Effect of Liquefaction of Honey on the Content of Phenolic Compounds
Language English Country Switzerland Media electronic
Document type Journal Article
PubMed
36677771
PubMed Central
PMC9861181
DOI
10.3390/molecules28020714
PII: molecules28020714
Knihovny.cz E-resources
- Keywords
- antioxidants, coulometric detection, flavonoids, honey, liquid chromatography, microwave, phenolic compounds,
- MeSH
- Antioxidants chemistry MeSH
- Sugars MeSH
- Phenols analysis MeSH
- Honey * analysis MeSH
- Water MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Antioxidants MeSH
- Sugars MeSH
- Phenols MeSH
- phenolic acid MeSH Browser
- Water MeSH
Thermal liquefaction at low temperature is very time consuming and microwaves or an ultrasonic bath can be used to accelerate the process of dissolving sugar crystals. Phenolic compounds, such as phenolic acids or flavonoids, are an important group of secondary metabolites of plants and become honey from the nectar of blossoms. In this study, how the content of phenolic acids and flavones in honey were affected by liquefaction of honey using a microwave oven was studied. The concentration of tested compounds in untreated honey and in honey liquefied in a hot water bath, ultrasonic bath and microwave oven at four microwave power levels were determined by reversed phase liquid chromatography combined with multichannel electrochemical detection. A significant decrease in the content of all compounds was observed for all melting treatments. The phenolic compounds concentration decreased on average by 31.1-35.5% using microwave at intensities 270, 450 and 900 W and the time required for the sugar crystal melting was more than 20 times less than in the case of the 80 °C water bath. The temperature of samples after the end of microwave liquefaction was 76-89 °C. Significantly higher losses of phenolic compounds were observed during ultrasound treatment (48.5%), although the maximum temperature of honey was 45 °C, and at the lowest microwaves power (50.6%).
See more in PubMed
Anklam E. A review of the analytical methods to determine the geographical and botanical origin of honey. Food Chem. 1998;63:549–562. doi: 10.1016/S0308-8146(98)00057-0. DOI
Nagai T., Inoue R., Kanamori N., Suzuki N., Nagashima T. Characterization of honey from different floral sources. Its functional properties and effects of honey species on storage of meat. Food Chem. 2006;97:256–262. doi: 10.1016/j.foodchem.2005.03.045. DOI
Inoue K., Murayarna S., Seshimo F., Takeba K., Yoshimura Y., Nakazawa H. Identification of phenolic compound in manuka honey as specific superoxide anion radical scavenger using electron spin resonance (ESR) and liquid chromatography with coulometric array detection. J. Sci. Food Agric. 2005;85:872–878. doi: 10.1002/jsfa.1952. DOI
Ohmenhaeuser M., Monakhova Y.B., Kuballa T., Lachenmeier D.W. Qualitative and Quantitative Control of Honeys Using NMR Spectroscopy and Chemometrics. ISRN Anal. Chem. 2013;2013:825318. doi: 10.1155/2013/825318. DOI
da Silva P.M., Gauche C., Gonzaga L.V., Costa A.C.O., Fett R. Honey: Chemical composition, stability and authenticity. Food Chem. 2016;196:309–323. doi: 10.1016/j.foodchem.2015.09.051. PubMed DOI
Gheldof N., Engeseth N.J. Antioxidant capacity of honeys from various floral sources based on the determination of oxygen radical absorbance capacity and inhibition of in vitro lipoprotein oxidation in human serum samples. J. Agric. Food Chem. 2002;50:3050–3055. doi: 10.1021/jf0114637. PubMed DOI
Amiot M.J., Aubert S., Gonnet M., Tacchini M. The phenolic-compounds in honey—Premilinary-study upon identification and family quantification. Apidologie. 1989;20:115–125. doi: 10.1051/apido:19890202. DOI
