrine-containing workout supplement. J. Cardiol. Cases. 2017;15:150–152. doi: 10.1016/j.jccase.2016.12.008. PubMed DOI PMC

Unnikrishnan D., Annam R., Jacob A., Thyagarajan B., Farrugia P. STEMI in a Young Male after Use of Synephrine-Containing Dietary Supplement. Case Rep. Cardiol. 2018;2018:7074104. doi: 10.1155/2018/7074104. PubMed DOI PMC

González-Juárez D.E., Escobedo-Moratilla A., Flores J., Hidalgo-Figueroa S., Martínez-Tagüeña N., Morales-Jiménez J., Muñiz-Ramírez A., Pastor-Palacios G., Pérez-Miranda S., Ramírez-Hernández A., et al. A review of the ephedra genus: Distribution, ecology, ethnobotany, phytochemistry and pharmacological properties. Molecules. 2020;25:3283. doi: 10.3390/molecules25143283. PubMed DOI PMC

Abourashed E.A., El-Alfy A.T., Khan I.A., Walker L. Ephedra in perspective-a current review. Phytother. Res. 2003;17:703–712. doi: 10.1002/ptr.1337. PubMed DOI

Palamar J. How ephedrine escaped regulation in the United States: A historical review of misuse and associated policy. Health Policy. 2011;99:1–9. doi: 10.1016/j.healthpol.2010.07.007. PubMed DOI

Miao S.M., Zhang Q., Bi X.B., Cui J.L., Wang M.L. A review of the phytochemistry and pharmacological activities of Ephedra herb. Chin. J. Nat. Med. 2020;18:321–344. doi: 10.1016/S1875-5364(20)30040-6. PubMed DOI

Lv M., Sun J., Wang M., Huang W., Fan H., Xu F., Zhang Z. GC-MS based metabolomics study of stems and roots of Ephedra sinica. J. Pharm. Biomed. Anal. 2015;114:49–52. doi: 10.1016/j.jpba.2015.04.035. PubMed DOI

Ma G., Bavadekar S.A., Davis Y.M., Lalchandani S.G., Nagmani R., Schaneberg B.T., Khan I.A., Feller D.R. Pharmacological Effects of Ephedrine Alkaloids on Human α1- and α2-Adrenergic Receptor Subtypes. J. Pharmacol. Exp. Ther. 2007;322:214–221. doi: 10.1124/jpet.107.120709. PubMed DOI

Alsufyani H.A., Docherty J.R. Direct and indirect effects of ephedrine on heart rate and blood pressure in vehicle-treated and sympathectomised male rats. Eur. J. Pharmacol. 2018;825:34–38. doi: 10.1016/j.ejphar.2018.02.021. PubMed DOI

Li Q., Bian L., Zhao X., Gao X., Zheng J., Li Z., Zhang Y., Jiang R., Zheng X. Immobilised histidine tagged β2-adrenoceptor oriented by a diazonium salt reaction and its application in exploring drug-protein interaction using ephedrine and pseudoephedrine as probes. PLoS ONE. 2014;9:e94955. doi: 10.1371/journal.pone.0094955. PubMed DOI PMC

Vansal S.S., Feller D.R. Direct effects of ephedrine isomers on human beta-adrenergic receptor subtypes. Biochem. Pharmacol. 1999;58:807–810. doi: 10.1016/S0006-2952(99)00152-5. PubMed DOI

De Matteis R., Arch J.R., Petroni M.L., Ferrari D., Cinti S., Stock M.J. Immunohistochemical identification of the beta(3)-adrenoceptor in intact human adipocytes and ventricular myocardium: Effect of obesity and treatment with ephedrine and caffeine. Int. J. Obes. Relat. Metab. Disord. 2002;26:1442–1450. doi: 10.1038/sj.ijo.0802148. PubMed DOI

Bogacka I., Gettys T.W., de Jonge L., Nguyen T., Smith J.M., Xie H., Greenway F., Smith S.R. The Effect of β-Adrenergic and Peroxisome Proliferator—Activated Receptor-γ Stimulation on Target Genes Related to Lipid Metabolism in Human Subcutaneous Adipose Tissue. Diabetes Care. 2007;30:1179–1186. doi: 10.2337/dc06-1962. PubMed DOI

