Natural Sympathomimetic Drugs: From Pharmacology to Toxicology
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, přehledy, práce podpořená grantem
Grantová podpora
2020-1-CZ01-KA203-078218.
European Union
PubMed
36551221
PubMed Central
PMC9775352
DOI
10.3390/biom12121793
PII: biom12121793
Knihovny.cz E-zdroje
- Klíčová slova
- adrenaline, cathinone, cocaine, ephedrine, trace amines,
- MeSH
- aminy MeSH
- kokain * farmakologie MeSH
- lidé MeSH
- noradrenalin MeSH
- sympatomimetika * farmakologie MeSH
- tyramin farmakologie MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
- Názvy látek
- aminy MeSH
- kokain * MeSH
- noradrenalin MeSH
- sympatomimetika * MeSH
- tyramin MeSH
Sympathomimetic agents are a group of chemical compounds that are able to activate the sympathetic nervous system either directly via adrenergic receptors or indirectly by increasing endogenous catecholamine levels or mimicking their intracellular signaling pathways. Compounds from this group, both used therapeutically or abused, comprise endogenous catecholamines (such as adrenaline and noradrenaline), synthetic amines (e.g., isoproterenol and dobutamine), trace amines (e.g., tyramine, tryptamine, histamine and octopamine), illicit drugs (e.g., ephedrine, cathinone, and cocaine), or even caffeine and synephrine. In addition to the effects triggered by stimulation of the sympathetic system, the discovery of trace amine associated receptors (TAARs) in humans brought new insights about their sympathomimetic pharmacology and toxicology. Although synthetic sympathomimetic agents are mostly seen as toxic, natural sympathomimetic agents are considered more complacently in the terms of safety in the vision of the lay public. Here, we aim to discuss the pharmacological and mainly toxicological aspects related to sympathomimetic natural agents, in particular of trace amines, compounds derived from plants like ephedra and khat, and finally cocaine. The main purpose of this review is to give a scientific and updated view of those agents and serve as a reminder on the safety issues of natural sympathomimetic agents most used in the community.
Zobrazit více v PubMed
Westfall T.C. Sympathomimetic Drugs and Adrenergic Receptor Antagonists. In: Squire L.R., editor. Encyclopedia of Neuroscience. Academic Press; Oxford, UK: 2009. pp. 685–695. DOI
Goldstein S., Richards J.R. Sympathomimetic Toxicity. [(accessed on 2 September 2021)]; Available online: https://www.ncbi.nlm.nih.gov/books/NBK430757/
Horowitz A.J., Smith T., Frey D., Denault D. Sympathomimetics. [(accessed on 2 September 2021)]; Available online: https://www.ncbi.nlm.nih.gov/books/NBK546597/
Costa V., Carvalho F., Bastos M., Carvalho R., Carvalho M., Remiao F. Adrenaline and Noradrenaline: Partners and Actors in the Same Play. In: Contreras C.M., editor. Neurochemistry. Intech Open Access Publisher; London, UK: 2012. pp. 1–14.
Costa V.M., Carvalho F., Bastos M.L., Carvalho R.A., Carvalho M., Remião F. Contribution of catecholamine reactive intermediates and oxidative stress to the pathologic features of heart diseases. Curr. Med. Chem. 2011;18:2272–2314. doi: 10.2174/092986711795656081. PubMed DOI
Williams R.H., Erickson T., Broussard L.A. Evaluating Sympathomimetic Intoxication in an Emergency Setting. Laboratory. Medicine. 2000;31:497–508. doi: 10.1309/wvx1-6fpv-e2lc-b6yg. DOI
Burchett S.A., Hicks T.P. The mysterious trace amines: Protean neuromodulators of synaptic transmission in mammalian brain. Prog. Neurobiol. 2006;79:223–246. doi: 10.1016/j.pneurobio.2006.07.003. PubMed DOI
Zucchi R., Chiellini G., Scanlan T.S., Grandy D.K. Trace amine-associated receptors and their ligands. Br. J. Pharmacol. 2006;149:967–978. doi: 10.1038/sj.bjp.0706948. PubMed DOI PMC
Andersen G., Marcinek P., Sulzinger N., Schieberle P., Krautwurst D. Food sources and biomolecular targets of tyramine. Nutr. Rev. 2019;77:107–115. doi: 10.1093/nutrit/nuy036. PubMed DOI
Gwilt K.B., Gonzalez D.P., Olliffe N., Oller H., Hoffing R., Puzan M., El Aidy S., Miller G.M. Actions of Trace Amines in the Brain-Gut-Microbiome Axis via Trace Amine-Associated Receptor-1 (TAAR1) Cell. Mol. Neurobiol. 2020;40:191–201. doi: 10.1007/s10571-019-00772-7. PubMed DOI PMC
Roeder T. Chapter 1—Trace Amines: An Overview. In: Farooqui T., Farooqui A.A., editors. Trace Amines and Neurological Disorders. Academic Press; San Diego, CA, USA: 2016. pp. 3–9. DOI
Broadley K.J. The vascular effects of trace amines and amphetamines. Pharmacol. Ther. 2010;125:363–375. doi: 10.1016/j.pharmthera.2009.11.005. PubMed DOI
Gainetdinov R.R., Hoener M.C., Berry M.D. Trace Amines and Their Receptors. Pharmacol. Rev. 2018;70:549–620. doi: 10.1124/pr.117.015305. PubMed DOI
Ruiz-Capillas C., Herrero A.M. Impact of Biogenic Amines on Food Quality and Safety. Foods. 2019;8:62. doi: 10.3390/foods8020062. PubMed DOI PMC
Ten B.B., Damink C., Joosten H.M.L.J., Huis in ’t Veld J.H.J. Occurrence and formation of biologically active amines in foods. Int. J. Food Microbiol. 1990;11:73–84. doi: 10.1016/0168-1605(90)90040-c. PubMed DOI
Doeun D., Davaatseren M., Chung M.S. Biogenic amines in foods. Food Sci. Biotechnol. 2017;26:1463–1474. doi: 10.1007/s10068-017-0239-3. PubMed DOI PMC
Stratton J.E., Hutkins R.W., Taylor S.L. Biogenic Amines in Cheese and other Fermented Foods: A Review. J. Food Prot. 1991;54:460–470. doi: 10.4315/0362-028X-54.6.460. PubMed DOI
Marcobal A., de las Rivas B., Landete J.M., Tabera L., Muñoz R. Tyramine and Phenylethylamine Biosynthesis by Food Bacteria. Crit. Rev. Food Sci. Nutr. 2012;52:448–467. doi: 10.1080/10408398.2010.500545. PubMed DOI
Gardini F., Özogul Y., Suzzi G., Tabanelli G., Özogul F. Technological Factors Affecting Biogenic Amine Content in Foods: A Review. Front. Microbiol. 2016;7:1218. doi: 10.3389/fmicb.2016.01218. PubMed DOI PMC
Ferreira I.M., Pinho O. Biogenic amines in Portuguese traditional foods and wines. J. Food Prot. 2006;69:2293–2303. doi: 10.4315/0362-028X-69.9.2293. PubMed DOI
Majcherczyk J., Surówka K. Effects of onion or caraway on the formation of biogenic amines during sauerkraut fermentation and refrigerated storage. Food Chem. 2019;298:125083. doi: 10.1016/j.foodchem.2019.125083. PubMed DOI
Parente E., Martuscelli M., Gardini F., Grieco S., Crudele M.A., Suzzi G. Evolution of microbial populations and biogenic amine production in dry sausages produced in Southern Italy. J. Appl. Microbiol. 2001;90:882–891. doi: 10.1046/j.1365-2672.2001.01322.x. PubMed DOI
Mayr C.M., Schieberle P. Development of stable isotope dilution assays for the simultaneous quantitation of biogenic amines and polyamines in foods by LC-MS/MS. J. Agric. Food Chem. 2012;60:3026–3032. doi: 10.1021/jf204900v. PubMed DOI
Durlu-Özkaya F., Ayhan K., Vural N. Biogenic amines produced by Enterobacteriaceae isolated from meat products. Meat Sci. 2001;58:163–166. doi: 10.1016/S0309-1740(00)00144-3. PubMed DOI
Restuccia D., Spizzirri U.G., Parisi O.I., Cirillo G., Picci N. Brewing effect on levels of biogenic amines in different coffee samples as determined by LC-UV. Food Chem. 2015;175:143–150. doi: 10.1016/j.foodchem.2014.11.134. PubMed DOI
Martuscelli M., Arfelli G., Manetta A.C., Suzzi G. Biogenic amines content as a measure of the quality of wines of Abruzzo (Italy) Food Chem. 2013;140:590–597. doi: 10.1016/j.foodchem.2013.01.008. PubMed DOI
