Novel Ultrafine-Grain Mg-Gd/Nd-Y-Ca Alloys with an Increased Ignition Temperature
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
19-08937S
Czech Science Foundation
355821
Charles University Grant Agency
ITMS: 313011AFG4
Ministry of Transport and Construction of the Slovak Republic
PubMed
36770305
PubMed Central
PMC9919670
DOI
10.3390/ma16031299
PII: ma16031299
Knihovny.cz E-zdroje
- Klíčová slova
- flammability resistance, magnesium, mechanical properties, microstructure, ultrafine-grain,
- Publikační typ
- časopisecké články MeSH
Two novel ignition-resistant magnesium alloys, Mg-2Gd-2Y-1Ca and Mg-2Nd-1Y-1Ca, were prepared in the ultrafine-grain condition by equal channel angular pressing (ECAP). In addition, four commercial alloys-AZ31, AX41, AE42 and WE43-were prepared similarly as a reference. The microstructure, mechanical properties and ignition temperature were thoroughly investigated. Both novel alloys exhibited a mean grain size of ~1 µm and dense distribution of small secondary phase particles. The mechanical strength measured by the tensile deformation test showed that the novel alloys are much stronger (~290 MPa) than all commercial alloys except WE43. However, Ca segregation into the grain boundaries caused a significant decrease in ductility (<6%). The ignition temperature of the novel alloys (~950 °C) was considerably improved by the presence of Gd/Nd, Y and Ca. This study showed that both novel alloys exhibit high strength and high ignition temperature in the ultrafine-grain condition.
Department of Physics of Materials Charles University Ke Karlovu 5 121 16 Prague Czech Republic
Research Centre University of Žilina Univerzitná 8215 1 01026 Žilina Slovakia
Zobrazit více v PubMed
Gupta M., Sharon N.M.L. Magnesium, Magnesium Alloys, and Magnesium Composites. 1st ed. Wiley; New York, NY, USA: 2011.
Tekumalla S., Gupta M. An Insight into Ignition Factors and Mechanisms of Magnesium Based Materials: A Review. Mater. Des. 2017;113:84–98. doi: 10.1016/j.matdes.2016.09.103. DOI
Valiev R.Z., Langdon T.G. Principles of Equal-Channel Angular Pressing as a Processing Tool for Grain Refinement. Prog. Mater. Sci. 2006;51:881–981. doi: 10.1016/j.pmatsci.2006.02.003. DOI
Langdon T.G. Twenty-Five Years of Ultrafine-Grained Materials: Achieving Exceptional Properties through Grain Refinement. Acta Mater. 2013;61:7035–7059. doi: 10.1016/j.actamat.2013.08.018. DOI
Han D., Zhang J., Huang J., Lian Y., He G. A Review on Ignition Mechanisms and Characteristics of Magnesium Alloys. J. Magnes. Alloy. 2020;8:329–344. doi: 10.1016/j.jma.2019.11.014. DOI
Czerwinski F. Controlling the Ignition and Flammability of Magnesium for Aerospace Applications. Corros. Sci. 2014;86:1–16. doi: 10.1016/j.corsci.2014.04.047. DOI
Aydin D.S., Bayindir Z., Hoseini M., Pekguleryuz M.O. The High Temperature Oxidation and Ignition Behavior of Mg–Nd Alloys Part I: The Oxidation of Dilute Alloys. J. Alloys Compd. 2013;569:35–44. doi: 10.1016/j.jallcom.2013.03.130. DOI
Aydin D.S., Bayindir Z., Pekguleryuz M.O. The High Temperature Oxidation Behavior of Mg–Nd Alloys. Part II: The Effect of the Two-Phase Microstructure on the on-Set of Oxidation and on Oxide Morphology. J. Alloys Compd. 2014;584:558–565. doi: 10.1016/j.jallcom.2013.09.110. DOI
Kubásek J., Minárik P., Hosová K., Šašek S., Knapek M., Veselý J., Stráská J., Dvorský D., Čavojský M., Vojtěch D. Novel Magnesium Alloy Containing Y, Gd and Ca with Enhanced Ignition Temperature and Mechanical Properties for Aviation Applications. J. Alloys Compd. 2021;877:160089. doi: 10.1016/j.jallcom.2021.160089. DOI
Kim Y.M., Yim C.D., Kim H.S., You B.S. Key Factor Influencing the Ignition Resistance of Magnesium Alloys at Elevated Temperatures. Scr. Mater. 2011;65:958–961. doi: 10.1016/j.scriptamat.2011.08.019. DOI
Minárik P., Veselý J., Král R., Bohlen J., Kubásek J., Janeček M., Stráská J. Exceptional Mechanical Properties of Ultra-Fine Grain Mg-4Y-3RE Alloy Processed by ECAP. Mater. Sci. Eng. A. 2017;708:193–198. doi: 10.1016/j.msea.2017.09.106. DOI
Li F., Peh W.Y., Nagarajan V., Ho M.K., Danno A., Chua B.W., Tan M.J. Development of Non-Flammable High Strength AZ91+Ca Alloys via Liquid Forging and Extrusion. Mater. Des. 2016;99:37–43. doi: 10.1016/j.matdes.2016.03.014. DOI