Kang J.W., Nam D., Kim K.H., Huh J.-E., Lee J.-D. Effect of Gambisan on the Inhibition of Adipogenesis in 3T3-L1 Adipocytes. Evid. Based Complement. Altern. Med. 2013;2013:789067. doi: 10.1155/2013/789067. PubMed DOI PMC

Rufino A.T., Costa V.M., Carvalho F., Fernandes E. Flavonoids as antiobesity agents: A review. Med. Res. Rev. 2021;41:556–585. doi: 10.1002/med.21740. PubMed DOI

Xiu L.M., Miura A.B., Yamamoto K., Kobayashi T., Song Q.H., Kitamura H., Cyong J.C. Pancreatic islet regeneration by ephedrine in mice with streptozotocin-induced diabetes. Am. J. Chin. Med. 2001;29:493–500. doi: 10.1142/S0192415X01000514. PubMed DOI

Lee H.-W., Yang J.-Y., Lee H.-S. Quinoline-2-carboxylic acid isolated from Ephedra pachyclada and its structural derivatives show inhibitory effects against α-glucosidase and α-amylase. J. Korean Soc. Appl. Biol. Chem. 2014;57:441–444. doi: 10.1007/s13765-014-4156-3. DOI

Han H.Y., Huh J.I., Han S.R., Kang M.G., Yoon S., Han J.S., Lee B.S., Kim J.A., Min B.S. Assessing the safety of an Ephedrae Herba aqueous extract in rats: A repeat dose toxicity study. Regul. Toxicol. Pharmacol. 2018;94:144–151. doi: 10.1016/j.yrtph.2018.01.027. PubMed DOI

Laccourreye O., Werner A., Giroud J.P., Couloigner V., Bonfils P., Bondon-Guitton E. Benefits, limits and danger of ephedrine and pseudoephedrine as nasal decongestants. Eur. Ann. Otorhinolaryngol. Head Neck Dis. 2015;132:31–34. doi: 10.1016/j.anorl.2014.11.001. PubMed DOI

Dhar R., Stout C.W., Link M.S., Homoud M.K., Weinstock J., Estes N.A.M., III Cardiovascular toxicities of performance-enhancing substances in sports. Mayo Clin. Proc. 2005;80:1307–1315. doi: 10.4065/80.10.1307. PubMed DOI

Ibrahim R., Nyska A., Dunnick J., Ramot Y. The toxicologic pathology aspects of selected natural herbal products and related compounds. J. Toxicol. Pathol. 2021;34:181–211. doi: 10.1293/tox.2021-0016. PubMed DOI PMC

Van Mieghem W., Stevens E., Cosemans J. Ephedrine-induced cardiopathy. Br. Med. J. 1978;1:816. doi: 10.1136/bmj.1.6116.816. PubMed DOI PMC

Schier J.G., Traub S.J., Hoffman R.S., Nelson L.S. Ephedrine-induced cardiac ischemia: Exposure confirmed with a serum level. J. Toxicol. Clin. Toxicol. 2003;41:849–853. doi: 10.1081/CLT-120025350. PubMed DOI

Enders J.M., Dobesh P.P., Ellison J.N. Acute myocardial infarction induced by ephedrine alkaloids. Pharmacotherapy. 2003;23:1645–1651. doi: 10.1592/phco.23.15.1645.31959. PubMed DOI

Rhidian R. Running a risk? Sport supplement toxicity with ephedrine in an amateur marathon runner, with subsequent rhabdomyolysis. BMJ Case Rep. 2011;2011:bcr1120115093. doi: 10.1136/bcr.11.2011.5093. PubMed DOI PMC

Bowyer J.F., Newport G.D., Slikker W., Jr., Gough B., Ferguson S.A., Tor-Agbidye J. An evaluation of l-ephedrine neurotoxicity with respect to hyperthermia and caudate/putamen microdialysate levels of ephedrine, dopamine, serotonin, and glutamate. Toxicol. Sci. 2000;55:133–142. doi: 10.1093/toxsci/55.1.133. PubMed DOI

Munhall A.C., Johnson S.W. Dopamine-mediated actions of ephedrine in the rat substantia nigra. Brain Res. 2006;1069:96–103. doi: 10.1016/j.brainres.2005.11.044. PubMed DOI

