Novel Ultrafine-Grain Mg-Gd/Nd-Y-Ca Alloys with an Increased Ignition Temperature

. 2023 Feb 03 ; 16 (3) : . [epub] 20230203

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid36770305

Grantová podpora
19-08937S Czech Science Foundation
355821 Charles University Grant Agency
ITMS: 313011AFG4 Ministry of Transport and Construction of the Slovak Republic

Two novel ignition-resistant magnesium alloys, Mg-2Gd-2Y-1Ca and Mg-2Nd-1Y-1Ca, were prepared in the ultrafine-grain condition by equal channel angular pressing (ECAP). In addition, four commercial alloys-AZ31, AX41, AE42 and WE43-were prepared similarly as a reference. The microstructure, mechanical properties and ignition temperature were thoroughly investigated. Both novel alloys exhibited a mean grain size of ~1 µm and dense distribution of small secondary phase particles. The mechanical strength measured by the tensile deformation test showed that the novel alloys are much stronger (~290 MPa) than all commercial alloys except WE43. However, Ca segregation into the grain boundaries caused a significant decrease in ductility (<6%). The ignition temperature of the novel alloys (~950 °C) was considerably improved by the presence of Gd/Nd, Y and Ca. This study showed that both novel alloys exhibit high strength and high ignition temperature in the ultrafine-grain condition.

Zobrazit více v PubMed

Gupta M., Sharon N.M.L. Magnesium, Magnesium Alloys, and Magnesium Composites. 1st ed. Wiley; New York, NY, USA: 2011.

Tekumalla S., Gupta M. An Insight into Ignition Factors and Mechanisms of Magnesium Based Materials: A Review. Mater. Des. 2017;113:84–98. doi: 10.1016/j.matdes.2016.09.103. DOI

Valiev R.Z., Langdon T.G. Principles of Equal-Channel Angular Pressing as a Processing Tool for Grain Refinement. Prog. Mater. Sci. 2006;51:881–981. doi: 10.1016/j.pmatsci.2006.02.003. DOI

Langdon T.G. Twenty-Five Years of Ultrafine-Grained Materials: Achieving Exceptional Properties through Grain Refinement. Acta Mater. 2013;61:7035–7059. doi: 10.1016/j.actamat.2013.08.018. DOI

Han D., Zhang J., Huang J., Lian Y., He G. A Review on Ignition Mechanisms and Characteristics of Magnesium Alloys. J. Magnes. Alloy. 2020;8:329–344. doi: 10.1016/j.jma.2019.11.014. DOI

Czerwinski F. Controlling the Ignition and Flammability of Magnesium for Aerospace Applications. Corros. Sci. 2014;86:1–16. doi: 10.1016/j.corsci.2014.04.047. DOI

Aydin D.S., Bayindir Z., Hoseini M., Pekguleryuz M.O. The High Temperature Oxidation and Ignition Behavior of Mg–Nd Alloys Part I: The Oxidation of Dilute Alloys. J. Alloys Compd. 2013;569:35–44. doi: 10.1016/j.jallcom.2013.03.130. DOI

Aydin D.S., Bayindir Z., Pekguleryuz M.O. The High Temperature Oxidation Behavior of Mg–Nd Alloys. Part II: The Effect of the Two-Phase Microstructure on the on-Set of Oxidation and on Oxide Morphology. J. Alloys Compd. 2014;584:558–565. doi: 10.1016/j.jallcom.2013.09.110. DOI

Kubásek J., Minárik P., Hosová K., Šašek S., Knapek M., Veselý J., Stráská J., Dvorský D., Čavojský M., Vojtěch D. Novel Magnesium Alloy Containing Y, Gd and Ca with Enhanced Ignition Temperature and Mechanical Properties for Aviation Applications. J. Alloys Compd. 2021;877:160089. doi: 10.1016/j.jallcom.2021.160089. DOI

Kim Y.M., Yim C.D., Kim H.S., You B.S. Key Factor Influencing the Ignition Resistance of Magnesium Alloys at Elevated Temperatures. Scr. Mater. 2011;65:958–961. doi: 10.1016/j.scriptamat.2011.08.019. DOI

Minárik P., Veselý J., Král R., Bohlen J., Kubásek J., Janeček M., Stráská J. Exceptional Mechanical Properties of Ultra-Fine Grain Mg-4Y-3RE Alloy Processed by ECAP. Mater. Sci. Eng. A. 2017;708:193–198. doi: 10.1016/j.msea.2017.09.106. DOI

Li F., Peh W.Y., Nagarajan V., Ho M.K., Danno A., Chua B.W., Tan M.J. Development of Non-Flammable High Strength AZ91+Ca Alloys via Liquid Forging and Extrusion. Mater. Des. 2016;99:37–43. doi: 10.1016/j.matdes.2016.03.014. DOI

Kawamura Y. Flame-Resistant Magnesium Alloys with High Strength; Proceedings of the Seventh Triennial International Fire & Cabin Safety Research Conference; Philadelphia, PA, USA. 2–5 December 2013;

Ding J., Zhao W.M., Qin L., Li Y.Y. Study of Ca and Ce Additions on Different Ignition Resistance Behavior of Magnesium Alloy. Mater. Sci. Forum. 2014;788:7–11. doi: 10.4028/www.scientific.net/MSF.788.7. DOI

