Antibacterial and Antifouling Efficiency of Essential Oils-Loaded Electrospun Polyvinylidene Difluoride Membranes

. 2022 Dec 27 ; 24 (1) : . [epub] 20221227

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid36613867

Grantová podpora
IGA/FT/2022/006 Internal Grant Agency of Tomas Bata University in Zlin

Nanofibers have become a promising material in many industries in recent years, mainly due to their various properties. The only disadvantage of nanofibers as a potential filtration membrane is their short life due to clogging by bacteria in water treatment. The enrichment of nanofibers with active molecules could prevent these negative effects, represented by essential oils components such as Thymol, Eugenol, Linalool, Cinnamaldehyde and Carvacrol. Our study deals with the preparation of electrospun polyvinylidene difluoride (PVDF)-based nanofibers with incorporated essential oils, their characterization, testing their antibacterial properties and the evaluation of biofilm formation on the membrane surface. The study of the nanofibers' morphology points to the nanofibers' diverse fiber diameters ranging from 570 to 900 nm. Besides that, the nanofibers were detected as hydrophobic material with wettability over 130°. The satisfactory results of PVDF membranes were observed in nanofibers enriched with Thymol and Eugenol that showed their antifouling activity against the tested bacteria Escherichia coli ATCC 25922 and Staphylococcus aureus ATCC 25923. Therefore, these PVDF membranes could find potential applications as filtration membranes in healthcare or the environment.

Zobrazit více v PubMed

Kenry, Lim C.T. Nanofiber technology: Current status and emerging developments. Prog. Polym. Sci. 2017;70:1–17. doi: 10.1016/j.progpolymsci.2017.03.002. DOI

Ramakrishna S. An Introduction to Electrospinning and Nanofibers. World Scientific; Hackensack, HJ, USA: 2005. DOI

Širc J., Hobzová R., Kostina N., Munzarová M., Juklíčková M., Lhotka M., Kubinová Š., Zajícová A., Michálek J. Morphological characterization of nanofibers: Methods and application in practice. J. Nanomater. 2012;2012:327369. doi: 10.1155/2012/327369. DOI

Bhardwaj N., Kundu S.C. Electrospinning: A fascinating fiber fabrication technique. Biotechnol. Adv. 2010;28:325–347. doi: 10.1016/j.biotechadv.2010.01.004. PubMed DOI

Shen L., Feng S., Li J., Chen J., Li F., Lin H., Yu G. Surface modification of polyvinylidene fluoride (PVDF) membrane via radiation grafting: Novel mechanisms underlying the interesting enhanced membrane performance. Sci. Rep. 2017;7:2721. doi: 10.1038/s41598-017-02605-3. PubMed DOI PMC

Kang G.-D., Cao Y.-M. Application and modification of poly(vinylidene fluoride) (PVDF) membranes—A review. J. Membr. Sci. 2014;463:145–165. doi: 10.1016/j.memsci.2014.03.055. DOI

al-Shaeli M., Al-Juboori R.A., Al Aani S., Ladewig B.P., Hilal N. Natural and recycled materials for sustainable membrane modification: Recent trends and prospects. Sci. Total Environ. 2022;838:156014. doi: 10.1016/j.scitotenv.2022.156014. PubMed DOI

Amini M., Arash Haddadi S., Ghaderi S., Ramazani S.A.A., Hassan Ansarizadeh M. Preparation and characterization of PVDF/Starch nanocomposite nanofibers using electrospinning method. Mater. Today Proc. 2018;5:15613–15619. doi: 10.1016/j.matpr.2018.04.170. DOI

Kesici Güler H., Cengiz Çallıoğlu F., Sesli Çetin E. Antibacterial PVP/cinnamon essential oil nanofibers by emulsion electrospinning. J. Text. Inst. 2018;110:302–310. doi: 10.1080/00405000.2018.1477237. DOI

Shetty K., Bhandari A., Yadav K.S. Nanoparticles incorporated in nanofibers using electrospinning: A novel nano-in-nano delivery system. J. Control. Release. 2022;350:421–434. doi: 10.1016/j.jconrel.2022.08.035. PubMed DOI