Ellis J.D., German C.L., Birdsall E., Hanson J.E., Crosby M.A., Rowley S.D., Sawada N.A., West J.N., Hanson G.R., Fleckenstein A.E. Ephedrine decreases vesicular monoamine transporter-2 function. Synapse. 2011;65:449–451. doi: 10.1002/syn.20896. PubMed DOI PMC

Duan S., Xie L., Zheng L., Huang J., Guo R., Sun Z., Xie Y., Lv J., Lin Z., Ma S. Long-term exposure to ephedrine leads to neurotoxicity and neurobehavioral disorders accompanied by up-regulation of CRF in prefrontal cortex and hippocampus in Rhesus macaques. Behav. Brain Res. 2020;393:112796. doi: 10.1016/j.bbr.2020.112796. PubMed DOI

Zheng E.X., Navarro V.J. Liver injury from herbal, dietary, and weight loss supplements: A review. J. Clin. Transl. Hepatol. 2015;3:93–98. doi: 10.14218/jcth.2015.00006. PubMed DOI PMC

Wen S., Liao T. Ephedrine causes liver toxicity in SD rats via oxidative stress and inflammatory responses. Hum. Exp. Toxicol. 2021;40:16–24. doi: 10.1177/0960327120943938. PubMed DOI

Al-Hebshi N.N., Skaug N. Khat (Catha edulis)—An updated review. Addict. Biol. 2005;10:299–307. doi: 10.1080/13556210500353020. PubMed DOI

Alles G.A., Fairchild M.D., Jensen M. Chemical pharmacology of Catha edulis. J. Med. Pharm. Chem. 1961;3:323–352. doi: 10.1021/jm50015a010. PubMed DOI

Getasetegn M. Chemical composition of Catha edulis (khat): A review. Phytochem. Rev. 2016;15:907–920. doi: 10.1007/s11101-015-9435-z. DOI

Krikorian A.D. Kat and its use: An historical perspective. J. Ethnopharmacol. 1984;12:115–178. doi: 10.1016/0378-8741(84)90047-3. PubMed DOI

Odenwald M., Klein A., Warfa N. Khat Addiction. In: El-Guebaly N., Carrà G., Galanter M., editors. Textbook of Addiction Treatment: International Perspectives. Springer; Milan, Italy: 2015. pp. 455–466. DOI

United Nations Division of Narcotic Drugs . Investigations on the Phenylalkylamine Fraction. United Nations Division of Narcotic Drugs; Vienna, Austria: 1975. Studies on the Chemical Composition of Khat. III. United Nations Document MNAR/11/75.

Brenneisen R., Geisshüsler S., Schorno X. Metabolism of cathinone to (−)-norephedrine and (−)-norpseudoephedrine. J. Pharm. Pharmacol. 1986;38:298–300. doi: 10.1111/j.2042-7158.1986.tb04571.x. PubMed DOI

Pendl E., Pauritsch U., Kollroser M., Schmid M.G. Determination of cathinone and cathine in Khat plant material by LC-MS/MS: Fresh vs. dried leaves. Forensic Sci. Int. 2021;319:110658. doi: 10.1016/j.forsciint.2020.110658. PubMed DOI

Kalix P., Braenden O. Pharmacological aspects of the chewing of khat leaves. Pharmacol. Rev. 1985;37:149. PubMed

Abebe M., Kindie S., Adane K. Adverse health effects of khat: A review. Fam. Med. Med. Sci. Res. 2015;4:154. doi: 10.4172/2327-4972.1000154. DOI

Kelly J.P. Cathinone derivatives: A review of their chemistry, pharmacology and toxicology. Drug Test. Anal. 2011;3:439–453. doi: 10.1002/dta.313. PubMed DOI

Kalix P. Cathinone, a natural amphetamine. Pharmacol. Toxicol. 1992;70:77–86. doi: 10.1111/j.1600-0773.1992.tb00434.x. PubMed DOI

Mathys K., Brenneisen R. Determination of (S)-(−)-cathinone and its metabolites (R,S)-(−)-norephedrine and (R,R)-(−)-norpseudoephedrine in urine by high-performance liquid chromatography with photodiode-array detection. J. Chromatogr. 1992;593:79–85. doi: 10.1016/0021-9673(92)80270-5. PubMed DOI