Zazzu C., Addis M., Caredda M., Scintu M.F., Piredda G., Sanna G. Biogenic Amines in Traditional Fiore Sardo PDO Sheep Cheese: Assessment, Validation and Application of an RP-HPLC-DAD-UV Method. Separations. 2019;6:11. doi: 10.3390/separations6010011. DOI
Bartkiene E., Krungleviciute V., Juodeikiene G., Vidmantiene D., Maknickiene Z. Solid state fermentation with lactic acid bacteria to improve the nutritional quality of lupin and soya bean. J. Sci. Food Agric. 2015;95:1336–1342. doi: 10.1002/jsfa.6827. PubMed DOI
Valsamaki K., Michaelidou A., Polychroniadou A. Biogenic amine production in Feta cheese. Food Chem. 2000;71:259–266. doi: 10.1016/S0308-8146(00)00168-0. DOI
Lindemann L., Meyer C.A., Jeanneau K., Bradaia A., Ozmen L., Bluethmann H., Bettler B., Wettstein J.G., Borroni E., Moreau J.L., et al. Trace amine-associated receptor 1 modulates dopaminergic activity. J. Pharmacol. Exp. Ther. 2008;324:948–956. doi: 10.1124/jpet.107.132647. PubMed DOI
Khan M.Z., Nawaz W. The emerging roles of human trace amines and human trace amine-associated receptors (hTAARs) in central nervous system. Biomed. Pharmacother. 2016;83:439–449. doi: 10.1016/j.biopha.2016.07.002. PubMed DOI
Narang D., Tomlinson S., Holt A., Mousseau D.D., Baker G.B. Trace Amines and Their Relevance to Psychiatry and Neurology: A Brief Overview. Bull. Clin. Psychopharmacol. 2011;21:73–79. doi: 10.5350/KPB-BCP201121113. DOI
Borowsky B., Adham N., Jones K.A., Raddatz R., Artymyshyn R., Ogozalek K.L., Durkin M.M., Lakhlani P.P., Bonini J.A., Pathirana S., et al. Trace amines: Identification of a family of mammalian G protein-coupled receptors. Proc. Natl. Acad. Sci. USA. 2001;98:8966–8971. doi: 10.1073/pnas.151105198. PubMed DOI PMC
Bunzow J.R., Sonders M.S., Arttamangkul S., Harrison L.M., Zhang G., Quigley D.I., Darland T., Suchland K.L., Pasumamula S., Kennedy J.L., et al. Amphetamine, 3,4-Methylenedioxymethamphetamine, Lysergic Acid Diethylamide, and Metabolites of the Catecholamine Neurotransmitters Are Agonists of a Rat Trace Amine Receptor. Mol. Pharmacol. 2001;60:1181–1188. doi: 10.1124/mol.60.6.1181. PubMed DOI
Kleinau G., Pratzka J., Nürnberg D., Grüters A., Führer-Sakel D., Krude H., Köhrle J., Schöneberg T., Biebermann H. Differential modulation of Beta-adrenergic receptor signaling by trace amine-associated receptor 1 agonists. PLoS ONE. 2011;6:e27073. doi: 10.1371/journal.pone.0027073. PubMed DOI PMC
Frascarelli S., Ghelardoni S., Chiellini G., Vargiu R., Ronca-Testoni S., Scanlan T.S., Grandy D.K., Zucchi R. Cardiac effects of trace amines: Pharmacological characterization of trace amine-associated receptors. Eur. J. Pharmacol. 2008;587:231–236. doi: 10.1016/j.ejphar.2008.03.055. PubMed DOI
Liu J., Wu R., Li J.X. TAAR1 and Psychostimulant Addiction. Cell. Mol. Neurobiol. 2020;40:229–238. doi: 10.1007/s10571-020-00792-8. PubMed DOI PMC
Pei Y., Asif-Malik A., Canales J.J. Trace Amines and the Trace Amine-Associated Receptor 1: Pharmacology, Neurochemistry, and Clinical Implications. Front. Neurosci. 2016;10:148. doi: 10.3389/fnins.2016.00148. PubMed DOI PMC
Babusyte A., Kotthoff M., Fiedler J., Krautwurst D. Biogenic amines activate blood leukocytes via trace amine-associated receptors TAAR1 and TAAR2. J. Leukoc. Biol. 2013;93:387–394. doi: 10.1189/jlb.0912433. PubMed DOI
Christian S.L., Berry M.D. Trace Amine-Associated Receptors as Novel Therapeutic Targets for Immunomodulatory Disorders. Front. Pharmacol. 2018;9:680. doi: 10.3389/fphar.2018.00680. PubMed DOI PMC
Vitale S., Strisciuglio C., Pisapia L., Miele E., Barba P., Vitale A., Cenni S., Bassi V., Maglio M., Del Pozzo G., et al. Cytokine production profile in intestinal mucosa of paediatric inflammatory bowel disease. PLoS ONE. 2017;12:e0182313. doi: 10.1371/journal.pone.0182313. PubMed DOI PMC
Latapy C., Beaulieu J.M. β-Arrestins in the central nervous system. Prog. Mol. Biol. Transl. Sci. 2013;118:267–295. doi: 10.1016/b978-0-12-394440-5.00011-5. PubMed DOI
Espinoza S., Masri B., Salahpour A., Gainetdinov R.R. BRET approaches to characterize dopamine and TAAR1 receptor pharmacology and signaling. Methods Mol. Biol. 2013;964:107–122. doi: 10.1007/978-1-62703-251-3_8. PubMed DOI
Kano H., Toyama Y., Imai S., Iwahashi Y., Mase Y., Yokogawa M., Osawa M., Shimada I. Structural mechanism underlying G protein family-specific regulation of G protein-gated inwardly rectifying potassium channel. Nat. Commun. 2019;10:2008. doi: 10.1038/s41467-019-10038-x. PubMed DOI PMC
Xie Z., Miller G.M. Trace Amine-Associated Receptor 1 Is a Modulator of the Dopamine Transporter. J. Pharmacol. Exp. Ther. 2007;321:128. doi: 10.1124/jpet.106.117382. PubMed DOI
Xie Z., Westmoreland S.V., Bahn M.E., Chen G.-L., Yang H., Vallender E.J., Yao W.-D., Madras B.K., Miller G.M. Rhesus Monkey Trace Amine-Associated Receptor 1 Signaling: Enhancement by Monoamine Transporters and Attenuation by the D2 Autoreceptor in Vitro. J. Pharmacol. Exp. Ther. 2007;321:116. doi: 10.1124/jpet.106.116863. PubMed DOI
Grandy D.K. Trace amine-associated receptor 1-Family archetype or iconoclast? Pharmacol. Ther. 2007;116:355–390. doi: 10.1016/j.pharmthera.2007.06.007. PubMed DOI PMC
Herbert A.A., Kidd E.J., Broadley K.J. Dietary trace amine-dependent vasoconstriction in porcine coronary artery. Br. J. Pharmacol. 2008;155:525–534. doi: 10.1038/bjp.2008.286. PubMed DOI PMC
Koh A.H.W., Chess-Williams R., Lohning A.E. Differential mechanisms of action of the trace amines octopamine, synephrine and tyramine on the porcine coronary and mesenteric artery. Sci. Rep. 2019;9:10925. doi: 10.1038/s41598-019-46627-5. PubMed DOI PMC
Broadley K.J., Akhtar Anwar M., Herbert A.A., Fehler M., Jones E.M., Davies W.E., Kidd E.J., Ford W.R. Effects of dietary amines on the gut and its vasculature. Br. J. Nutr. 2009;101:1645–1652. doi: 10.1017/S0007114508123431. PubMed DOI
Collins J.D., Noerrung B., Budka H., Andreoletti O., Buncic S., Griffin J., Hald T., Havelaar A., Hope J., Klein G., et al. Scientific Opinion on risk based control of biogenic amine formation in fermented foods. EFSA J. 2011;9:2393. doi: 10.2903/j.efsa.2011.2393. DOI
Linares D.M., del Rio B., Redruello B., Ladero V., Martin M.C., Fernandez M., Ruas-Madiedo P., Alvarez M.A. Comparative analysis of the in vitro cytotoxicity of the dietary biogenic amines tyramine and histamine. Food Chem. 2016;197:658–663. doi: 10.1016/j.foodchem.2015.11.013. PubMed DOI
Del Rio B., Redruello B., Linares D.M., Ladero V., Fernandez M., Martin M.C., Ruas-Madiedo P., Alvarez M.A. The dietary biogenic amines tyramine and histamine show synergistic toxicity towards intestinal cells in culture. Food Chem. 2017;218:249–255. doi: 10.1016/j.foodchem.2016.09.046. PubMed DOI
Victor L., Marina C.-E., Maria F., Miguel A.A. Toxicological Effects of Dietary Biogenic Amines. Curr. Nutr. Food Sci. 2010;6:145–156. doi: 10.2174/157340110791233256. DOI
Ngo A.S., Ho R.Y., Olson K.R. Phenelzine-induced myocardial injury: A case report. J. Med. Toxicol. 2010;6:431–434. doi: 10.1007/s13181-010-0101-y. PubMed DOI PMC
Costa M.R., Glória M.B.A. Migraine and Diet. In: Caballero B., editor. Encyclopedia of Food Sciences and Nutrition. 2nd ed. Academic Press; Oxford, UK: 2003. pp. 3940–3947. DOI
Gillman P.K. Monoamine Oxidase Inhibitors: A Review Concerning Dietary Tyramine and Drug Interactions. PsychoTrop. Comment. 2016;16:1–90.