Nie D., Wang P., Zang C., Zhang G., Li S., Liu R., Zhang Y., Li G., Luo Y., Zhang W., et al. Preparation of ZnO-Incorporated porous carbon nanofibers and adsorption performance investigation on methylene blue. ACS Omega. 2022;7:2198–2204. doi: 10.1021/acsomega.1c05729. PubMed DOI PMC

Zhao P., Chen W., Feng Z., Liu Y., Liu P., Xie Y., Yu D.-G. Electrospun nanofibers for periodontal treatment: A recent progress. Int. J. Nanomed. 2022;17:4137–4162. doi: 10.2147/IJN.S370340. PubMed DOI PMC

Jiang W., Zhang X., Liu P., Zhang Y., Song W., Yu D.-G., Lu X. Electrospun healthcare nanofibers from medicinal liquor of Phellinus igniarius. Adv. Compos. Hybrid Mater. 2022;5:3045–3056. doi: 10.1007/s42114-022-00551-x. DOI

Swamy M.K., Akhtar M.S., Sinniah U.R. Antimicrobial properties of plant essential oils against human pathogens and their mode of action: An updated review. Evid.-Based Complement. Altern. Med. 2016;2016:3012462. doi: 10.1155/2016/3012462. PubMed DOI PMC

Chouhan S., Sharma K., Guleria S. Antimicrobial activity of some essential oils—Present status and future perspectives. Medicines. 2017;4:58. doi: 10.3390/medicines4030058. PubMed DOI PMC

Zhu G., Zhao L.Y., Zhu L.T., Deng X.Y., Chen W.L. Effect of experimental parameters on nanofiber diameter from electrospinning with wire electrodes. IOP Conf. Ser. Mater. Sci. Eng. 2017;230:012043. doi: 10.1088/1757-899X/230/1/012043. DOI

Fortunato M., Cavallini D., De Bellis G., Marra F., Tamburrano A., Sarto F., Sarto M.S. Phase inversion in PVDF films with enhanced Piezoresponse through spin-coating and quenching. Polymers. 2019;11:1096. doi: 10.3390/polym11071096. PubMed DOI PMC

Holló G., Suematsu N.J., Ginder E., Lagzi I. Electric field assisted motion of a mercury droplet. Sci. Rep. 2021;11:2753. doi: 10.1038/s41598-020-80375-1. PubMed DOI PMC

Teoh G.H., Ooi B.S., Jawad Z.A., Low S.C. Impacts of PVDF polymorphism and surface printing micro-roughness on superhydrophobic membrane to desalinate high saline water. J. Environ. Chem. Eng. 2021;9:105418. doi: 10.1016/j.jece.2021.105418. DOI

Su H.-J., Chao C.-J., Chang H.-Y., Wu P.-C. The effects of evaporating essential oils on indoor air quality. Atmos. Environ. 2007;41:1230–1236. doi: 10.1016/j.atmosenv.2006.09.044. DOI

Nayak R., Padhye R., Kyratzis I.L., Truong Y.B., Arnold L. Effect of viscosity and electrical conductivity on the morphology and fiber diameter in melt electrospinning of polypropylene. Text. Res. J. 2013;83:606–617. doi: 10.1177/0040517512458347. DOI

Okutan N., Terzi P., Altay F. Affecting parameters on electrospinning process and characterization of electrospun gelatin nanofibers. Food Hydrocoll. 2014;39:19–26. doi: 10.1016/j.foodhyd.2013.12.022. DOI

Peer P., Janalikova M., Sedlarikova J., Pleva P., Filip P., Zelenkova J., Siskova A.O. Antibacterial filtration membranes based on PVDF- co -HFP nanofibers with the addition of medium-chain 1-Monoacylglycerols. ACS Appl. Mater. Interfaces. 2021;13:41021–41033. doi: 10.1021/acsami.1c07257. PubMed DOI

Sobola D., Kaspar P., Částková K., Dallaev R., Papež N., Sedlák P., Trčka T., Orudzhev F., Kaštyl J., Weiser A., et al. PVDF fibers modification by Nitrate salts doping. Polymers. 2021;13:2439. doi: 10.3390/polym13152439. PubMed DOI PMC