Engidawork E. Pharmacological and Toxicological Effects of Catha edulis F. (Khat) Phytother. Res. 2017;31:1019–1028. doi: 10.1002/ptr.5832. PubMed DOI

Toennes S.W., Kauert G.F. Excretion and Detection of Cathinone, Cathine, and Phenylpropanolamine in Urine after Kath Chewing. Clin. Chem. 2002;48:1715–1719. doi: 10.1093/clinchem/48.10.1715. PubMed DOI

Widler P., Mathys K., Brenneisen R., Kalix P., Fisch H.U. Pharmacodynamics and pharmacokinetics of khat: A controlled study. Clin. Pharmacol. Ther. 1994;55:556–562. doi: 10.1038/clpt.1994.69. PubMed DOI

Toennes S.W., Harder S., Schramm M., Niess C., Kauert G.F. Pharmacokinetics of cathinone, cathine and norephedrine after the chewing of khat leaves. Br. J. Clin. Pharmacol. 2003;56:125–130. doi: 10.1046/j.1365-2125.2003.01834.x. PubMed DOI PMC

Soares J., Costa V.M., Bastos M.L., Carvalho F., Capela J.P. An updated review on synthetic cathinones. Arch. Toxicol. 2021;95:2895–2940. doi: 10.1007/s00204-021-03083-3. PubMed DOI

Brenneisen R., Mathys K. Catha. In: Hänsel R., Keller K., Rimpler H., Schneider G., Abel G., Bader G., Baumann B., Bertram B., Beyer G., Bodesheim U., et al., editors. Hagers Handbuch der Pharmazeutischen Praxis. 5th ed. Volume 4. Springer; Berlin/Heidelberg, Germany: 1992. pp. 730–740.

Kalix P. Cathinone, an alkaloid from khat leaves with an amphetamine-like releasing effect. Psychopharmacology. 1981;74:269–270. doi: 10.1007/BF00427108. PubMed DOI

Kalix P., Glennon R.A. Further evidence for an amphetamine-like mechanism of action of the alkaloid cathinone. Biochem. Pharmacol. 1986;35:3015–3019. doi: 10.1016/0006-2952(86)90380-1. PubMed DOI

Kalix P. A constituent of khat leaves with amphetamine-like releasing properties. Eur. J. Pharmacol. 1980;68:213–215. doi: 10.1016/0014-2999(80)90326-X. PubMed DOI

Kalix P. The amphetamine-like releasing effect of the alkaloid (−)cathinone on rat nucleus accumbens and rabbit caudate nucleus. Prog. Neuro-Psychopharmacol. Biol. Psychiatry. 1982;6:43–49. doi: 10.1016/S0364-7722(82)80106-9. PubMed DOI

Kalix P. Effect of the alkaloid (−) cathinone on the release of radioactivity from rabbit atria prelabelled with 3H-norepinephrine. Life Sci. 1983;32:801–807. doi: 10.1016/0024-3205(83)90316-8. PubMed DOI

Kalix P. Effect of the alkaloid (−)-cathinone on the release of radioactivity from rat striatal tissue prelabelled with 3H-serotonin. Neuropsychobiology. 1984;12:127–129. doi: 10.1159/000118124. PubMed DOI

Kalix P. Hyperthermic response to (−)-cathinone, an alkaloid of Catha edulis (khat) J. Pharm. Pharmacol. 1980;32:662–663. doi: 10.1111/j.2042-7158.1980.tb13031.x. PubMed DOI

Pehek E.A., Schechter M.D., Yamamoto B.K. Effects of cathinone and amphetamine on the neurochemistry of dopamine in vivo. Neuropharmacology. 1990;29:1171–1176. doi: 10.1016/0028-3908(90)90041-O. PubMed DOI

Simmler L.D., Buser T.A., Donzelli M., Schramm Y., Dieu L.H., Huwyler J., Chaboz S., Hoener M.C., Liechti M.E. Pharmacological characterization of designer cathinones in vitro. Br. J. Pharmacol. 2013;168:458–470. doi: 10.1111/j.1476-5381.2012.02145.x. PubMed DOI PMC

Wagner G.C., Preston K., Ricaurte G.A., Schuster C.R., Seiden L.S. Neurochemical similarities between d,l-cathinone and d-amphetamine. Drug Alcohol Depend. 1982;9:279–284. doi: 10.1016/0376-8716(82)90067-9. PubMed DOI