Watson D.G., Midgley J.M., Chen R.N., Huang W., Bain G.M., McDonald N.M., Reid J.L., McGhee C.N. Analysis of biogenic amines and their metabolites in biological tissues and fluids by gas chromatography-negative ion chemical ionization mass spectrometry (GC-NICIMS) J. Pharm. Biomed. Anal. 1990;8:899–904. doi: 10.1016/0731-7085(90)80139-G. PubMed DOI
Rossato L.G., de Pinho P.G., Silva R., Carmo H., Carvalho F., Bastos M.e.L., Costa V.M., Remião F. Development and validation of a GC/IT-MS method for simultaneous quantitation of para and meta-synephrine in biological samples. J. Pharm. Biomed. Anal. 2010;52:721–726. doi: 10.1016/j.jpba.2010.02.022. PubMed DOI
Rossato L.G., Costa V.M., Limberger R.P., Bastos M.e.L., Remião F. Synephrine: From trace concentrations to massive consumption in weight-loss. Food Chem. Toxicol. 2011;49:8–16. doi: 10.1016/j.fct.2010.11.007. PubMed DOI
Stohs S.J., Badmaev V. A Review of Natural Stimulant and Non-stimulant Thermogenic Agents. Phytother. Res. 2016;30:732–740. doi: 10.1002/ptr.5583. PubMed DOI PMC
Stohs S.J., Shara M., Ray S.D. p-Synephrine, ephedrine, p-octopamine and m-synephrine: Comparative mechanistic, physiological and pharmacological properties. Phytother. Res. 2020;34:1838–1846. doi: 10.1002/ptr.6649. PubMed DOI PMC
Fugh-Berman A., Myers A. Citrus aurantium, an ingredient of dietary supplements marketed for weight loss: Current status of clinical and basic research. Exp. Biol. Med. 2004;229:698–704. doi: 10.1177/153537020422900802. PubMed DOI
Dragull K., Breksa A.P., Cain B. Synephrine content of juice from Satsuma mandarins (Citrus unshiu Marcovitch) J. Agric. Food Chem. 2008;56:8874–8878. doi: 10.1021/jf801225n. PubMed DOI
Tang Q., Zhang R., Zhou J., Zhao K., Lu Y., Zheng Y., Wu C., Chen F., Mu D., Ding Z., et al. The levels of bioactive ingredients in Citrus aurantium L. at different harvest periods and antioxidant effects on H. J. Sci. Food Agric. 2021;101:1479–1490. doi: 10.1002/jsfa.10761. PubMed DOI
Avula B., Upparapalli S.K., Navarrete A., Khan I.A. Simultaneous quantification of adrenergic amines and flavonoids in C. aurantium, various Citrus species, and dietary supplements by liquid chromatography. J. AOAC Int. 2005;88:1593–1606. doi: 10.1093/jaoac/88.6.1593. PubMed DOI
Hibino T., Yuzurihara M., Kase Y., Takeda A. Synephrine, a component of Evodiae Fructus, constricts isolated rat aorta via adrenergic and serotonergic receptors. J. Pharmacol. Sci. 2009;111:73–81. doi: 10.1254/jphs.09077FP. PubMed DOI
Arbo M.D., Larentis E.R., Linck V.M., Aboy A.L., Pimentel A.L., Henriques A.T., Dallegrave E., Garcia S.C., Leal M.B., Limberger R.P. Concentrations of p-synephrine in fruits and leaves of Citrus species (Rutaceae) and the acute toxicity testing of Citrus aurantium extract and p-synephrine. Food Chem. Toxicol. 2008;46:2770–2775. doi: 10.1016/j.fct.2008.04.037. PubMed DOI
Pellati F., Benvenuti S., Melegari M., Firenzuoli F. Determination of adrenergic agonists from extracts and herbal products of Citrus aurantium L. var. amara by LC. J. Pharm. Biomed. Anal. 2002;29:1113–1119. doi: 10.1016/S0731-7085(02)00153-X. PubMed DOI
Pellati F., Benvenuti S., Melegari M. High-performance liquid chromatography methods for the analysis of adrenergic amines and flavanones in Citrus aurantium L. var. amara. Phytochem. Anal. 2004;15:220–225. doi: 10.1002/pca.771. PubMed DOI
Allison D.B., Cutter G., Poehlman E.T., Moore D.R., Barnes S. Exactly which synephrine alkaloids does Citrus aurantium (bitter orange) contain? Int. J. Obes. 2005;29:443–446. doi: 10.1038/sj.ijo.0802879. PubMed DOI
Nelson B.C., Putzbach K., Sharpless K.E., Sander L.C. Mass spectrometric determination of the predominant adrenergic protoalkaloids in bitter orange (Citrus aurantium) J. Agric. Food Chem. 2007;55:9769–9775. doi: 10.1021/jf072030s. PubMed DOI
Andrade A., Schmitt G., Rossato L.G., Russowsky D., Limberger R.P. Gas Chromatographic Method for Analysis of p-Synephrine in Citrus aurantium L. Products. Chromatographia. 2009;69:225–229. doi: 10.1365/s10337-009-0991-5. DOI
Ma G., Bavadekar S.A., Schaneberg B.T., Khan I.A., Feller D.R. Effects of synephrine and beta-phenethylamine on human alpha-adrenoceptor subtypes. Planta Med. 2010;76:981–986. doi: 10.1055/s-0029-1240884. PubMed DOI
Penzak S.R., Jann M.W., Cold J.A., Hon Y.Y., Desai H.D., Gurley B.J. Seville (sour) orange juice: Synephrine content and cardiovascular effects in normotensive adults. J. Clin. Pharmacol. 2001;41:1059–1063. doi: 10.1177/00912700122012652. PubMed DOI
Bent S., Padula A., Neuhaus J. Safety and efficacy of Citrus aurantium for weight loss. Am. J. Cardiol. 2004;94:1359–1361. doi: 10.1016/j.amjcard.2004.07.137. PubMed DOI
Pellati F., Benvenuti S., Melegari M. Enantioselective LC analysis of synephrine in natural products on a protein-based chiral stationary phase. J. Pharm. Biomed. Anal. 2005;37:839–849. doi: 10.1016/j.jpba.2004.09.008. PubMed DOI
Mercolini L., Mandrioli R., Trerè T., Bugamelli F., Ferranti A., Raggi M.A. Fast CE analysis of adrenergic amines in different parts of Citrus aurantium fruit and dietary supplements. J. Sep. Sci. 2010;33:2520–2527. doi: 10.1002/jssc.201000221. PubMed DOI
Zheng G., Chao Y., Liu M., Yang Y., Zhang D., Wang K., Tao Y., Zhang J., Li Y., Wei M. Evaluation of dynamic changes in the bioactive components in Citri Reticulatae Pericarpium (Citrus reticulata ‘Chachi’) under different harvesting and drying conditions. J. Sci. Food Agric. 2021;101:3280–3289. doi: 10.1002/jsfa.10957. PubMed DOI
Tette P.A., Guidi L.R., Bastos E.M., Fernandes C., Gloria M.B. Synephrine—A potential biomarker for orange honey authenticity. Food Chem. 2017;229:527–533. doi: 10.1016/j.foodchem.2017.02.108. PubMed DOI
D’Andrea G., Terrazzino S., Fortin D., Farruggio A., Rinaldi L., Leon A. HPLC electrochemical detection of trace amines in human plasma and platelets and expression of mRNA transcripts of trace amine receptors in circulating leukocytes. Neurosci. Lett. 2003;346:89–92. doi: 10.1016/S0304-3940(03)00573-1. PubMed DOI
Ibrahim K.E., Couch M.W., Williams C.M., Budd M.B., Yost R.A., Midgley J.M. Quantitative measurement of octopamines and synephrines in urine using capillary column gas chromatography negative ion chemical ionization mass spectrometry. Anal. Chem. 1984;56:1695–1699. doi: 10.1021/ac00273a037. PubMed DOI
Rang H.P., Dale M.M., Ritter J.M., Flower R.J., Henderson G. Rang & Dale: Farmacologia. 7th ed. Elsevier; Rio de Janeiro, Brazil: 2011.