Gasic U., Keckes S., Dabic D., Trifkovic J., Milojkovic-Opsenica D., Natic M., Tesic Z. Phenolic profile and antioxidant activity of Serbian polyfloral honeys. Food Chem. 2014;145:599–607. doi: 10.1016/j.foodchem.2013.08.088. PubMed DOI
Ouchemoukh S., Amessis-Ouchemoukh N., Gomez-Romero M., Aboud F., Giuseppe A., Fernandez-Gutierrez A., Segura-Carretero A. Characterisation of phenolic compounds in Algerian honeys by RP-HPLC coupled to electrospray time-of-flight mass spectrometry. Lwt-Food Sci. Technol. 2017;85:460–469. doi: 10.1016/j.lwt.2016.11.084. DOI
Alvarez-Suarez J.M., Giampieri F., Gonzalez-Paramas A.M., Damiani E., Astolfi P., Martinez-Sanchez G., Bompadre S., Quiles J.L., Santos-Buelga C., Battino M. Phenolics from monofloral honeys protect human erythrocyte membranes against oxidative damage. Food Chem. Toxicol. 2012;50:1508–1516. doi: 10.1016/j.fct.2012.01.042. PubMed DOI
Can Z., Yildiz O., Sahin H., Turumtay E.A., Silici S., Kolayli S. An investigation of Turkish honeys: Their physico-chemical properties, antioxidant capacities and phenolic profiles. Food Chem. 2015;180:133–141. doi: 10.1016/j.foodchem.2015.02.024. PubMed DOI
Escriche I., Kadar M., Juan-Borras M., Domenech E. Suitability of antioxidant capacity, flavonoids and phenolic acids for floral authentication of honey. Impact of industrial thermal treatment. Food Chem. 2014;142:135–143. doi: 10.1016/j.foodchem.2013.07.033. PubMed DOI
Escuredo O., Miguez M., Fernandez-Gonzalez M., Seijo M.C. Nutritional value and antioxidant activity of honeys produced in a European Atlantic area. Food Chem. 2013;138:851–856. doi: 10.1016/j.foodchem.2012.11.015. PubMed DOI
Soler C., Gil M., Garciaviguera C., Tomasbarberan F.A. Flavonoid patterns of french honeys with different floral origin. Apidologie. 1995;26:53–60. doi: 10.1051/apido:19950107. DOI
Mannina L., Sobolev A.P., Di Lorenzo A., Vista S., Tenore G.C., Daglia M. Chemical Composition of Different Botanical Origin Honeys Produced by Sicilian Black Honeybees (Apis mellifera ssp sicula) J. Agric. Food Chem. 2015;63:5864–5874. doi: 10.1021/jf506192s. PubMed DOI
Wang Y., Gou X., Yue T., Ren R., Zhao H., He L., Liu C., Cao W. Evaluation of physicochemical properties of Qinling Apis cerana honey and the antimicrobial activity of the extract against Salmonella Typhimurium LT2 in vitro and in vivo. Food Chem. 2021;337:127774. doi: 10.1016/j.foodchem.2020.127774. PubMed DOI
Zhu Z., Zhang Y., Wang J., Li X., Wang W., Huang Z. Sugaring-out assisted liquid-liquid extraction coupled with high performance liquid chromatography-electrochemical detection for the determination of 17 phenolic compounds in honey. J. Chromatogr. A. 2019;1601:104–114. doi: 10.1016/j.chroma.2019.06.023. PubMed DOI
Rusko J., Vainovska P., Vilne B., Bartkevics V. Phenolic profiles of raw mono- and polyfloral honeys from Latvia. J. Food Compos. Anal. 2021;98:103813. doi: 10.1016/j.jfca.2021.103813. DOI
Michalkiewicz A., Biesaga M., Pyrzynska K. Solid-phase extraction procedure for determination of phenolic acids and some flavonols in honey. J. Chromatogr. A. 2008;1187:18–24. doi: 10.1016/j.chroma.2008.02.001. PubMed DOI
Oroian M., Sorina R. Honey authentication based on physicochemical parameters and phenolic compounds. Comput. Electron. Agric. 2017;138:148–156. doi: 10.1016/j.compag.2017.04.020. DOI
Liang Y., Cao W., Chen W.J., Xiao X.H., Zheng J.B. Simultaneous determination of four phenolic components in citrus honey by high performance liquid chromatography using electrochemical detection. Food Chem. 2009;114:1537–1541. doi: 10.1016/j.foodchem.2008.11.024. DOI