Zelger J.L., Carlini E.A. Influence of cathinone (α-aminopropiophenone) and cathine (phenylpropanolamine) on circling behavior and on the uptake and release of [3H]dopamine in striatal slices of rats. Neuropharmacology. 1981;20:839–843. doi: 10.1016/0028-3908(81)90076-9. PubMed DOI

Hutsell B.A., Baumann M.H., Partilla J.S., Banks M.L., Vekariya R., Glennon R.A., Negus S.S. Abuse-related neurochemical and behavioral effects of cathinone and 4-methylcathinone stereoisomers in rats. Eur. Neuropsychopharmacol. 2016;26:288–297. doi: 10.1016/j.euroneuro.2015.12.010. PubMed DOI PMC

Cleary L., Docherty J.R. Actions of amphetamine derivatives and cathinone at the noradrenaline transporter. Eur. J. Pharmacol. 2003;476:31–34. doi: 10.1016/S0014-2999(03)02173-3. PubMed DOI

Nencini P., Amiconi G., Befani O., Abdullahi M.A., Anania M.C. Possible involvement of amine oxidase inhibition in the sympathetic activation induced by khat (Catha edulis) chewing in humans. J. Ethnopharmacol. 1984;11:79–86. doi: 10.1016/0378-8741(84)90097-7. PubMed DOI

Osorio-Olivares M., Rezende M.C., Sepúlveda-Boza S., Cassels B.K., Fierro A. MAO inhibition by aryl isopropylamines: The effect of oxygen substituents at the beta-position. Bioorg. Med. Chem. 2004;12:4055–4066. doi: 10.1016/j.bmc.2004.05.033. PubMed DOI

Freund-Michel V.C., Birrell M.A., Patel H.J., Murray-Lyon I.M., Belvisi M.G. Modulation of cholinergic contractions of airway smooth muscle by cathinone: Potential beneficial effects in airway diseases. Eur. Respir. J. 2008;32:579–584. doi: 10.1183/09031936.00162707. PubMed DOI

Odenwald M., al’Absi M. Khat use and related addiction, mental health and physical disorders: The need to address a growing risk. East. Mediterr. Health J. 2017;23:236–244. doi: 10.26719/2017.23.3.236. PubMed DOI

Jones S., Fileccia E.L., Murphy M., Fowler M.J., King M.V., Shortall S.E., Wigmore P.M., Green A.R., Fone K.C.F., Ebling F.J.P. Cathinone increases body temperature, enhances locomotor activity, and induces striatal c-fos expression in the Siberian hamster. Neurosci. Lett. 2014;559:34–38. doi: 10.1016/j.neulet.2013.11.032. PubMed DOI

Woolverton W.L., Johanson C.E. Preference in rhesus monkeys given a choice between cocaine and d,l-cathinone. J. Exp. Anal. Behav. 1984;41:35–43. doi: 10.1901/jeab.1984.41-35. PubMed DOI PMC

LaHoste G.J., Yu J., Marshall J.F. Striatal Fos expression is indicative of dopamine D1/D2 synergism and receptor supersensitivity. Proc. Natl. Acad. Sci. USA. 1993;90:7451–7455. doi: 10.1073/pnas.90.16.7451. PubMed DOI PMC

Al-Motarreb A.L., Broadley K.J. Coronary and aortic vasoconstriction by cathinone, the active constituent of khat. Auton. Autacoid Pharmacol. 2003;23:319–326. doi: 10.1111/j.1474-8673.2004.00303.x. PubMed DOI

Alsufyani H.A., Docherty J.R. Direct and indirect cardiovascular actions of cathinone and MDMA in the anaesthetized rat. Eur. J. Pharmacol. 2015;758:142–146. doi: 10.1016/j.ejphar.2015.03.079. PubMed DOI

Cleary L., Buber R., Docherty J.R. Effects of amphetamine derivatives and cathinone on noradrenaline-evoked contractions of rat right ventricle. Eur. J. Pharmacol. 2002;451:303–308. doi: 10.1016/S0014-2999(02)02305-1. PubMed DOI