Hayat K. Citrus: Molecular Phylogeny, Antioxidant Properties and Medicinal Uses. Volume 1 Nova Science Publishers; New York, NY, USA: 2014.
Kim K.W., Kim H.D., Jung J.S., Woo R.S., Kim H.S., Suh H.W., Kim Y.H., Song D.K. Characterization of antidepressant-like effects of p-synephrine stereoisomers. Naunyn-Schmiedeb. Arch. Pharmacol. 2001;364:21–26. doi: 10.1007/s002100100416. PubMed DOI
Song D.K., Suh H.W., Jung J.S., Wie M.B., Son K.H., Kim Y.H. Antidepressant-like effects of p-synephrine in mouse models of immobility tests. Neurosci. Lett. 1996;214:107–110. doi: 10.1016/0304-3940(96)12895-0. PubMed DOI
Miller G.M. The emerging role of trace amine-associated receptor 1 in the functional regulation of monoamine transporters and dopaminergic activity. J. Neurochem. 2011;116:164–176. doi: 10.1111/j.1471-4159.2010.07109.x. PubMed DOI PMC
D’Andrea G., D’Arrigo A., Carbonare M.D., Leon A. Pathogenesis of migraine: Role of neuromodulators. Headache. 2012;52:1155–1163. doi: 10.1111/j.1526-4610.2012.02168.x. PubMed DOI
Koncz D., Tóth B., Bahar M.A., Roza O., Csupor D. The Safety and Efficacy of Citrus aurantium (Bitter Orange) Extracts and p-Synephrine: A Systematic Review and Meta-Analysis. Nutrients. 2022;14:4019. doi: 10.3390/nu14194019. PubMed DOI PMC
Pawar R.S., Grundel E. Overview of regulation of dietary supplements in the USA and issues of adulteration with phenethylamines (PEAs) Drug Test. Anal. 2017;9:500–517. doi: 10.1002/dta.1980. PubMed DOI
Müller L.S., Moreira A.P.L., Muratt D.T., Viana C., de Carvalho L.M. An Ultra-High Performance Liquid Chromatography-Electrospray Tandem Mass Spectrometric Method for Screening and Simultaneous Determination of Anorexic, Anxiolytic, Antidepressant, Diuretic, Laxative and Stimulant Drugs in Dietary Supplements Marketed for Weight Loss. J. Chromatogr. Sci. 2019;57:528–540. doi: 10.1093/chromsci/bmz025. PubMed DOI
Rossato L.G., Costa V.M., de Pinho P.G., Carvalho F., de Lourdes Bastos M., Remião F. Structural isomerization of synephrine influences its uptake and ensuing glutathione depletion in rat-isolated cardiomyocytes. Arch. Toxicol. 2011;85:929–939. doi: 10.1007/s00204-010-0630-9. PubMed DOI
Ribeiro D.L., Machado A.R.T., da Silva Machado C., Santos P.W.D.S., Aissa A.F., Barcelos G.R.M., Antunes L.M.G. Analysis of the cytotoxic, genotoxic, mutagenic, and pro-oxidant effect of synephrine, a component of thermogenic supplements, in human hepatic cells in vitro. Toxicology. 2019;422:25–34. doi: 10.1016/j.tox.2019.04.010. PubMed DOI
Arbo M.D., Schmitt G.C., Limberger M.F., Charão M.F., Moro A.M., Ribeiro G.L., Dallegrave E., Garcia S.C., Leal M.B., Limberger R.P. Subchronic toxicity of Citrus aurantium L. (Rutaceae) extract and p-synephrine in mice. Regul. Toxicol. Pharmacol. 2009;54:114–117. doi: 10.1016/j.yrtph.2009.03.001. PubMed DOI
Suntar I., Khan H., Patel S., Celano R., Rastrelli L. An Overview on Citrus aurantium L.: Its Functions as Food Ingredient and Therapeutic Agent. Oxid. Med. Cell. Longev. 2018;2018:7864269. doi: 10.1155/2018/7864269. PubMed DOI PMC
Koh A.H.W., Chess-Williams R., Lohning A.E. Renal artery responses to trace amines: Multiple and differential mechanisms of action. Life Sci. 2021;277:119532. doi: 10.1016/j.lfs.2021.119532. PubMed DOI
NHPD Guidelines for the Use of Synephrine in Natural Health Products. Canada. 2010. [(accessed on 19 July 2020)]. Available online: https://www.canada.ca/en/health-canada/services/drugs-health-products/natural-non-prescription/legislation-guidelines/guidance-documents/notice-use-synephrine.html.
Sawler S. Synephrine, Octopamine and Caffeine Health Risk Assessment (HRA) Report, Canada. 2011. [(accessed on 18 July 2020)]. Available online: https://www.semanticscholar.org/paper/Synephrine-%2C-Octopamine-and-Caffeine-Health-Risk-(-Sawler/7c15c4a3ef32394284da0d29f412ba4b51b13bf6.
ANSES French Agency for Food, Environmental and Occupational Health & Safety. Opinion of the French Agency for Food, Environmental and Occupational Health & Safety on the Risks Associated with the Presence in Food Supplements of P-Synephrine or Ingredients Obtained from Citrus spp. Fruits Containing This Substance France. 2014. [(accessed on 18 July 2020)]. Available online: https://www.anses.fr/en/content/opinion-french-agency-food-environmental-and-occupational-health-safety-risks-associated-1.
