Reducing the number of accepted species in Aspergillus series Nigri
Status PubMed-not-MEDLINE Jazyk angličtina Země Nizozemsko Médium print-electronic
Typ dokumentu časopisecké články
PubMed
36760462
PubMed Central
PMC9903907
DOI
10.3114/sim.2022.102.03
Knihovny.cz E-zdroje
- Klíčová slova
- Aspergillus luchuensis, Aspergillus niger, Aspergillus tubingensis, clinical fungi, indoor fungi, infraspecific variability, multigene phylogeny, multispecies coalescence model, ochratoxin A, species delimitation,
- Publikační typ
- časopisecké články MeSH
The Aspergillus series Nigri contains biotechnologically and medically important species. They can produce hazardous mycotoxins, which is relevant due to the frequent occurrence of these species on foodstuffs and in the indoor environment. The taxonomy of the series has undergone numerous rearrangements, and currently, there are 14 species accepted in the series, most of which are considered cryptic. Species-level identifications are, however, problematic or impossible for many isolates even when using DNA sequencing or MALDI-TOF mass spectrometry, indicating a possible problem in the definition of species limits or the presence of undescribed species diversity. To re-examine the species boundaries, we collected DNA sequences from three phylogenetic markers (benA, CaM and RPB2) for 276 strains from series Nigri and generated 18 new whole-genome sequences. With the three-gene dataset, we employed phylogenetic methods based on the multispecies coalescence model, including four single-locus methods (GMYC, bGMYC, PTP and bPTP) and one multilocus method (STACEY). From a total of 15 methods and their various settings, 11 supported the recognition of only three species corresponding to the three main phylogenetic lineages: A. niger, A. tubingensis and A. brasiliensis. Similarly, recognition of these three species was supported by the GCPSR approach (Genealogical Concordance Phylogenetic Species Recognition) and analysis in DELINEATE software. We also showed that the phylogeny based on benA, CaM and RPB2 is suboptimal and displays significant differences from a phylogeny constructed using 5 752 single-copy orthologous proteins; therefore, the results of the delimitation methods may be subject to a higher than usual level of uncertainty. To overcome this, we randomly selected 200 genes from these genomes and performed ten independent STACEY analyses, each with 20 genes. All analyses supported the recognition of only one species in the A. niger and A. brasiliensis lineages, while one to four species were inconsistently delimited in the A. tubingensis lineage. After considering all of these results and their practical implications, we propose that the revised series Nigri includes six species: A. brasiliensis, A. eucalypticola, A. luchuensis (syn. A. piperis), A. niger (syn. A. vinaceus and A. welwitschiae), A. tubingensis (syn. A. chiangmaiensis, A. costaricensis, A. neoniger and A. pseudopiperis) and A. vadensis. We also showed that the intraspecific genetic variability in the redefined A. niger and A. tubingensis does not deviate from that commonly found in other aspergilli. We supplemented the study with a list of accepted species, synonyms and unresolved names, some of which may threaten the stability of the current taxonomy. Citation: Bian C, Kusuya Y, Sklenář F, D'hooge E, Yaguchi T, Ban S, Visagie CM, Houbraken J, Takahashi H, Hubka V (2022). Reducing the number of accepted species in Aspergillus series Nigri. Studies in Mycology 102: 95-132. doi: 10.3114/sim.2022.102.03.
BCCM IHEM collection Mycology and Aerobiology Sciensano Bruxelles Belgium
Biological Resource Center National Institute of Technology and Evaluation Kisarazu Japan
Department of Botany Faculty of Science Charles University Prague Czech Republic
Graduate School of Medical and Pharmaceutical Sciences Chiba University Chiba Japan
Medical Mycology Research Center Chiba University Chiba Japan
Molecular Chirality Research Center Chiba University Chiba Japan
Plant Molecular Science Center Chiba University Chiba Japan
Westerdijk Fungal Biodiversity Institute Utrecht the Netherlands
Zobrazit více v PubMed
Ahrens D, Fujisawa T, Krammer H-J, PubMed
Alcazar-Fuoli L, Mellado E, Alastruey-Izquierdo A, PubMed PMC
Al-Musallam (1980). A revision of the black Aspergillus species. Ph.D. dissertation. Rijksuniversiteit; Utrecht, Netherlands.
Andersen MR, Salazar MP, Schaap PJ, PubMed PMC
Bairoch A, Apweiler R. (2000). The SWISS-PROT protein sequence database and its supplement TrEMBL in 2000. Nucleic Acids Research 28: 45–48. PubMed PMC
Ban S, Kasaishi R, Kamijo T, PubMed PMC
Bankevich A, Nurk S, Antipov D, PubMed PMC
Bennett JW, Klich MA. (1992). Aspergillus: biology and industrial applications. Butterworth-Heinemann, USA.