Tesfaye F., Byass P., Wall S., Berhane Y., Bonita R. Association of smoking and khat (Catha edulis Forsk) use with high blood pressure among adults in Addis Ababa, Ethiopia, 2006. Prev. Chronic Dis. 2008;5:A89. PubMed PMC

Al-Motarreb A., Briancon S., Al-Jaber N., Al-Adhi B., Al-Jailani F., Salek M.S., Broadley K.J. Khat chewing is a risk factor for acute myocardial infarction: A case-control study. Br. J. Clin. Pharmacol. 2005;59:574–581. doi: 10.1111/j.1365-2125.2005.02358.x. PubMed DOI PMC

Alkadi H.O., Noman M.A., Al-Thobhani A.K., Al-Mekhlafi F.S., Raja’a Y.A. Clinical and experimental evaluation of the effect of Khat-induced myocardial infarction. Saudi Med. J. 2002;23:1195–1198. PubMed

Kalix P. Hypermotility of the amphetamine type induced by a constituent of khat leaves. Br. J. Pharmacol. 1980;68:11–13. doi: 10.1111/j.1476-5381.1980.tb10690.x. PubMed DOI PMC

Nyongesa A.W., Oduma J.A., Nakajima M., Odongo H.O., Adoyo P.A., al’Absi M. Dose-response inhibitory effects of purified cathinone from khat (Catha edulis) on cortisol and prolactin release in vervet monkeys (Chlorocebus aethiops) Metab. Brain Dis. 2014;29:451–458. doi: 10.1007/s11011-013-9445-8. PubMed DOI

Silva B., Soares J., Rocha-Pereira C., Mladěnka P., Remião F., on behalf of the Oemonom Researchers Khat, a Cultural Chewing Drug: A Toxicokinetic and Toxicodynamic Summary. Toxins. 2022;14:71. doi: 10.3390/toxins14020071. PubMed DOI PMC

Zimmerman J.L. Cocaine intoxication. Crit. Care Clin. 2012;28:517–526. doi: 10.1016/j.ccc.2012.07.003. PubMed DOI

Richards J.R., Le J.K. Cocaine Toxicity. [(accessed on 13 December 2021)]; Available online: https://www.ncbi.nlm.nih.gov/books/NBK430976/

Roque Bravo R., Faria A.C., Brito-da-Costa A.M., Carmo H., Mladěnka P., Dias da Silva D., Remião F., on behalf of the Oemonom Researchers Cocaine: An Updated Overview on Chemistry, Detection, Biokinetics, and Pharmacotoxicological Aspects including Abuse Pattern. Toxins. 2022;14:278. doi: 10.3390/toxins14040278. PubMed DOI PMC

Han D.D., Gu H.H. Comparison of the monoamine transporters from human and mouse in their sensitivities to psychostimulant drugs. BMC Pharmacol. 2006;6:6. doi: 10.1186/1471-2210-6-6. PubMed DOI PMC

Goldstein R.A., DesLauriers C., Burda A., Johnson-Arbor K. Cocaine: History, social implications, and toxicity: A review. Semin. Diagn. Pathol. 2009;26:10–17. doi: 10.1053/j.semdp.2008.12.001. PubMed DOI

Perry A.N., Westenbroek C., Jagannathan L., Becker J.B. The Roles of Dopamine and α1-Adrenergic Receptors in Cocaine Preferences in Female and Male Rats. Neuropsychopharmacology. 2015;40:2696–2704. doi: 10.1038/npp.2015.116. PubMed DOI PMC

Brown J.M., Hanson G.R., Fleckenstein A.E. Regulation of the vesicular monoamine transporter-2: A novel mechanism for cocaine and other psychostimulants. J. Pharmacol. Exp. Ther. 2001;296:762–767. PubMed

Pei Y., Lee J., Leo D., Gainetdinov R.R., Hoener M.C., Canales J.J. Activation of the Trace Amine-Associated Receptor 1 Prevents Relapse to Cocaine Seeking. Neuropsychopharmacology. 2014;39:2299–2308. doi: 10.1038/npp.2014.88. PubMed DOI PMC

Asif-Malik A., Hoener M.C., Canales J.J. Interaction Between the Trace Amine-Associated Receptor 1 and the Dopamine D2 Receptor Controls Cocaine’s Neurochemical Actions. Sci. Rep. 2017;7:13901. doi: 10.1038/s41598-017-14472-z. PubMed DOI PMC

