Antibacterial and Antifouling Efficiency of Essential Oils-Loaded Electrospun Polyvinylidene Difluoride Membranes
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
IGA/FT/2022/006
Internal Grant Agency of Tomas Bata University in Zlin
PubMed
36613867
PubMed Central
PMC9820142
DOI
10.3390/ijms24010423
PII: ijms24010423
Knihovny.cz E-zdroje
- Klíčová slova
- PVDF, antibacterial activity, antifouling activity, essential oil, nanofiber,
- MeSH
- antibakteriální látky farmakologie chemie MeSH
- bioznečištění * prevence a kontrola MeSH
- Escherichia coli MeSH
- eugenol farmakologie MeSH
- nanovlákna * MeSH
- oleje prchavé * farmakologie MeSH
- thymol farmakologie MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- antibakteriální látky MeSH
- eugenol MeSH
- oleje prchavé * MeSH
- polyvinylidene fluoride MeSH Prohlížeč
- thymol MeSH
Nanofibers have become a promising material in many industries in recent years, mainly due to their various properties. The only disadvantage of nanofibers as a potential filtration membrane is their short life due to clogging by bacteria in water treatment. The enrichment of nanofibers with active molecules could prevent these negative effects, represented by essential oils components such as Thymol, Eugenol, Linalool, Cinnamaldehyde and Carvacrol. Our study deals with the preparation of electrospun polyvinylidene difluoride (PVDF)-based nanofibers with incorporated essential oils, their characterization, testing their antibacterial properties and the evaluation of biofilm formation on the membrane surface. The study of the nanofibers' morphology points to the nanofibers' diverse fiber diameters ranging from 570 to 900 nm. Besides that, the nanofibers were detected as hydrophobic material with wettability over 130°. The satisfactory results of PVDF membranes were observed in nanofibers enriched with Thymol and Eugenol that showed their antifouling activity against the tested bacteria Escherichia coli ATCC 25922 and Staphylococcus aureus ATCC 25923. Therefore, these PVDF membranes could find potential applications as filtration membranes in healthcare or the environment.
Zobrazit více v PubMed
Kenry, Lim C.T. Nanofiber technology: Current status and emerging developments. Prog. Polym. Sci. 2017;70:1–17. doi: 10.1016/j.progpolymsci.2017.03.002. DOI
Ramakrishna S. An Introduction to Electrospinning and Nanofibers. World Scientific; Hackensack, HJ, USA: 2005. DOI
Širc J., Hobzová R., Kostina N., Munzarová M., Juklíčková M., Lhotka M., Kubinová Š., Zajícová A., Michálek J. Morphological characterization of nanofibers: Methods and application in practice. J. Nanomater. 2012;2012:327369. doi: 10.1155/2012/327369. DOI
Bhardwaj N., Kundu S.C. Electrospinning: A fascinating fiber fabrication technique. Biotechnol. Adv. 2010;28:325–347. doi: 10.1016/j.biotechadv.2010.01.004. PubMed DOI
Shen L., Feng S., Li J., Chen J., Li F., Lin H., Yu G. Surface modification of polyvinylidene fluoride (PVDF) membrane via radiation grafting: Novel mechanisms underlying the interesting enhanced membrane performance. Sci. Rep. 2017;7:2721. doi: 10.1038/s41598-017-02605-3. PubMed DOI PMC
Kang G.-D., Cao Y.-M. Application and modification of poly(vinylidene fluoride) (PVDF) membranes—A review. J. Membr. Sci. 2014;463:145–165. doi: 10.1016/j.memsci.2014.03.055. DOI
al-Shaeli M., Al-Juboori R.A., Al Aani S., Ladewig B.P., Hilal N. Natural and recycled materials for sustainable membrane modification: Recent trends and prospects. Sci. Total Environ. 2022;838:156014. doi: 10.1016/j.scitotenv.2022.156014. PubMed DOI