Boluda CG, Rico VJ, Divakar PK, PubMed PMC
Bouckaert R, Heled J, Kühnert D, PubMed PMC
Buchfink B, Xie C, Huson DH. (2015). Fast and sensitive protein alignment using DIAMOND. Nature Methods 12: 59–60. PubMed
Carstens BC, Pelletier TA, Reid NM, Satler JD. (2013). How to fail at species delimitation. Molecular Ecology 22: 4369–4383. PubMed
Cerqueira GC, Arnaud MB, Inglis DO, PubMed PMC
Chambers EA, Hillis DM. (2020). The multispecies coalescent over-splits species in the case of geographically widespread taxa. Systematic Biology 69: 184–193. PubMed
Chen Y, Nie F, Xie S-Q, PubMed PMC
Crous PW, Verkley GJM, Groenewald JZ,
de Vries RP, Riley R, Wiebenga A, PubMed PMC
Dettman JR, Jacobson DJ, Taylor JW. (2003a). A multilocus genealogical approach to phylogenetic species recognition in the model eukaryote PubMed
Dettman JR, Jacobson DJ, Turner E, PubMed
D’hooge E, Becker P, Stubbe D, PubMed
Donaldson GC, Ball LA, Axelrood PE, PubMed PMC
Dyer PS, O’Gorman CM. (2011). A fungal sexual revolution: PubMed
Ellena V, Seekles SJ, Vignolle GA, PubMed PMC
Emms DM, Kelly S. (2019). OrthoFinder: phylogenetic orthology inference for comparative genomics. Genome Biology 20: 238. PubMed PMC
Feng X, Wang X, Chiang Y,
Frisvad JC, Larsen TO, Thrane U, PubMed PMC
Frisvad JC, Møller LLH, Larsen TO, PubMed PMC
Frisvad JC, Petersen LM, Lyhne EK, PubMed PMC
Fungaro MHP, Ferranti LS, Massi FP, PubMed PMC
Gams W, Christensen M, Onions AH,
Gautier M, Normand A-C, Ranque S. (2016). Previously unknown species of PubMed
Gits-Muselli M, Hamane S, Verillaud B, PubMed
Glässnerová K, Sklenář F, Jurjević Ž, PubMed PMC
Gnerre S, MacCallum I, Przybylski D, PubMed PMC
Grüning B, Dale R, Sjödin A, PubMed PMC
Hashimoto A, Hagiwara D, Watanabe A, PubMed PMC
Heled J, Drummond AJ. (2010). Bayesian inference of species trees from multilocus data. Molecular Biology and Evolution 27: 570–580. PubMed PMC
Hendrickx M, Beguin H, Detandt M. (2012). Genetic re-identification and antifungal susceptibility testing of PubMed
Hilário S, Gonçalves MFM, Alves A. (2021). Using genealogical concordance and coalescent-based species delimitation to assess species boundaries in the PubMed PMC
Hong S-B, Cho HS, Shin HD, PubMed
Hong S-B, Lee M, Kim DH, PubMed PMC
Hong S-B, Yamada O, Samson RA. (2014). Taxonomic re-evaluation of black koji molds. Applied Microbiology and Biotechnology 98: 555–561. PubMed
Horn BW, Olarte RA, Peterson SW, PubMed
Houbraken J, de Vries RP, Samson RA. (2014). Modern taxonomy of biotechnologically important PubMed
Houbraken J, Kocsubé S, Visagie CM, PubMed PMC
Howard SJ, Harrison E, Bowyer P, PubMed PMC
Hubka V, Barrs V, Dudová Z, PubMed PMC
Hubka V, Kolarik M. (2012). β-tubulin paralogue PubMed PMC
Hubka V, Kubatova A, Mallatova N, PubMed
Huerta-Cepas J, Szklarczyk D, Forslund K, PubMed PMC
Ismail MA. (2017). Incidence and significance of black aspergilli in agricultural commodities: a review, with a key to all species accepted to-date. European Journal of Biological Research 7: 207–222.