Mladěnka P., Applová L., Patočka J., Costa V.M., Remiao F., Pourová J., Mladěnka A., Karlíčková J., Jahodář L., Vopršalová M., et al. Comprehensive review of cardiovascular toxicity of drugs and related agents. Med. Res. Rev. 2018;38:1332–1403. doi: 10.1002/med.21476. PubMed DOI PMC

Tsatsakis A., Docea A.O., Calina D., Tsarouhas K., Zamfira L.M., Mitrut R., Sharifi-Rad J., Kovatsi L., Siokas V., Dardiotis E., et al. A Mechanistic and Pathophysiological Approach for Stroke Associated with Drugs of Abuse. J. Clin. Med. 2019;8:1295. doi: 10.3390/jcm8091295. PubMed DOI PMC

Lange R.A., Cigarroa R.G., Yancy C.W., Jr., Willard J.E., Popma J.J., Sills M.N., McBride W., Kim A.S., Hillis L.D. Cocaine-induced coronary-artery vasoconstriction. N. Engl. J. Med. 1989;321:1557–1562. doi: 10.1056/NEJM198912073212301. PubMed DOI

Moliterno D.J., Willard J.E., Lange R.A., Negus B.H., Boehrer J.D., Glamann D.B., Landau C., Rossen J.D., Winniford M.D., Hillis L.D. Coronary-artery vasoconstriction induced by cocaine, cigarette smoking, or both. N. Engl. J. Med. 1994;330:454–459. doi: 10.1056/NEJM199402173300702. PubMed DOI

Pradhan L., Mondal D., Chandra S., Ali M., Agrawal K.C. Molecular analysis of cocaine-induced endothelial dysfunction: Role of endothelin-1 and nitric oxide. Cardiovasc. Toxicol. 2008;8:161–171. doi: 10.1007/s12012-008-9025-z. PubMed DOI

Mo W., Singh A.K., Arruda J.A.L., Dunea G. Role of Nitric Oxide in Cocaine-Induced Acute Hypertension. Am. J. Hypertens. 1998;11:708–714. doi: 10.1016/S0895-7061(98)00041-7. PubMed DOI

Vongpatanasin W., Mansour Y., Chavoshan B., Arbique D., Victor R.G. Cocaine stimulates the human cardiovascular system via a central mechanism of action. Circulation. 1999;100:497–502. doi: 10.1161/01.CIR.100.5.497. PubMed DOI

Fowler J.S., Ding Y.S., Volkow N.D., Martin T., MacGregor R.R., Dewey S., King P., Pappas N., Alexoff D., Shea C., et al. PET studies of cocaine inhibition of myocardial norepinephrine uptake. Synapse. 1994;16:312–317. doi: 10.1002/syn.890160407. PubMed DOI

Heesch C.M., Wilhelm C.R., Ristich J., Adnane J., Bontempo F.A., Wagner W.R. Cocaine activates platelets and increases the formation of circulating platelet containing microaggregates in humans. Heart. 2000;83:688–695. doi: 10.1136/heart.83.6.688. PubMed DOI PMC

McCord J., Jneid H., Hollander J.E., de Lemos J.A., Cercek B., Hsue P., Gibler W.B., Ohman E.M., Drew B., Philippides G., et al. Management of cocaine-associated chest pain and myocardial infarction: A scientific statement from the American Heart Association Acute Cardiac Care Committee of the Council on Clinical Cardiology. Circulation. 2008;117:1897–1907. doi: 10.1161/CIRCULATIONAHA.107.188950. PubMed DOI

Hobbs W.E., Moore E.E., Penkala R.A., Bolgiano D.D., López J.A. Cocaine and specific cocaine metabolites induce von Willebrand factor release from endothelial cells in a tissue-specific manner. Arterioscler. Thromb. Vasc. Biol. 2013;33:1230–1237. doi: 10.1161/ATVBAHA.113.301436. PubMed DOI PMC

Arner P. Catecholamine-induced lipolysis in obesity. Int. J. Obes. Relat. Metab. Disord. 1999;23((Suppl. 1)):10–13. doi: 10.1038/sj.ijo.0800789. PubMed DOI