Amini M., Arash Haddadi S., Ghaderi S., Ramazani S.A.A., Hassan Ansarizadeh M. Preparation and characterization of PVDF/Starch nanocomposite nanofibers using electrospinning method. Mater. Today Proc. 2018;5:15613–15619. doi: 10.1016/j.matpr.2018.04.170. DOI
Kesici Güler H., Cengiz Çallıoğlu F., Sesli Çetin E. Antibacterial PVP/cinnamon essential oil nanofibers by emulsion electrospinning. J. Text. Inst. 2018;110:302–310. doi: 10.1080/00405000.2018.1477237. DOI
Shetty K., Bhandari A., Yadav K.S. Nanoparticles incorporated in nanofibers using electrospinning: A novel nano-in-nano delivery system. J. Control. Release. 2022;350:421–434. doi: 10.1016/j.jconrel.2022.08.035. PubMed DOI
Nie D., Wang P., Zang C., Zhang G., Li S., Liu R., Zhang Y., Li G., Luo Y., Zhang W., et al. Preparation of ZnO-Incorporated porous carbon nanofibers and adsorption performance investigation on methylene blue. ACS Omega. 2022;7:2198–2204. doi: 10.1021/acsomega.1c05729. PubMed DOI PMC
Zhao P., Chen W., Feng Z., Liu Y., Liu P., Xie Y., Yu D.-G. Electrospun nanofibers for periodontal treatment: A recent progress. Int. J. Nanomed. 2022;17:4137–4162. doi: 10.2147/IJN.S370340. PubMed DOI PMC
Jiang W., Zhang X., Liu P., Zhang Y., Song W., Yu D.-G., Lu X. Electrospun healthcare nanofibers from medicinal liquor of Phellinus igniarius. Adv. Compos. Hybrid Mater. 2022;5:3045–3056. doi: 10.1007/s42114-022-00551-x. DOI
Swamy M.K., Akhtar M.S., Sinniah U.R. Antimicrobial properties of plant essential oils against human pathogens and their mode of action: An updated review. Evid.-Based Complement. Altern. Med. 2016;2016:3012462. doi: 10.1155/2016/3012462. PubMed DOI PMC
Chouhan S., Sharma K., Guleria S. Antimicrobial activity of some essential oils—Present status and future perspectives. Medicines. 2017;4:58. doi: 10.3390/medicines4030058. PubMed DOI PMC
Zhu G., Zhao L.Y., Zhu L.T., Deng X.Y., Chen W.L. Effect of experimental parameters on nanofiber diameter from electrospinning with wire electrodes. IOP Conf. Ser. Mater. Sci. Eng. 2017;230:012043. doi: 10.1088/1757-899X/230/1/012043. DOI
Fortunato M., Cavallini D., De Bellis G., Marra F., Tamburrano A., Sarto F., Sarto M.S. Phase inversion in PVDF films with enhanced Piezoresponse through spin-coating and quenching. Polymers. 2019;11:1096. doi: 10.3390/polym11071096. PubMed DOI PMC
Holló G., Suematsu N.J., Ginder E., Lagzi I. Electric field assisted motion of a mercury droplet. Sci. Rep. 2021;11:2753. doi: 10.1038/s41598-020-80375-1. PubMed DOI PMC
Teoh G.H., Ooi B.S., Jawad Z.A., Low S.C. Impacts of PVDF polymorphism and surface printing micro-roughness on superhydrophobic membrane to desalinate high saline water. J. Environ. Chem. Eng. 2021;9:105418. doi: 10.1016/j.jece.2021.105418. DOI
Su H.-J., Chao C.-J., Chang H.-Y., Wu P.-C. The effects of evaporating essential oils on indoor air quality. Atmos. Environ. 2007;41:1230–1236. doi: 10.1016/j.atmosenv.2006.09.044. DOI
Nayak R., Padhye R., Kyratzis I.L., Truong Y.B., Arnold L. Effect of viscosity and electrical conductivity on the morphology and fiber diameter in melt electrospinning of polypropylene. Text. Res. J. 2013;83:606–617. doi: 10.1177/0040517512458347. DOI
Okutan N., Terzi P., Altay F. Affecting parameters on electrospinning process and characterization of electrospun gelatin nanofibers. Food Hydrocoll. 2014;39:19–26. doi: 10.1016/j.foodhyd.2013.12.022. DOI
Peer P., Janalikova M., Sedlarikova J., Pleva P., Filip P., Zelenkova J., Siskova A.O. Antibacterial filtration membranes based on PVDF- co -HFP nanofibers with the addition of medium-chain 1-Monoacylglycerols. ACS Appl. Mater. Interfaces. 2021;13:41021–41033. doi: 10.1021/acsami.1c07257. PubMed DOI