Zhao J., Du X.J., Cheng N., Chen L.Z., Xue X.F., Wu L.M., Cao W. Identification of monofloral honeys using HPLC-ECD and chemometrics. Food Chem. 2016;194:167–174. doi: 10.1016/j.foodchem.2015.08.010. PubMed DOI
Jandera P., Skerikova V., Rehova L., Hajek T., Baldrianova L., Skopova G., Kellner V., Horna A. RP-HPLC analysis of phenolic compounds and flavonoids in beverages and plant extracts using a CoulArray detector. J. Sep. Sci. 2005;28:1005–1022. doi: 10.1002/jssc.200500003. PubMed DOI
Mattonai M., Parri E., Querci D., Degano I., Ribechini E. Development and validation of an HPLC-DAD and HPLC/ESI-MS2 method for the determination of polyphenols in monofloral honeys from Tuscany (Italy) Microchem. J. 2016;126:220–229. doi: 10.1016/j.microc.2015.12.013. DOI
Sousa J.M., de Souza E.L., Marques G., Meireles B., Cordeiro A.T.D., Gullon B., Pintado M.M., Magnani M. Polyphenolic profile and antioxidant and antibacterial activities of monofloral honeys produced by Meliponini in the Brazilian semiarid region. Food Res. Int. 2016;84:61–68. doi: 10.1016/j.foodres.2016.03.012. DOI
Paramas A.M.G., Barez J.A.G., Marcos C.C., Garcia-Villanova R.J., Sanchez J.S. HPLC-fluorimetric method for analysis of amino acids in products of the hive (honey and bee-pollen) Food Chem. 2006;95:148–156. doi: 10.1016/j.foodchem.2005.02.008. DOI
El Sohaimy S.A., Masry S.H.D., Shehata M.G. Physicochemical characteristics of honey from different origins. Ann. Agric. Sci. 2015;60:279–287. doi: 10.1016/j.aoas.2015.10.015. DOI
Valverde S., Ares A.M., Elmore J.S., Bernal J. Recent trends in the analysis of honey constituents. Food Chem. 2022:387. doi: 10.1016/j.foodchem.2022.132920. PubMed DOI
Bulut L., Kilic M. Kinetics of hydroxymethylfurfural accumulation and color change in honey during storage in relation to moisture content. J. Food Process. Preserv. 2009;33:22–32. doi: 10.1111/j.1745-4549.2008.00233.x. DOI
Kowalski S. Changes of antioxidant activity and formation of 5-hydroxymethylfurfural in honey during thermal and microwave processing. Food Chem. 2013;141:1378–1382. doi: 10.1016/j.foodchem.2013.04.025. PubMed DOI
Janghu S., Bera M.B., Nanda V., Rawson A. Study on Power Ultrasound Optimization and Its Comparison with Conventional Thermal Processing for Treatment of Raw Honey. Food Technol. Biotechnol. 2017;55:570–579. doi: 10.17113/ftb.55.04.17.5263. PubMed DOI PMC
Villacres-Granda I., Proano A., Coello D., Debut A., Vizuete K., Ballesteros I., Granda-Albuja G., Rosero-Mayanquer H., Battino M., Giampieri F., et al. Effect of thermal liquefaction on quality, chemical composition and antibiofilm activity against multiresistant human pathogens of crystallized eucalyptus honey. Food Chem. 2021;365:130519. doi: 10.1016/j.foodchem.2021.130519. PubMed DOI
Bucekova M., Juricova V., Monton E., Martinotti S., Ranzato E., Majtan J. Microwave processing of honey negatively affects honey antibacterial activity by inactivation of bee-derived glucose oxidase and defensin-1. Food Chem. 2018;240:1131–1136. doi: 10.1016/j.foodchem.2017.08.054. PubMed DOI
Kowalski S., Lukasiewicz M., Bednarz S., Panus M. Diastase Number Changes During Thermal and Microwave Processing of Honey. Czech J. Food Sci. 2012;30:21–26. doi: 10.17221/123/2010-CJFS. DOI
Hebbar H.U., Nandini K.E., Lakshmi M.C., Subramanian R. Microwave and infrared heat processing of honey and its quality. Food Sci. Technol. Res. 2003;9:49–53. doi: 10.3136/fstr.9.49. DOI
Bartakova K., Drackova M., Borkovcova I., Vorlova L. Impact of Microwave Heating on Hydroxymethylfurfural Content in Czech Honeys. Czech J. Food Sci. 2011;29:328–336. doi: 10.17221/110/2009-CJFS. DOI