Diepvens K., Westerterp K.R., Westerterp-Plantenga M.S. Obesity and thermogenesis related to the consumption of caffeine, ephedrine, capsaicin, and green tea. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2007;292:R77–R85. doi: 10.1152/ajpregu.00832.2005. PubMed DOI

Robertson D., Frölich J.C., Carr R.K., Watson J.T., Hollifield J.W., Shand D.G., Oates J.A. Effects of caffeine on plasma renin activity, catecholamines and blood pressure. N. Engl. J. Med. 1978;298:181–186. doi: 10.1056/NEJM197801262980403. PubMed DOI

Dulloo A.G., Duret C., Rohrer D., Girardier L., Mensi N., Fathi M., Chantre P., Vandermander J. Efficacy of a green tea extract rich in catechin polyphenols and caffeine in increasing 24-h energy expenditure and fat oxidation in humans. Am. J. Clin. Nutr. 1999;70:1040–1045. doi: 10.1093/ajcn/70.6.1040. PubMed DOI

Lin S.M., Wang S.W., Ho S.C., Tang Y.L. Protective effect of green tea (−)-epigallocatechin-3-gallate against the monoamine oxidase B enzyme activity increase in adult rat brains. Nutrition. 2010;26:1195–1200. doi: 10.1016/j.nut.2009.11.022. PubMed DOI

Hou W.C., Lin R.D., Chen C.T., Lee M.H. Monoamine oxidase B (MAO-B) inhibition by active principles from Uncaria rhynchophylla. J. Ethnopharmacol. 2005;100:216–220. doi: 10.1016/j.jep.2005.03.017. PubMed DOI

Borchardt R.T., Huber J.A. Catechol O-methyltransferase. 5. Structure-activity relationships for inhibition by flavonoids. J. Med. Chem. 1975;18:120–122. doi: 10.1021/jm00235a030. PubMed DOI

Ludy M.-J., Moore G.E., Mattes R.D. The effects of capsaicin and capsiate on energy balance: Critical review and meta-analyses of studies in humans. Chem. Senses. 2012;37:103–121. doi: 10.1093/chemse/bjr100. PubMed DOI PMC

Tremblay A., Arguin H., Panahi S. Capsaicinoids: A spicy solution to the management of obesity? Int. J. Obes. 2016;40:1198–1204. doi: 10.1038/ijo.2015.253. PubMed DOI

Watanabe T., Kawada T., Kato T., Harada T., Iwai K. Effects of capsaicin analogs on adrenal catecholamine secretion in rats. Life Sci. 1994;54:369–374. doi: 10.1016/0024-3205(94)00793-4. PubMed DOI

Watanabe T., Kawada T., Iwai K. Effect of capsaicin pretreatment on capsaicin-induced catecholamine secretion from the adrenal medulla in rats. Proc. Soc. Exp. Biol. Med. 1988;187:370–374. doi: 10.3181/00379727-187-3-RC1. PubMed DOI

Osaka T., Lee T.H., Kobayashi A., Inoue S., Kimura S. Thermogenesis mediated by a capsaicin-sensitive area in the ventrolateral medulla. Neuroreport. 2000;11:2425–2428. doi: 10.1097/00001756-200008030-00017. PubMed DOI

Tsatsakis A.M., Docea A.O., Tsitsimpikou C. New challenges in risk assessment of chemicals when simulating real exposure scenarios; simultaneous multi-chemicals’ low dose exposure. Food Chem. Toxicol. 2016;96:174–176. doi: 10.1016/j.fct.2016.08.011. PubMed DOI

Georgiadis N., Tsarouhas K., Dorne J.-L.C.M., Kass G.E.N., Laspa P., Toutouzas K., Koulaouzidou E.A., Kouretas D., Tsitsimpikou C. Cardiotoxicity of Chemical Substances: An Emerging Hazard Class. J. Cardiovasc. Dev. Dis. 2022;9:226. doi: 10.3390/jcdd9070226. PubMed DOI PMC

Poyatos L., Torres A., Papaseit E., Pérez-Mañá C., Hladun O., Núñez-Montero M., de la Rosa G., Torrens M., Fuster D., Muga R., et al. Abuse Potential of Cathinones in Humans: A Systematic Review. J. Clin. Med. 2022;11:1004. doi: 10.3390/jcm11041004. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...