Zeng Z.R., Bian M.Z., Xu S.W., Davies C.H.J., Birbilis N., Nie J.F. Effects of Dilute Additions of Zn and Ca on Ductility of Magnesium Alloy Sheet. Mater. Sci. Eng. A. 2016;674:459–471. doi: 10.1016/j.msea.2016.07.049. DOI

Villegas-Armenta L.A., Drew R.A.L., Pekguleryuz M.O. The Ignition Behavior of Mg–Ca Binary Alloys: The Role of Heating Rate. Oxid. Met. 2020;93:545–558. doi: 10.1007/s11085-020-09970-x. DOI

Ravi Kumar N.V., Blandin J.J., Suéry M., Grosjean E. Effect of Alloying Elements on the Ignition Resistance of Magnesium Alloys. Scr. Mater. 2003;49:225–230. doi: 10.1016/S1359-6462(03)00263-X. DOI

Janeček M., Yi S., Král R., Vrátná J., Kainer K.U. Texture and Microstructure Evolution in Ultrafine-Grained AZ31 Processed by EX-ECAP. J. Mater. Sci. 2010;45:4665–4671. doi: 10.1007/s10853-010-4675-1. DOI

Krajňák T., Minárik P., Gubicza J., Máthis K., Kužel R., Janeček M. Influence of Equal Channel Angular Pressing Routes on Texture, Microstructure and Mechanical Properties of Extruded AX41 Magnesium Alloy. Mater. Charact. 2017;123:282–293. doi: 10.1016/j.matchar.2016.11.044. DOI

Minárik P., Král R., Čížek J., Chmelík F. Effect of Different c/a Ratio on the Microstructure and Mechanical Properties in Magnesium Alloys Processed by ECAP. Acta Mater. 2016;107:83–95. doi: 10.1016/j.actamat.2015.12.050. DOI

Bachmann F., Hielscher R., Schaeben H. Texture Analysis with MTEX—Free and Open Source Software Toolbox. Solid State Phenom. 2010;160:63–68. doi: 10.4028/www.scientific.net/SSP.160.63. DOI

Krajňák T., Minárik P., Stráský J., Máthis K., Janeček M. Mechanical Properties of Ultrafine-Grained AX41 Magnesium Alloy at Room and Elevated Temperatures. Mater. Sci. Eng. A. 2018;731:438–445. doi: 10.1016/j.msea.2017.10.076. DOI

Orlov D., Pelliccia D., Fang X., Bourgeois L., Kirby N., Nikulin A.Y., Ameyama K., Estrin Y. Particle Evolution in Mg–Zn–Zr Alloy Processed by Integrated Extrusion and Equal Channel Angular Pressing: Evaluation by Electron Microscopy and Synchrotron Small-Angle X-Ray Scattering. Acta Mater. 2014;72:110–124. doi: 10.1016/j.actamat.2014.03.027. DOI

Minárik P., Zemková M., Veselý J., Bohlen J., Knapek M., Král R. The Effect of Zr on Dynamic Recrystallization during ECAP Processing of Mg-Y-RE Alloys. Mater. Charact. 2021;174:111033. doi: 10.1016/j.matchar.2021.111033. DOI

Massalski T.B., Okamoto H. Binary Alloy Phase Diagrams. 2nd ed. The Materials Information Society; Materials Park, OH, USA: 1990.

Krajňák T., Minárik P., Stráská J., Gubicza J., Máthis K., Janeček M. Influence of Equal Channel Angular Pressing Temperature on Texture, Microstructure and Mechanical Properties of Extruded AX41 Magnesium. J. Alloys Compd. 2017;705:273–282. doi: 10.1016/j.jallcom.2017.02.061. DOI

Hall E.O. The Deformation and Ageing of Mild Steel: III Discussion of Results. Proc. Phys. Society. Sect. B. 1951;64:747–753. doi: 10.1088/0370-1301/64/9/303. DOI

Petch N.J. The Cleavage Strength of Polycrystals. The Iron and Steel Institute; London, UK: 1953. pp. 25–28.

Zhu G., Wang L., Wang J., Wang J., Park J.-S., Zeng X. Highly Deformable Mg–Al–Ca Alloy with Al2Ca Precipitates. Acta Mater. 2020;200:236–245. doi: 10.1016/j.actamat.2020.09.006. DOI

Kashiwase S., Unekawa M., Hisazawa H., Terada Y. Three-Dimensional Morphology of C15–Al2Ca Precipitates in a Mg–Al–Ca Alloy. Mater. Trans. 2019;60:2048–2052. doi: 10.2320/matertrans.MT-M2019149. DOI

Nie J.F., Muddle B.C. Precipitation Hardening of Mg-Ca(-Zn) Alloys. Scr. Mater. 1997;37:1475–1481. doi: 10.1016/S1359-6462(97)00294-7. DOI

Prasad A., Shi Z., Atrens A. Influence of Al and Y on the Ignition and Flammability of Mg Alloys. Corros. Sci. 2012;55:153–163. doi: 10.1016/j.corsci.2011.10.014. DOI

Prasad A., Shi Z., Atrens A. Flammability of Mg–X Binary Alloys. Adv. Eng. Mater. 2012;14:772–784. doi: 10.1002/adem.201200124. DOI

Zeng Z., Stanford N., Davies C.H.J., Nie J.-F., Birbilis N. Magnesium Extrusion Alloys: A Review of Developments and Prospects. Int. Mater. Rev. 2019;64:27–62. doi: 10.1080/09506608.2017.1421439. DOI

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...