Nykamp D.L., Fackih M.N., Compton A.L. Possible association of acute lateral-wall myocardial infarction and bitter orange supplement. Ann. Pharmacother. 2004;38:812–816. doi: 10.1345/aph.1D473. PubMed DOI
Bouchard N.C., Howland M.A., Greller H.A., Hoffman R.S., Nelson L.S. Ischemic stroke associated with use of an ephedra-free dietary supplement containing synephrine. Mayo Clin. Proc. 2005;80:541–545. doi: 10.4065/80.4.541. PubMed DOI
Gange C.A., Madias C., Felix-Getzik E.M., Weintraub A.R., Estes N.A. Variant angina associated with bitter orange in a dietary supplement. Mayo Clin. Proc. 2006;81:545–548. doi: 10.4065/81.4.545. PubMed DOI
Burke J., Seda G., Allen D., Knee T.S. A case of severe exercise-induced rhabdomyolysis associated with a weight-loss dietary supplement. Mil. Med. 2007;172:656–658. doi: 10.7205/MILMED.172.6.656. PubMed DOI
Holmes R.O., Tavee J. Vasospasm and stroke attributable to ephedra-free xenadrine: Case report. Mil. Med. 2008;173:708–710. doi: 10.7205/MILMED.173.7.708. PubMed DOI
Stephensen T.A., Sarlay R. Ventricular fibrillation associated with use of synephrine containing dietary supplement. Mil. Med. 2009;174:1313–1319. doi: 10.7205/MILMED-D-01-5009. PubMed DOI
Thomas J.E., Munir J.A., McIntyre P.Z., Ferguson M.A. STEMI in a 24-year-old man after use of a synephrine-containing dietary supplement: A case report and review of the literature. Tex. Heart Inst. J. 2009;36:586–590. PubMed PMC
Retamero C., Rivera T., Murphy K. “Ephedra-free” diet pill-induced psychosis. Psychosomatics. 2011;52:579–582. doi: 10.1016/j.psym.2011.06.003. PubMed DOI
Chung H., Kwon S.W., Kim T.H., Yoon J.H., Ma D.W., Park Y.M., Hong B.K. Synephrine-containing dietary supplement precipitating apical ballooning syndrome in a young female. Korean J. Intern. Med. 2013;28:356–360. doi: 10.3904/kjim.2013.28.3.356. PubMed DOI PMC
Doctorian T., Do B. Ascending aortic dissection in a young patient using a synephrine-containing workout supplement. J. Cardiol. Cases. 2017;15:150–152. doi: 10.1016/j.jccase.2016.12.008. PubMed DOI PMC
Unnikrishnan D., Annam R., Jacob A., Thyagarajan B., Farrugia P. STEMI in a Young Male after Use of Synephrine-Containing Dietary Supplement. Case Rep. Cardiol. 2018;2018:7074104. doi: 10.1155/2018/7074104. PubMed DOI PMC
González-Juárez D.E., Escobedo-Moratilla A., Flores J., Hidalgo-Figueroa S., Martínez-Tagüeña N., Morales-Jiménez J., Muñiz-Ramírez A., Pastor-Palacios G., Pérez-Miranda S., Ramírez-Hernández A., et al. A review of the ephedra genus: Distribution, ecology, ethnobotany, phytochemistry and pharmacological properties. Molecules. 2020;25:3283. doi: 10.3390/molecules25143283. PubMed DOI PMC
Abourashed E.A., El-Alfy A.T., Khan I.A., Walker L. Ephedra in perspective-a current review. Phytother. Res. 2003;17:703–712. doi: 10.1002/ptr.1337. PubMed DOI
Palamar J. How ephedrine escaped regulation in the United States: A historical review of misuse and associated policy. Health Policy. 2011;99:1–9. doi: 10.1016/j.healthpol.2010.07.007. PubMed DOI
Miao S.M., Zhang Q., Bi X.B., Cui J.L., Wang M.L. A review of the phytochemistry and pharmacological activities of Ephedra herb. Chin. J. Nat. Med. 2020;18:321–344. doi: 10.1016/S1875-5364(20)30040-6. PubMed DOI
Lv M., Sun J., Wang M., Huang W., Fan H., Xu F., Zhang Z. GC-MS based metabolomics study of stems and roots of Ephedra sinica. J. Pharm. Biomed. Anal. 2015;114:49–52. doi: 10.1016/j.jpba.2015.04.035. PubMed DOI
Ma G., Bavadekar S.A., Davis Y.M., Lalchandani S.G., Nagmani R., Schaneberg B.T., Khan I.A., Feller D.R. Pharmacological Effects of Ephedrine Alkaloids on Human α1- and α2-Adrenergic Receptor Subtypes. J. Pharmacol. Exp. Ther. 2007;322:214–221. doi: 10.1124/jpet.107.120709. PubMed DOI
Alsufyani H.A., Docherty J.R. Direct and indirect effects of ephedrine on heart rate and blood pressure in vehicle-treated and sympathectomised male rats. Eur. J. Pharmacol. 2018;825:34–38. doi: 10.1016/j.ejphar.2018.02.021. PubMed DOI
Li Q., Bian L., Zhao X., Gao X., Zheng J., Li Z., Zhang Y., Jiang R., Zheng X. Immobilised histidine tagged β2-adrenoceptor oriented by a diazonium salt reaction and its application in exploring drug-protein interaction using ephedrine and pseudoephedrine as probes. PLoS ONE. 2014;9:e94955. doi: 10.1371/journal.pone.0094955. PubMed DOI PMC
Vansal S.S., Feller D.R. Direct effects of ephedrine isomers on human beta-adrenergic receptor subtypes. Biochem. Pharmacol. 1999;58:807–810. doi: 10.1016/S0006-2952(99)00152-5. PubMed DOI
De Matteis R., Arch J.R., Petroni M.L., Ferrari D., Cinti S., Stock M.J. Immunohistochemical identification of the beta(3)-adrenoceptor in intact human adipocytes and ventricular myocardium: Effect of obesity and treatment with ephedrine and caffeine. Int. J. Obes. Relat. Metab. Disord. 2002;26:1442–1450. doi: 10.1038/sj.ijo.0802148. PubMed DOI
Bogacka I., Gettys T.W., de Jonge L., Nguyen T., Smith J.M., Xie H., Greenway F., Smith S.R. The Effect of β-Adrenergic and Peroxisome Proliferator—Activated Receptor-γ Stimulation on Target Genes Related to Lipid Metabolism in Human Subcutaneous Adipose Tissue. Diabetes Care. 2007;30:1179–1186. doi: 10.2337/dc06-1962. PubMed DOI
Kang J.W., Nam D., Kim K.H., Huh J.-E., Lee J.-D. Effect of Gambisan on the Inhibition of Adipogenesis in 3T3-L1 Adipocytes. Evid. Based Complement. Altern. Med. 2013;2013:789067. doi: 10.1155/2013/789067. PubMed DOI PMC
Rufino A.T., Costa V.M., Carvalho F., Fernandes E. Flavonoids as antiobesity agents: A review. Med. Res. Rev. 2021;41:556–585. doi: 10.1002/med.21740. PubMed DOI
Xiu L.M., Miura A.B., Yamamoto K., Kobayashi T., Song Q.H., Kitamura H., Cyong J.C. Pancreatic islet regeneration by ephedrine in mice with streptozotocin-induced diabetes. Am. J. Chin. Med. 2001;29:493–500. doi: 10.1142/S0192415X01000514. PubMed DOI
Lee H.-W., Yang J.-Y., Lee H.-S. Quinoline-2-carboxylic acid isolated from Ephedra pachyclada and its structural derivatives show inhibitory effects against α-glucosidase and α-amylase. J. Korean Soc. Appl. Biol. Chem. 2014;57:441–444. doi: 10.1007/s13765-014-4156-3. DOI
Han H.Y., Huh J.I., Han S.R., Kang M.G., Yoon S., Han J.S., Lee B.S., Kim J.A., Min B.S. Assessing the safety of an Ephedrae Herba aqueous extract in rats: A repeat dose toxicity study. Regul. Toxicol. Pharmacol. 2018;94:144–151. doi: 10.1016/j.yrtph.2018.01.027. PubMed DOI