Sobola D., Kaspar P., Částková K., Dallaev R., Papež N., Sedlák P., Trčka T., Orudzhev F., Kaštyl J., Weiser A., et al. PVDF fibers modification by Nitrate salts doping. Polymers. 2021;13:2439. doi: 10.3390/polym13152439. PubMed DOI PMC
Lee J.W., Sharifah Shahnaz S.B., Nur Hidayah A.Z., Yahud S., Samat N. Effect of carbon nanotube loading on electrical properties of electrospun Polyvinylidene fluoride (PVDF) fiber. J. Phys. Conf. Ser. 2021;2080:012015. doi: 10.1088/1742-6596/2080/1/012015. DOI
Wong P.W., Yim V.M.-W., Guo J., Chan B.S., Deka B.J., An A.K. Noninvasive real-time monitoring of wetting progression in membrane distillation using impedance spectroscopy. Environ. Sci. Technol. 2022;56:535–545. doi: 10.1021/acs.est.1c04433. PubMed DOI
Zhao J., Zhang L., Cheng X., Wang J., Li Y., You J. Programmable transition between adhesive/anti-adhesive performances on porous PVDF spheres supported by shape memory PLLA. Polymers. 2022;14:374. doi: 10.3390/polym14030374. PubMed DOI PMC
Zhao X., Zhang J., Chen S., Wang X., Wang J. Effect of PPEGMA content on the structure and hydrophilicity of PVDF/PPEGMA blends prepared by in situ polymerization. Colloid Polym. Sci. 2013;291:1573–1580. doi: 10.1007/s00396-013-2891-3. DOI
Romeo F.V., De Luca S., Piscopo A., Poiana M. Antimicrobial effect of some essential oils. J. Essent. Oil Res. 2008;20:373–379. doi: 10.1080/10412905.2008.9700034. DOI
Ibrahim H., El Sabagh R., Abou El-Roos N., Abd El Fattah H. Antimicrobial effect of some essential oils on Staphylococcus aureus in minced meat. Benha Vet. Med. J. 2016;30:183–191. doi: 10.21608/bvmj.2016.31362. DOI
Liu X., Cai J., Chen H., Zhong Q., Hou Y., Chen W., Chen W. Antibacterial activity and mechanism of linalool against Pseudomonas aeruginosa. Microb. Pathog. 2020;141:103980. doi: 10.1016/j.micpath.2020.103980. PubMed DOI
Berechet M.D., Gaidau C., Miletic A., Pilic B., Râpă M., Stanca M., Ditu L.-M., Constantinescu R., Lazea-Stoyanova A. Bioactive properties of nanofibres based on concentrated collagen hydrolysate loaded with Thyme and Oregano essential oils. Materials. 2020;13:1618. doi: 10.3390/ma13071618. PubMed DOI PMC
Mele E. Electrospinning of essential oils. Polymers. 2020;12:908. doi: 10.3390/polym12040908. PubMed DOI PMC
Peer P., Sedlaříková J., Janalíková M., Kučerová L., Pleva P. Novel Polyvinyl Butyral/Monoacylglycerol nanofibrous membrane with antifouling activity. Materials. 2020;13:3662. doi: 10.3390/ma13173662. PubMed DOI PMC
Liu J.-X., Dong W.-H., Mou X.-J., Liu G.-S., Huang X.-W., Yan X., Zhou C.-F., Jiang S., Long Y.-Z. In situ electrospun Zein/Thyme essential oil-based membranes as an effective antibacterial wound dressing. ACS Appl. Bio Mater. 2020;3:302–307. doi: 10.1021/acsabm.9b00823. PubMed DOI
Alves Carneiro V., Soares Melo R., Mateus Gomes Pereira A., Maria Albuquerque Azevedo Á., Nágila Carneiro Matos M., Mesquita Bastos Cavalcante R., Rhonalty Rocha R., de Queiroz Albuquerque V., Alberto Pérez Guerrero J., Eduardo Aragão Catunda Junior F. Bacterial Biofilms. IntechOpen; London, UK: 2020. Essential oils as an innovative approach against biofilm of multidrug-resistant Staphylococcus aureus. DOI
Zelenkova J., Peer P., Pleva P., Janalikova M., Sedlarikova J., Filip P. Antibacterial electrospun membrane prepared from poly (vinylidene fluoride)-co-hexafluoropropylene with lauric acid monoacylglycerol; Proceedings of the 13th International Conference on Nanomaterials (NANOCON 2021); Brno, Czech Republic. 20–22 October 2021; pp. 355–360. DOI