Jin JJ, Yu W bin, Yang JB, PubMed PMC
Jones G. (2017). Algorithmic improvements to species delimitation and phylogeny estimation under the multispecies coalescent. Journal of Mathematical Biology 74: 447–467. PubMed
Jones G, Aydin Z, Oxelman B. (2015). DISSECT: an assignment-free Bayesian discovery method for species delimitation under the multispecies coalescent. Bioinformatics 31: 991–998. PubMed
Jones P, Binns D, Chang HY, PubMed PMC
Jurjević Ž, Peterson SW, Stea G, PubMed PMC
Jurjević Ž, Kubátová A, Kolařík M, Hubka V. (2015). Taxonomy of
Katoh K, Rozewicki J, Yamada KD. (2019). MAFFT online service: multiple sequence alignment, interactive sequence choice and visualization. Briefings in Bioinformatics 20: 1160–1166. PubMed PMC
Khuna S, Suwannarach N, Kumla J, PubMed PMC
Kocsubé S, Perrone G, Magistà D, PubMed PMC
Korf I. (2004). Gene finding in novel genomes. BMC Bioinformatics 5: 59. PubMed PMC
Kozakiewicz Z. (1989).
Kozakiewicz Z, Frisvad JC, Hawksworth DL, Pitt JI, Samson RA, Stolk AC. (1992). Proposal for
Krueger F. (2015). Trim Galore!: a wrapper tool around Cutadapt and FastQC to consistently apply quality and adapter trimming to FastQ files. Babraham Institute https://www.bioinformatics.babraham.ac.uk/projects.
Kubatko LS, Degnan JH. (2007). Inconsistency of phylogenetic estimates from concatenated data under coalescence. Systematic Biology 56: 17–24. PubMed
Kück P, Mayer C, Wägele J-W, PubMed PMC
Kundu R, Casey J, Sung WK. (2019). HyPo: super fast & accurate polisher for long read genome assemblies. bioRxiv doi: 10.1101/2019.12.19.882506. DOI
Kusters-van Someren MA, Samson RA, Visser J. (1991). The use of RFLP analysis in classification of the black Aspergilli: reinterpretation of the
Lanfear R, Frandsen PB, Wright AM, PubMed
Letunic I, Bork P. (2021). Interactive Tree Of Life (iTOL) v5: an online tool for phylogenetic tree display and annotation. Nucleic Acids Research 49: W293–W296. PubMed PMC
Li H, Durbin R. (2009). Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 25: 1754–1760. PubMed PMC
Li H, Handsaker B, Wysoker A, PubMed PMC
Li Y, Wen J, Ren Y,
Liu YJ, Whelen S, Hall BD. (1999). Phylogenetic relationships among ascomycetes: evidence from an RNA polymerse II subunit. Molecular Biology and Evolution 16: 1799–1808. PubMed
Mageswari A, Kim J, Cheon K-H, PubMed PMC
Majoros WH, Pertea M, Salzberg SL. (2004). TigrScan and GlimmerHMM: two open source PubMed
Matute DR, Sepúlveda VE. (2019). Fungal species boundaries in the genomics era. Fungal Genetics and Biology 131: 103249. PubMed PMC
Mitchell AL, Attwood TK, Babbitt PC, PubMed PMC
Mosseray R. (1934). Les
Nargesi S, Jafarzadeh J, Najafzadeh MJ, PubMed
Negri CE, Gonçalves SS, Xafranski H, PubMed PMC
Nguyen L-T, Schmidt HA, von Haeseler A, PubMed PMC
Nielsen KF, Mogensen JM, Johansen M, PubMed
Noonim P, Mahakarnchanakul W, Nielsen KF, PubMed
Pante E, Puillandre N, Viricel A, PubMed
Paradis E. (2010). pegas: an R package for population genetics with an integrated-modular approach. Bioinformatics 26: 419–420. PubMed
Parker E, Dornburg A, Struthers CD, PubMed
Perrone G, Stea G, Epifani F, PubMed
Peterson SW. (2000). Phylogenetic relationships in
Peterson SW. (2008). Phylogenetic analysis of PubMed
Pitt JI, Hocking AD. (2009).
R Core Team (2016). R: a language and environment for statistical computing. R foundation for statistical computing, Vienna, Austria.