Kawamura Y. Flame-Resistant Magnesium Alloys with High Strength; Proceedings of the Seventh Triennial International Fire & Cabin Safety Research Conference; Philadelphia, PA, USA. 2–5 December 2013;
Ding J., Zhao W.M., Qin L., Li Y.Y. Study of Ca and Ce Additions on Different Ignition Resistance Behavior of Magnesium Alloy. Mater. Sci. Forum. 2014;788:7–11. doi: 10.4028/www.scientific.net/MSF.788.7. DOI
Zeng Z.R., Bian M.Z., Xu S.W., Davies C.H.J., Birbilis N., Nie J.F. Effects of Dilute Additions of Zn and Ca on Ductility of Magnesium Alloy Sheet. Mater. Sci. Eng. A. 2016;674:459–471. doi: 10.1016/j.msea.2016.07.049. DOI
Villegas-Armenta L.A., Drew R.A.L., Pekguleryuz M.O. The Ignition Behavior of Mg–Ca Binary Alloys: The Role of Heating Rate. Oxid. Met. 2020;93:545–558. doi: 10.1007/s11085-020-09970-x. DOI
Ravi Kumar N.V., Blandin J.J., Suéry M., Grosjean E. Effect of Alloying Elements on the Ignition Resistance of Magnesium Alloys. Scr. Mater. 2003;49:225–230. doi: 10.1016/S1359-6462(03)00263-X. DOI
Janeček M., Yi S., Král R., Vrátná J., Kainer K.U. Texture and Microstructure Evolution in Ultrafine-Grained AZ31 Processed by EX-ECAP. J. Mater. Sci. 2010;45:4665–4671. doi: 10.1007/s10853-010-4675-1. DOI
Krajňák T., Minárik P., Gubicza J., Máthis K., Kužel R., Janeček M. Influence of Equal Channel Angular Pressing Routes on Texture, Microstructure and Mechanical Properties of Extruded AX41 Magnesium Alloy. Mater. Charact. 2017;123:282–293. doi: 10.1016/j.matchar.2016.11.044. DOI
Minárik P., Král R., Čížek J., Chmelík F. Effect of Different c/a Ratio on the Microstructure and Mechanical Properties in Magnesium Alloys Processed by ECAP. Acta Mater. 2016;107:83–95. doi: 10.1016/j.actamat.2015.12.050. DOI
Bachmann F., Hielscher R., Schaeben H. Texture Analysis with MTEX—Free and Open Source Software Toolbox. Solid State Phenom. 2010;160:63–68. doi: 10.4028/www.scientific.net/SSP.160.63. DOI
Krajňák T., Minárik P., Stráský J., Máthis K., Janeček M. Mechanical Properties of Ultrafine-Grained AX41 Magnesium Alloy at Room and Elevated Temperatures. Mater. Sci. Eng. A. 2018;731:438–445. doi: 10.1016/j.msea.2017.10.076. DOI
Orlov D., Pelliccia D., Fang X., Bourgeois L., Kirby N., Nikulin A.Y., Ameyama K., Estrin Y. Particle Evolution in Mg–Zn–Zr Alloy Processed by Integrated Extrusion and Equal Channel Angular Pressing: Evaluation by Electron Microscopy and Synchrotron Small-Angle X-Ray Scattering. Acta Mater. 2014;72:110–124. doi: 10.1016/j.actamat.2014.03.027. DOI
Minárik P., Zemková M., Veselý J., Bohlen J., Knapek M., Král R. The Effect of Zr on Dynamic Recrystallization during ECAP Processing of Mg-Y-RE Alloys. Mater. Charact. 2021;174:111033. doi: 10.1016/j.matchar.2021.111033. DOI
Massalski T.B., Okamoto H. Binary Alloy Phase Diagrams. 2nd ed. The Materials Information Society; Materials Park, OH, USA: 1990.
Krajňák T., Minárik P., Stráská J., Gubicza J., Máthis K., Janeček M. Influence of Equal Channel Angular Pressing Temperature on Texture, Microstructure and Mechanical Properties of Extruded AX41 Magnesium. J. Alloys Compd. 2017;705:273–282. doi: 10.1016/j.jallcom.2017.02.061. DOI
Hall E.O. The Deformation and Ageing of Mild Steel: III Discussion of Results. Proc. Phys. Society. Sect. B. 1951;64:747–753. doi: 10.1088/0370-1301/64/9/303. DOI
Petch N.J. The Cleavage Strength of Polycrystals. The Iron and Steel Institute; London, UK: 1953. pp. 25–28.
Zhu G., Wang L., Wang J., Wang J., Park J.-S., Zeng X. Highly Deformable Mg–Al–Ca Alloy with Al2Ca Precipitates. Acta Mater. 2020;200:236–245. doi: 10.1016/j.actamat.2020.09.006. DOI
Kashiwase S., Unekawa M., Hisazawa H., Terada Y. Three-Dimensional Morphology of C15–Al2Ca Precipitates in a Mg–Al–Ca Alloy. Mater. Trans. 2019;60:2048–2052. doi: 10.2320/matertrans.MT-M2019149. DOI
Nie J.F., Muddle B.C. Precipitation Hardening of Mg-Ca(-Zn) Alloys. Scr. Mater. 1997;37:1475–1481. doi: 10.1016/S1359-6462(97)00294-7. DOI
Prasad A., Shi Z., Atrens A. Influence of Al and Y on the Ignition and Flammability of Mg Alloys. Corros. Sci. 2012;55:153–163. doi: 10.1016/j.corsci.2011.10.014. DOI
Prasad A., Shi Z., Atrens A. Flammability of Mg–X Binary Alloys. Adv. Eng. Mater. 2012;14:772–784. doi: 10.1002/adem.201200124. DOI
Zeng Z., Stanford N., Davies C.H.J., Nie J.-F., Birbilis N. Magnesium Extrusion Alloys: A Review of Developments and Prospects. Int. Mater. Rev. 2019;64:27–62. doi: 10.1080/09506608.2017.1421439. DOI