Laccourreye O., Werner A., Giroud J.P., Couloigner V., Bonfils P., Bondon-Guitton E. Benefits, limits and danger of ephedrine and pseudoephedrine as nasal decongestants. Eur. Ann. Otorhinolaryngol. Head Neck Dis. 2015;132:31–34. doi: 10.1016/j.anorl.2014.11.001. PubMed DOI
Dhar R., Stout C.W., Link M.S., Homoud M.K., Weinstock J., Estes N.A.M., III Cardiovascular toxicities of performance-enhancing substances in sports. Mayo Clin. Proc. 2005;80:1307–1315. doi: 10.4065/80.10.1307. PubMed DOI
Ibrahim R., Nyska A., Dunnick J., Ramot Y. The toxicologic pathology aspects of selected natural herbal products and related compounds. J. Toxicol. Pathol. 2021;34:181–211. doi: 10.1293/tox.2021-0016. PubMed DOI PMC
Van Mieghem W., Stevens E., Cosemans J. Ephedrine-induced cardiopathy. Br. Med. J. 1978;1:816. doi: 10.1136/bmj.1.6116.816. PubMed DOI PMC
Schier J.G., Traub S.J., Hoffman R.S., Nelson L.S. Ephedrine-induced cardiac ischemia: Exposure confirmed with a serum level. J. Toxicol. Clin. Toxicol. 2003;41:849–853. doi: 10.1081/CLT-120025350. PubMed DOI
Enders J.M., Dobesh P.P., Ellison J.N. Acute myocardial infarction induced by ephedrine alkaloids. Pharmacotherapy. 2003;23:1645–1651. doi: 10.1592/phco.23.15.1645.31959. PubMed DOI
Rhidian R. Running a risk? Sport supplement toxicity with ephedrine in an amateur marathon runner, with subsequent rhabdomyolysis. BMJ Case Rep. 2011;2011:bcr1120115093. doi: 10.1136/bcr.11.2011.5093. PubMed DOI PMC
Bowyer J.F., Newport G.D., Slikker W., Jr., Gough B., Ferguson S.A., Tor-Agbidye J. An evaluation of l-ephedrine neurotoxicity with respect to hyperthermia and caudate/putamen microdialysate levels of ephedrine, dopamine, serotonin, and glutamate. Toxicol. Sci. 2000;55:133–142. doi: 10.1093/toxsci/55.1.133. PubMed DOI
Munhall A.C., Johnson S.W. Dopamine-mediated actions of ephedrine in the rat substantia nigra. Brain Res. 2006;1069:96–103. doi: 10.1016/j.brainres.2005.11.044. PubMed DOI
Ellis J.D., German C.L., Birdsall E., Hanson J.E., Crosby M.A., Rowley S.D., Sawada N.A., West J.N., Hanson G.R., Fleckenstein A.E. Ephedrine decreases vesicular monoamine transporter-2 function. Synapse. 2011;65:449–451. doi: 10.1002/syn.20896. PubMed DOI PMC
Duan S., Xie L., Zheng L., Huang J., Guo R., Sun Z., Xie Y., Lv J., Lin Z., Ma S. Long-term exposure to ephedrine leads to neurotoxicity and neurobehavioral disorders accompanied by up-regulation of CRF in prefrontal cortex and hippocampus in Rhesus macaques. Behav. Brain Res. 2020;393:112796. doi: 10.1016/j.bbr.2020.112796. PubMed DOI
Zheng E.X., Navarro V.J. Liver injury from herbal, dietary, and weight loss supplements: A review. J. Clin. Transl. Hepatol. 2015;3:93–98. doi: 10.14218/jcth.2015.00006. PubMed DOI PMC
Wen S., Liao T. Ephedrine causes liver toxicity in SD rats via oxidative stress and inflammatory responses. Hum. Exp. Toxicol. 2021;40:16–24. doi: 10.1177/0960327120943938. PubMed DOI
Al-Hebshi N.N., Skaug N. Khat (Catha edulis)—An updated review. Addict. Biol. 2005;10:299–307. doi: 10.1080/13556210500353020. PubMed DOI
Alles G.A., Fairchild M.D., Jensen M. Chemical pharmacology of Catha edulis. J. Med. Pharm. Chem. 1961;3:323–352. doi: 10.1021/jm50015a010. PubMed DOI
Getasetegn M. Chemical composition of Catha edulis (khat): A review. Phytochem. Rev. 2016;15:907–920. doi: 10.1007/s11101-015-9435-z. DOI
Krikorian A.D. Kat and its use: An historical perspective. J. Ethnopharmacol. 1984;12:115–178. doi: 10.1016/0378-8741(84)90047-3. PubMed DOI
Odenwald M., Klein A., Warfa N. Khat Addiction. In: El-Guebaly N., Carrà G., Galanter M., editors. Textbook of Addiction Treatment: International Perspectives. Springer; Milan, Italy: 2015. pp. 455–466. DOI
United Nations Division of Narcotic Drugs . Investigations on the Phenylalkylamine Fraction. United Nations Division of Narcotic Drugs; Vienna, Austria: 1975. Studies on the Chemical Composition of Khat. III. United Nations Document MNAR/11/75.
Brenneisen R., Geisshüsler S., Schorno X. Metabolism of cathinone to (−)-norephedrine and (−)-norpseudoephedrine. J. Pharm. Pharmacol. 1986;38:298–300. doi: 10.1111/j.2042-7158.1986.tb04571.x. PubMed DOI
Pendl E., Pauritsch U., Kollroser M., Schmid M.G. Determination of cathinone and cathine in Khat plant material by LC-MS/MS: Fresh vs. dried leaves. Forensic Sci. Int. 2021;319:110658. doi: 10.1016/j.forsciint.2020.110658. PubMed DOI
Kalix P., Braenden O. Pharmacological aspects of the chewing of khat leaves. Pharmacol. Rev. 1985;37:149. PubMed
Abebe M., Kindie S., Adane K. Adverse health effects of khat: A review. Fam. Med. Med. Sci. Res. 2015;4:154. doi: 10.4172/2327-4972.1000154. DOI
Kelly J.P. Cathinone derivatives: A review of their chemistry, pharmacology and toxicology. Drug Test. Anal. 2011;3:439–453. doi: 10.1002/dta.313. PubMed DOI
Kalix P. Cathinone, a natural amphetamine. Pharmacol. Toxicol. 1992;70:77–86. doi: 10.1111/j.1600-0773.1992.tb00434.x. PubMed DOI
Mathys K., Brenneisen R. Determination of (S)-(−)-cathinone and its metabolites (R,S)-(−)-norephedrine and (R,R)-(−)-norpseudoephedrine in urine by high-performance liquid chromatography with photodiode-array detection. J. Chromatogr. 1992;593:79–85. doi: 10.1016/0021-9673(92)80270-5. PubMed DOI
Engidawork E. Pharmacological and Toxicological Effects of Catha edulis F. (Khat) Phytother. Res. 2017;31:1019–1028. doi: 10.1002/ptr.5832. PubMed DOI
Toennes S.W., Kauert G.F. Excretion and Detection of Cathinone, Cathine, and Phenylpropanolamine in Urine after Kath Chewing. Clin. Chem. 2002;48:1715–1719. doi: 10.1093/clinchem/48.10.1715. PubMed DOI
Widler P., Mathys K., Brenneisen R., Kalix P., Fisch H.U. Pharmacodynamics and pharmacokinetics of khat: A controlled study. Clin. Pharmacol. Ther. 1994;55:556–562. doi: 10.1038/clpt.1994.69. PubMed DOI
Toennes S.W., Harder S., Schramm M., Niess C., Kauert G.F. Pharmacokinetics of cathinone, cathine and norephedrine after the chewing of khat leaves. Br. J. Clin. Pharmacol. 2003;56:125–130. doi: 10.1046/j.1365-2125.2003.01834.x. PubMed DOI PMC
Soares J., Costa V.M., Bastos M.L., Carvalho F., Capela J.P. An updated review on synthetic cathinones. Arch. Toxicol. 2021;95:2895–2940. doi: 10.1007/s00204-021-03083-3. PubMed DOI
Brenneisen R., Mathys K. Catha. In: Hänsel R., Keller K., Rimpler H., Schneider G., Abel G., Bader G., Baumann B., Bertram B., Beyer G., Bodesheim U., et al., editors. Hagers Handbuch der Pharmazeutischen Praxis. 5th ed. Volume 4. Springer; Berlin/Heidelberg, Germany: 1992. pp. 730–740.