Raper KB, Fennell DI. (1965). The genus
Rawlings ND, Barrett AJ, Thomas PD, PubMed PMC
Richards TA. (2011). Genome evolution: horizontal movements in the fungi. Current Biology 21: R166–R168. PubMed
Rokas A, Williams BL, King N, PubMed
Ronquist F, Teslenko M, van der Mark P, PubMed PMC
Salah H, Lackner M, Houbraken J, PubMed PMC
Samson RA, Houbraken J, Thrane U,
Samson RA, Houbraken J, Thrane U,
Samson RA, Houbraken JAMP, Kuijpers AFA,
Samson RA, Hubka V, Varga J,
Samson RA, Noonim P, Meijer M, PubMed PMC
Schuster E, Dunn-Coleman N, Frisvad J, PubMed
Seekles SJ, Punt M, Savelkoel N, PubMed PMC
Seo T-K. (2008). Calculating bootstrap probabilities of phylogeny using multilocus sequence data. Molecular Biology and Evolution 25: 960–971. PubMed
Seppey M, Manni M, Zdobnov EM. (2019). BUSCO: assessing genome assembly and annotation completeness. Methods in Molecular Biology 1962: 227–245. PubMed
Shen W, Le S, Li Y, PubMed PMC
Silva da JJ, Iamanaka BT, Ferranti LS, PubMed PMC
Sklenář F, Glässnerová K, Jurjević Ž, PubMed PMC
Sklenář F, Jurjević Ž, Houbraken J, PubMed PMC
Sklenář F, Jurjević Ž, Zalar P, PubMed PMC
Slot JC, Rokas A. (2011). Horizontal transfer of a large and highly toxic secondary metabolic gene cluster between fungi. Current Biology 21: 134–139. PubMed
Stamatakis A. (2014). RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30: 1312–1313. PubMed PMC
Stanke M, Schöffmann O, Morgenstern B, PubMed PMC
Steenkamp ET, Wingfield MJ, McTaggart AR,
Steenwyk JL, Shen X-X, Lind AL, PubMed PMC
Steenwyk JL, Balamurugan C, Raja HA. PubMed DOI PMC
Sukumaran J, Holder MT, Knowles LL. (2021). Incorporating the speciation process into species delimitation. PLoS Computational Biology 17: e1008924. PubMed PMC
Swofford DL. (2003). PAUP* Phylogenetic analysis using parsimony, (*and other methods); version 4.0 b10. Sinauer Associates, USA.
Szigeti G, Sedaghati E, Mahmoudabadi AZ, PubMed
Szöllősi GJ, Davín AA, Tannier E, PubMed PMC
Talavera G, Castresana J. (2007). Improvement of phylogenies after removing divergent and ambiguously aligned blocks from protein sequence alignments. Systematic Biology 56: 564–577. PubMed
Taniwaki MH, Pitt JI, Magan N. (2018).
Taylor JW, Jacobson DJ, Kroken S, PubMed
Ter-Hovhannisyan V, Lomsadze A, Chernoff YO, PubMed PMC
Thom C. (1916).
Thom C, Church MB. (1926). The Aspergilli. Baltimore: Williams & Wilkins.
Thom C, Raper KB. (1945). A Manual of the Aspergilli. Baltimore: Williams & Wilkins.
Turland NJ, Wiersema JH, Barrie FR,
van Rossum G, Drake FL., Jr (2014). The python language reference. Python software foundation.
Varga J, Szigeti G, Baranyi N, PubMed
Varga J, Frisvad JC, Kocsubé S, PubMed PMC
Varga J, Kevei F, Vriesema A, PubMed
Vaser R, Sović I, Nagarajan N, PubMed PMC
Vesth TC, Nybo JL, Theobald S, PubMed
Vidal-Acuña MR, Ruiz M, Torres MJ, PubMed
Wang PM, Liu X bin, Dai YC,
Ward OP. (1989). Fermentation Biotechnology. Prentice Hall, Englewood Cliffs, New York, USA.
Wehmer C. (1907). Zur Kenntnis einiger
Wilhelm KA. (1877). Beiträge zur Kenntnis des Pilzgattung Aspergillus. Doctoral Dissertation, Strasburg, Germany.
Woudenberg JHC, Seidl MF, Groenewald JZ, PubMed PMC
Yamada O, Takara R, Hamada R, PubMed
Yang L, Lübeck M, Lübeck PS. (2017).
Yang Z. (2015). The BPP program for species tree estimation and species delimitation. Current Zoology 61: 854–865.
Yang Z, Rannala B. (2010). Bayesian species delimitation using multilocus sequence data. Proceedings of the National Academy of Sciences 107: 9264–9269. PubMed PMC
Yang Z, Rannala B. (2014). Unguided species delimitation using DNA sequence data from multiple loci. Molecular Biology and Evolution 31: 3125–3135. PubMed PMC
Yin Y, Mao X, Yang J, PubMed PMC
Yu T-S, Yeo S-H, Kim H-S. (2004). A new species of hyphomycetes,
Zerbino DR, Birney E. (2008). Velvet: algorithms for PubMed PMC
Aspergillus latus: A cryptic causative agent of aspergillosis emerging in Japan
A review of recently introduced Aspergillus, Penicillium, Talaromyces and other Eurotiales species
Dryad
10.5061/dryad.866t1g1td