Lee J.W., Sharifah Shahnaz S.B., Nur Hidayah A.Z., Yahud S., Samat N. Effect of carbon nanotube loading on electrical properties of electrospun Polyvinylidene fluoride (PVDF) fiber. J. Phys. Conf. Ser. 2021;2080:012015. doi: 10.1088/1742-6596/2080/1/012015. DOI

Wong P.W., Yim V.M.-W., Guo J., Chan B.S., Deka B.J., An A.K. Noninvasive real-time monitoring of wetting progression in membrane distillation using impedance spectroscopy. Environ. Sci. Technol. 2022;56:535–545. doi: 10.1021/acs.est.1c04433. PubMed DOI

Zhao J., Zhang L., Cheng X., Wang J., Li Y., You J. Programmable transition between adhesive/anti-adhesive performances on porous PVDF spheres supported by shape memory PLLA. Polymers. 2022;14:374. doi: 10.3390/polym14030374. PubMed DOI PMC

Zhao X., Zhang J., Chen S., Wang X., Wang J. Effect of PPEGMA content on the structure and hydrophilicity of PVDF/PPEGMA blends prepared by in situ polymerization. Colloid Polym. Sci. 2013;291:1573–1580. doi: 10.1007/s00396-013-2891-3. DOI

Romeo F.V., De Luca S., Piscopo A., Poiana M. Antimicrobial effect of some essential oils. J. Essent. Oil Res. 2008;20:373–379. doi: 10.1080/10412905.2008.9700034. DOI

Ibrahim H., El Sabagh R., Abou El-Roos N., Abd El Fattah H. Antimicrobial effect of some essential oils on Staphylococcus aureus in minced meat. Benha Vet. Med. J. 2016;30:183–191. doi: 10.21608/bvmj.2016.31362. DOI

Liu X., Cai J., Chen H., Zhong Q., Hou Y., Chen W., Chen W. Antibacterial activity and mechanism of linalool against Pseudomonas aeruginosa. Microb. Pathog. 2020;141:103980. doi: 10.1016/j.micpath.2020.103980. PubMed DOI

Berechet M.D., Gaidau C., Miletic A., Pilic B., Râpă M., Stanca M., Ditu L.-M., Constantinescu R., Lazea-Stoyanova A. Bioactive properties of nanofibres based on concentrated collagen hydrolysate loaded with Thyme and Oregano essential oils. Materials. 2020;13:1618. doi: 10.3390/ma13071618. PubMed DOI PMC

Mele E. Electrospinning of essential oils. Polymers. 2020;12:908. doi: 10.3390/polym12040908. PubMed DOI PMC

Peer P., Sedlaříková J., Janalíková M., Kučerová L., Pleva P. Novel Polyvinyl Butyral/Monoacylglycerol nanofibrous membrane with antifouling activity. Materials. 2020;13:3662. doi: 10.3390/ma13173662. PubMed DOI PMC

Liu J.-X., Dong W.-H., Mou X.-J., Liu G.-S., Huang X.-W., Yan X., Zhou C.-F., Jiang S., Long Y.-Z. In situ electrospun Zein/Thyme essential oil-based membranes as an effective antibacterial wound dressing. ACS Appl. Bio Mater. 2020;3:302–307. doi: 10.1021/acsabm.9b00823. PubMed DOI

Alves Carneiro V., Soares Melo R., Mateus Gomes Pereira A., Maria Albuquerque Azevedo Á., Nágila Carneiro Matos M., Mesquita Bastos Cavalcante R., Rhonalty Rocha R., de Queiroz Albuquerque V., Alberto Pérez Guerrero J., Eduardo Aragão Catunda Junior F. Bacterial Biofilms. IntechOpen; London, UK: 2020. Essential oils as an innovative approach against biofilm of multidrug-resistant Staphylococcus aureus. DOI

Zelenkova J., Peer P., Pleva P., Janalikova M., Sedlarikova J., Filip P. Antibacterial electrospun membrane prepared from poly (vinylidene fluoride)-co-hexafluoropropylene with lauric acid monoacylglycerol; Proceedings of the 13th International Conference on Nanomaterials (NANOCON 2021); Brno, Czech Republic. 20–22 October 2021; pp. 355–360. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...