Kalix P. Cathinone, an alkaloid from khat leaves with an amphetamine-like releasing effect. Psychopharmacology. 1981;74:269–270. doi: 10.1007/BF00427108. PubMed DOI
Kalix P., Glennon R.A. Further evidence for an amphetamine-like mechanism of action of the alkaloid cathinone. Biochem. Pharmacol. 1986;35:3015–3019. doi: 10.1016/0006-2952(86)90380-1. PubMed DOI
Kalix P. A constituent of khat leaves with amphetamine-like releasing properties. Eur. J. Pharmacol. 1980;68:213–215. doi: 10.1016/0014-2999(80)90326-X. PubMed DOI
Kalix P. The amphetamine-like releasing effect of the alkaloid (−)cathinone on rat nucleus accumbens and rabbit caudate nucleus. Prog. Neuro-Psychopharmacol. Biol. Psychiatry. 1982;6:43–49. doi: 10.1016/S0364-7722(82)80106-9. PubMed DOI
Kalix P. Effect of the alkaloid (−) cathinone on the release of radioactivity from rabbit atria prelabelled with 3H-norepinephrine. Life Sci. 1983;32:801–807. doi: 10.1016/0024-3205(83)90316-8. PubMed DOI
Kalix P. Effect of the alkaloid (−)-cathinone on the release of radioactivity from rat striatal tissue prelabelled with 3H-serotonin. Neuropsychobiology. 1984;12:127–129. doi: 10.1159/000118124. PubMed DOI
Kalix P. Hyperthermic response to (−)-cathinone, an alkaloid of Catha edulis (khat) J. Pharm. Pharmacol. 1980;32:662–663. doi: 10.1111/j.2042-7158.1980.tb13031.x. PubMed DOI
Pehek E.A., Schechter M.D., Yamamoto B.K. Effects of cathinone and amphetamine on the neurochemistry of dopamine in vivo. Neuropharmacology. 1990;29:1171–1176. doi: 10.1016/0028-3908(90)90041-O. PubMed DOI
Simmler L.D., Buser T.A., Donzelli M., Schramm Y., Dieu L.H., Huwyler J., Chaboz S., Hoener M.C., Liechti M.E. Pharmacological characterization of designer cathinones in vitro. Br. J. Pharmacol. 2013;168:458–470. doi: 10.1111/j.1476-5381.2012.02145.x. PubMed DOI PMC
Wagner G.C., Preston K., Ricaurte G.A., Schuster C.R., Seiden L.S. Neurochemical similarities between d,l-cathinone and d-amphetamine. Drug Alcohol Depend. 1982;9:279–284. doi: 10.1016/0376-8716(82)90067-9. PubMed DOI
Zelger J.L., Carlini E.A. Influence of cathinone (α-aminopropiophenone) and cathine (phenylpropanolamine) on circling behavior and on the uptake and release of [3H]dopamine in striatal slices of rats. Neuropharmacology. 1981;20:839–843. doi: 10.1016/0028-3908(81)90076-9. PubMed DOI
Hutsell B.A., Baumann M.H., Partilla J.S., Banks M.L., Vekariya R., Glennon R.A., Negus S.S. Abuse-related neurochemical and behavioral effects of cathinone and 4-methylcathinone stereoisomers in rats. Eur. Neuropsychopharmacol. 2016;26:288–297. doi: 10.1016/j.euroneuro.2015.12.010. PubMed DOI PMC
Cleary L., Docherty J.R. Actions of amphetamine derivatives and cathinone at the noradrenaline transporter. Eur. J. Pharmacol. 2003;476:31–34. doi: 10.1016/S0014-2999(03)02173-3. PubMed DOI
Nencini P., Amiconi G., Befani O., Abdullahi M.A., Anania M.C. Possible involvement of amine oxidase inhibition in the sympathetic activation induced by khat (Catha edulis) chewing in humans. J. Ethnopharmacol. 1984;11:79–86. doi: 10.1016/0378-8741(84)90097-7. PubMed DOI
Osorio-Olivares M., Rezende M.C., Sepúlveda-Boza S., Cassels B.K., Fierro A. MAO inhibition by aryl isopropylamines: The effect of oxygen substituents at the beta-position. Bioorg. Med. Chem. 2004;12:4055–4066. doi: 10.1016/j.bmc.2004.05.033. PubMed DOI
Freund-Michel V.C., Birrell M.A., Patel H.J., Murray-Lyon I.M., Belvisi M.G. Modulation of cholinergic contractions of airway smooth muscle by cathinone: Potential beneficial effects in airway diseases. Eur. Respir. J. 2008;32:579–584. doi: 10.1183/09031936.00162707. PubMed DOI
Odenwald M., al’Absi M. Khat use and related addiction, mental health and physical disorders: The need to address a growing risk. East. Mediterr. Health J. 2017;23:236–244. doi: 10.26719/2017.23.3.236. PubMed DOI
Jones S., Fileccia E.L., Murphy M., Fowler M.J., King M.V., Shortall S.E., Wigmore P.M., Green A.R., Fone K.C.F., Ebling F.J.P. Cathinone increases body temperature, enhances locomotor activity, and induces striatal c-fos expression in the Siberian hamster. Neurosci. Lett. 2014;559:34–38. doi: 10.1016/j.neulet.2013.11.032. PubMed DOI
Woolverton W.L., Johanson C.E. Preference in rhesus monkeys given a choice between cocaine and d,l-cathinone. J. Exp. Anal. Behav. 1984;41:35–43. doi: 10.1901/jeab.1984.41-35. PubMed DOI PMC
LaHoste G.J., Yu J., Marshall J.F. Striatal Fos expression is indicative of dopamine D1/D2 synergism and receptor supersensitivity. Proc. Natl. Acad. Sci. USA. 1993;90:7451–7455. doi: 10.1073/pnas.90.16.7451. PubMed DOI PMC
Al-Motarreb A.L., Broadley K.J. Coronary and aortic vasoconstriction by cathinone, the active constituent of khat. Auton. Autacoid Pharmacol. 2003;23:319–326. doi: 10.1111/j.1474-8673.2004.00303.x. PubMed DOI
Alsufyani H.A., Docherty J.R. Direct and indirect cardiovascular actions of cathinone and MDMA in the anaesthetized rat. Eur. J. Pharmacol. 2015;758:142–146. doi: 10.1016/j.ejphar.2015.03.079. PubMed DOI
Cleary L., Buber R., Docherty J.R. Effects of amphetamine derivatives and cathinone on noradrenaline-evoked contractions of rat right ventricle. Eur. J. Pharmacol. 2002;451:303–308. doi: 10.1016/S0014-2999(02)02305-1. PubMed DOI
Tesfaye F., Byass P., Wall S., Berhane Y., Bonita R. Association of smoking and khat (Catha edulis Forsk) use with high blood pressure among adults in Addis Ababa, Ethiopia, 2006. Prev. Chronic Dis. 2008;5:A89. PubMed PMC
Al-Motarreb A., Briancon S., Al-Jaber N., Al-Adhi B., Al-Jailani F., Salek M.S., Broadley K.J. Khat chewing is a risk factor for acute myocardial infarction: A case-control study. Br. J. Clin. Pharmacol. 2005;59:574–581. doi: 10.1111/j.1365-2125.2005.02358.x. PubMed DOI PMC
Alkadi H.O., Noman M.A., Al-Thobhani A.K., Al-Mekhlafi F.S., Raja’a Y.A. Clinical and experimental evaluation of the effect of Khat-induced myocardial infarction. Saudi Med. J. 2002;23:1195–1198. PubMed
Kalix P. Hypermotility of the amphetamine type induced by a constituent of khat leaves. Br. J. Pharmacol. 1980;68:11–13. doi: 10.1111/j.1476-5381.1980.tb10690.x. PubMed DOI PMC
Nyongesa A.W., Oduma J.A., Nakajima M., Odongo H.O., Adoyo P.A., al’Absi M. Dose-response inhibitory effects of purified cathinone from khat (Catha edulis) on cortisol and prolactin release in vervet monkeys (Chlorocebus aethiops) Metab. Brain Dis. 2014;29:451–458. doi: 10.1007/s11011-013-9445-8. PubMed DOI
Silva B., Soares J., Rocha-Pereira C., Mladěnka P., Remião F., on behalf of the Oemonom Researchers Khat, a Cultural Chewing Drug: A Toxicokinetic and Toxicodynamic Summary. Toxins. 2022;14:71. doi: 10.3390/toxins14020071. PubMed DOI PMC
Zimmerman J.L. Cocaine intoxication. Crit. Care Clin. 2012;28:517–526. doi: 10.1016/j.ccc.2012.07.003. PubMed DOI
Richards J.R., Le J.K. Cocaine Toxicity. [(accessed on 13 December 2021)]; Available online: https://www.ncbi.nlm.nih.gov/books/NBK430976/
Roque Bravo R., Faria A.C., Brito-da-Costa A.M., Carmo H., Mladěnka P., Dias da Silva D., Remião F., on behalf of the Oemonom Researchers Cocaine: An Updated Overview on Chemistry, Detection, Biokinetics, and Pharmacotoxicological Aspects including Abuse Pattern. Toxins. 2022;14:278. doi: 10.3390/toxins14040278. PubMed DOI PMC
Han D.D., Gu H.H. Comparison of the monoamine transporters from human and mouse in their sensitivities to psychostimulant drugs. BMC Pharmacol. 2006;6:6. doi: 10.1186/1471-2210-6-6. PubMed DOI PMC
Goldstein R.A., DesLauriers C., Burda A., Johnson-Arbor K. Cocaine: History, social implications, and toxicity: A review. Semin. Diagn. Pathol. 2009;26:10–17. doi: 10.1053/j.semdp.2008.12.001. PubMed DOI
Perry A.N., Westenbroek C., Jagannathan L., Becker J.B. The Roles of Dopamine and α1-Adrenergic Receptors in Cocaine Preferences in Female and Male Rats. Neuropsychopharmacology. 2015;40:2696–2704. doi: 10.1038/npp.2015.116. PubMed DOI PMC
Brown J.M., Hanson G.R., Fleckenstein A.E. Regulation of the vesicular monoamine transporter-2: A novel mechanism for cocaine and other psychostimulants. J. Pharmacol. Exp. Ther. 2001;296:762–767. PubMed
Pei Y., Lee J., Leo D., Gainetdinov R.R., Hoener M.C., Canales J.J. Activation of the Trace Amine-Associated Receptor 1 Prevents Relapse to Cocaine Seeking. Neuropsychopharmacology. 2014;39:2299–2308. doi: 10.1038/npp.2014.88. PubMed DOI PMC
Asif-Malik A., Hoener M.C., Canales J.J. Interaction Between the Trace Amine-Associated Receptor 1 and the Dopamine D2 Receptor Controls Cocaine’s Neurochemical Actions. Sci. Rep. 2017;7:13901. doi: 10.1038/s41598-017-14472-z. PubMed DOI PMC
Mladěnka P., Applová L., Patočka J., Costa V.M., Remiao F., Pourová J., Mladěnka A., Karlíčková J., Jahodář L., Vopršalová M., et al. Comprehensive review of cardiovascular toxicity of drugs and related agents. Med. Res. Rev. 2018;38:1332–1403. doi: 10.1002/med.21476. PubMed DOI PMC
Tsatsakis A., Docea A.O., Calina D., Tsarouhas K., Zamfira L.M., Mitrut R., Sharifi-Rad J., Kovatsi L., Siokas V., Dardiotis E., et al. A Mechanistic and Pathophysiological Approach for Stroke Associated with Drugs of Abuse. J. Clin. Med. 2019;8:1295. doi: 10.3390/jcm8091295. PubMed DOI PMC
Lange R.A., Cigarroa R.G., Yancy C.W., Jr., Willard J.E., Popma J.J., Sills M.N., McBride W., Kim A.S., Hillis L.D. Cocaine-induced coronary-artery vasoconstriction. N. Engl. J. Med. 1989;321:1557–1562. doi: 10.1056/NEJM198912073212301. PubMed DOI
Moliterno D.J., Willard J.E., Lange R.A., Negus B.H., Boehrer J.D., Glamann D.B., Landau C., Rossen J.D., Winniford M.D., Hillis L.D. Coronary-artery vasoconstriction induced by cocaine, cigarette smoking, or both. N. Engl. J. Med. 1994;330:454–459. doi: 10.1056/NEJM199402173300702. PubMed DOI
Pradhan L., Mondal D., Chandra S., Ali M., Agrawal K.C. Molecular analysis of cocaine-induced endothelial dysfunction: Role of endothelin-1 and nitric oxide. Cardiovasc. Toxicol. 2008;8:161–171. doi: 10.1007/s12012-008-9025-z. PubMed DOI
Mo W., Singh A.K., Arruda J.A.L., Dunea G. Role of Nitric Oxide in Cocaine-Induced Acute Hypertension. Am. J. Hypertens. 1998;11:708–714. doi: 10.1016/S0895-7061(98)00041-7. PubMed DOI
Vongpatanasin W., Mansour Y., Chavoshan B., Arbique D., Victor R.G. Cocaine stimulates the human cardiovascular system via a central mechanism of action. Circulation. 1999;100:497–502. doi: 10.1161/01.CIR.100.5.497. PubMed DOI
Fowler J.S., Ding Y.S., Volkow N.D., Martin T., MacGregor R.R., Dewey S., King P., Pappas N., Alexoff D., Shea C., et al. PET studies of cocaine inhibition of myocardial norepinephrine uptake. Synapse. 1994;16:312–317. doi: 10.1002/syn.890160407. PubMed DOI
Heesch C.M., Wilhelm C.R., Ristich J., Adnane J., Bontempo F.A., Wagner W.R. Cocaine activates platelets and increases the formation of circulating platelet containing microaggregates in humans. Heart. 2000;83:688–695. doi: 10.1136/heart.83.6.688. PubMed DOI PMC
McCord J., Jneid H., Hollander J.E., de Lemos J.A., Cercek B., Hsue P., Gibler W.B., Ohman E.M., Drew B., Philippides G., et al. Management of cocaine-associated chest pain and myocardial infarction: A scientific statement from the American Heart Association Acute Cardiac Care Committee of the Council on Clinical Cardiology. Circulation. 2008;117:1897–1907. doi: 10.1161/CIRCULATIONAHA.107.188950. PubMed DOI
Hobbs W.E., Moore E.E., Penkala R.A., Bolgiano D.D., López J.A. Cocaine and specific cocaine metabolites induce von Willebrand factor release from endothelial cells in a tissue-specific manner. Arterioscler. Thromb. Vasc. Biol. 2013;33:1230–1237. doi: 10.1161/ATVBAHA.113.301436. PubMed DOI PMC
Arner P. Catecholamine-induced lipolysis in obesity. Int. J. Obes. Relat. Metab. Disord. 1999;23((Suppl. 1)):10–13. doi: 10.1038/sj.ijo.0800789. PubMed DOI
Diepvens K., Westerterp K.R., Westerterp-Plantenga M.S. Obesity and thermogenesis related to the consumption of caffeine, ephedrine, capsaicin, and green tea. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2007;292:R77–R85. doi: 10.1152/ajpregu.00832.2005. PubMed DOI
Robertson D., Frölich J.C., Carr R.K., Watson J.T., Hollifield J.W., Shand D.G., Oates J.A. Effects of caffeine on plasma renin activity, catecholamines and blood pressure. N. Engl. J. Med. 1978;298:181–186. doi: 10.1056/NEJM197801262980403. PubMed DOI
Dulloo A.G., Duret C., Rohrer D., Girardier L., Mensi N., Fathi M., Chantre P., Vandermander J. Efficacy of a green tea extract rich in catechin polyphenols and caffeine in increasing 24-h energy expenditure and fat oxidation in humans. Am. J. Clin. Nutr. 1999;70:1040–1045. doi: 10.1093/ajcn/70.6.1040. PubMed DOI
Lin S.M., Wang S.W., Ho S.C., Tang Y.L. Protective effect of green tea (−)-epigallocatechin-3-gallate against the monoamine oxidase B enzyme activity increase in adult rat brains. Nutrition. 2010;26:1195–1200. doi: 10.1016/j.nut.2009.11.022. PubMed DOI
Hou W.C., Lin R.D., Chen C.T., Lee M.H. Monoamine oxidase B (MAO-B) inhibition by active principles from Uncaria rhynchophylla. J. Ethnopharmacol. 2005;100:216–220. doi: 10.1016/j.jep.2005.03.017. PubMed DOI
Borchardt R.T., Huber J.A. Catechol O-methyltransferase. 5. Structure-activity relationships for inhibition by flavonoids. J. Med. Chem. 1975;18:120–122. doi: 10.1021/jm00235a030. PubMed DOI
Ludy M.-J., Moore G.E., Mattes R.D. The effects of capsaicin and capsiate on energy balance: Critical review and meta-analyses of studies in humans. Chem. Senses. 2012;37:103–121. doi: 10.1093/chemse/bjr100. PubMed DOI PMC
Tremblay A., Arguin H., Panahi S. Capsaicinoids: A spicy solution to the management of obesity? Int. J. Obes. 2016;40:1198–1204. doi: 10.1038/ijo.2015.253. PubMed DOI
Watanabe T., Kawada T., Kato T., Harada T., Iwai K. Effects of capsaicin analogs on adrenal catecholamine secretion in rats. Life Sci. 1994;54:369–374. doi: 10.1016/0024-3205(94)00793-4. PubMed DOI
Watanabe T., Kawada T., Iwai K. Effect of capsaicin pretreatment on capsaicin-induced catecholamine secretion from the adrenal medulla in rats. Proc. Soc. Exp. Biol. Med. 1988;187:370–374. doi: 10.3181/00379727-187-3-RC1. PubMed DOI
Osaka T., Lee T.H., Kobayashi A., Inoue S., Kimura S. Thermogenesis mediated by a capsaicin-sensitive area in the ventrolateral medulla. Neuroreport. 2000;11:2425–2428. doi: 10.1097/00001756-200008030-00017. PubMed DOI
Tsatsakis A.M., Docea A.O., Tsitsimpikou C. New challenges in risk assessment of chemicals when simulating real exposure scenarios; simultaneous multi-chemicals’ low dose exposure. Food Chem. Toxicol. 2016;96:174–176. doi: 10.1016/j.fct.2016.08.011. PubMed DOI
Georgiadis N., Tsarouhas K., Dorne J.-L.C.M., Kass G.E.N., Laspa P., Toutouzas K., Koulaouzidou E.A., Kouretas D., Tsitsimpikou C. Cardiotoxicity of Chemical Substances: An Emerging Hazard Class. J. Cardiovasc. Dev. Dis. 2022;9:226. doi: 10.3390/jcdd9070226. PubMed DOI PMC
Poyatos L., Torres A., Papaseit E., Pérez-Mañá C., Hladun O., Núñez-Montero M., de la Rosa G., Torrens M., Fuster D., Muga R., et al. Abuse Potential of Cathinones in Humans: A Systematic Review. J. Clin. Med. 2022;11:1004. doi: 10.3390/jcm11041004. PubMed DOI PMC